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ABSTRACT
Reducing an automobile’s energy consumption will lower its
dependency on fossil fuel and extend the travel range of elec-
tric vehicles. Automobile Climate Control Systems (CCS)
are known to be heavy energy consumers. To help reduce
CCS energy consumption, this paper presents an adaptive
automated agent, MDP Agent for Climate control Systems –
MACS, which provides drivers advice as to how to set their
CCS. First, we present a model which has 78% accuracy
in predicting drivers’ reactions to different advice in differ-
ent situations. Using the prediction model, we designed a
Markov Decision Process which solution provided the advis-
ing policy for MACS. Through empirical evaluation using an
electric car, with 83 human subjects, we show that MACS
successfully reduced the energy consumption of the subjects
by 33% compared to subjects who were not equipped with
MACS. MACS also outperformed the state-of-the-art Social
agent for Advice Provision (SAP).

Categories and Subject Descriptors
I.2.m [Computing Methodologies]: ARTIFICIAL IN-
TELLIGENCE—Miscellaneous

General Terms
Human Factors, Experimentation

Keywords
Energy Aware Systems; Advice Provision; Human-Agent In-
teraction

1. INTRODUCTION
According to Lee and Lovellette [17], by 2030 a rising

middle class in China and India will cause a high demand for
passenger cars which will result in approximately 1.1 billion
cars on the road worldwide, compared to 750 million in 2010.
Such a fleet would probably not be able to rely on fossil fuels
alone for long. The growing interest in electrical cars seems
to offer a great solution to the escalating number of cars [17].
Between 2012 and mid-2014, there was an increase of 170%
in electrical cars worldwide [11, 20]. Yet, one of the most
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reported reasons for refraining from switching to electric cars
is the relatively limited travel range it has (w.r.t petrol cars).
Auto experts have reported that the car’s climate control
system (CCS) reduces the cars power efficiency by up to
10 percent [22, 26]. Thus, reducing energy consumption of
the climate control system is important in order to reduce
human ecological footprint and extend the travel distance of
electric vehicles.

There is broad consensus that modifying a driver’s be-
havior may allow a reduction in vehicle fuel consumption
[9]. Inspired by these results, in this paper, we propose
an automated agent that advises a driver how to set the
car’s climate control system, in a way that would reduce
energy consumption while keeping the driver comfortable.
The agent operates in a repeated interaction environment, in
which it offers adaptive advice to the driver. While the agent
is mainly concerned with the car’s energy consumption, the
driver is usually more interested in her own comfort level—
an interest which changes from one driver to another. This
partial conflict, which may occur, is a challenge in the ad-
vice provision process—the agent must consider the driver’s
comfort in order to provide reasonable advice. Furthermore,
the agent should consider the trust the driver has in it and
take into account the long term effect of each advice.

We present a methodology which combines a driver model,
a CCS model and an environment model in a Markov Deci-
sion Process (MDP) setting [25] in order to generate adap-
tive advice for the driver on how to set her CCS. In this
work we mainly focus on the driver model, which consid-
ers the driver’s preferences, the dynamically changing envi-
ronment and the repeated interaction process between the
driver and the agent. Modeling the driver in a personal-
ized manner is very challenging. First, different drivers may
have different preferences when it comes to CCS settings.
Their preference vary according to the environment changes
and can even change during the ride itself. Second, the in-
teraction between the driver and the agent also affects the
driver’s preferences and her future reactions to new advice
suggested by the agent.

In order to learn drivers’ preferences and behavior while
they interact with an agent in repeated interactions we used
2 simple repeatedly interacting agents that were tested with
38 human subjects using a GM Chevrolet Volt electrical car.
These agents use different advising procedures and exam-
ine different advice as well as different interaction sequences
from which we can learn about the aforementioned factors.
Generalizing findings from only 38 subjects is extremely dif-
ficult in repeated interaction settings, especially because we



cannot simulate all the different advice and interactions with
our subjects.

Using machine learning techniques and careful selection
of predicatory features we were able to overcome the above
challenges and construct a personalized driver model for pre-
dicting drivers’ reactions to advice depending on its content,
the context in which it was given and the previous agent-
driver interactions. Predicting drivers’ reactions necessitates
the identification of predicatory features which describe the
driver’s preferences, the environmental factors that influ-
ence her decision making and a representation of the trust
between the driver and the agent which affect her decision
making as well. We were able to identify a set of features
with which we are able to provide a probability assessment
for each specific driver of whether she will accept a given ad-
vice, based on the details of the advice, the current setting
inside and outside the car and interactions before the advice
was given. In a similar fashion, an environment model was
constructed. A CCS model was obtained from previous work
on a single interaction advice provision in CCS settings [3].

We used Markov Decision Process modeling, which uti-
lizes the aforementioned models to account for the dynamic
and changing environment in which the agent operates, and
solved it to calculate an advising policy. The resulting pol-
icy, which is used by our proposed agent, MDP Agent for Cli-
mate control Systems — MACS, was tested and compared to
the state-of-the-art Social agent for Advice Provision (SAP)
modeling [5] and a non-advising agent (Silent). Our experi-
ments, with 83 human drivers, show that subjects equipped
with our agent significantly saved energy compared to both
competing agents. Subjects equipped with MACS reduced
their CCS energy consumption by 33% (on average) com-
pared to subjects using a non-advising agent (Silent). These
results were unexpected compared to the limited savings re-
ported in [3] for a single interaction advising agent.

MACS can be deployed in petrol and electric cars alike and
hold both long-term and short-term benefits for the driver
and the environment.

2. RELATED WORK
Persuasive technologies have been used in different do-

mains that target behaviors; from healthy/safe lifestyle to
ecological behavior (see [12] for an excellent review). These
technologies use different techniques to persuade humans to
change how they think or what they do [6] and differ in their
theoretical background [19]. Among these persuasive tech-
nologies, one can find many agents for the improvement of
energy efficiency. In many of these works, the agent is not
required to provide advice as to how to achieve the goal, but
persuade the user into doing so by providing socio-feedback
or eco-feedback [10, 8]. For example, in [7] a mobile applica-
tion is presented, that senses and reveals information about
transportation behavior, in an attempt to persuade people
to increase their use of 5green transportation. In [2] the au-
thors investigate the design and evaluation of an intelligent
agent that helps to persuade family members to conserve en-
ergy in their home. Other agents negotiate with humans in
order to conserve energy, for example in the work-place [16,
1]. In the context of automobiles, some agents use drivers’
observed behavior to automatically elicit the drivers’ inten-
tion and goals [28, 24, 18, 15]. Yet, to the best of our knowl-
edge, the only work that deals directly with advice provi-
sion concerning CSSs is [3].The authors propose CARE—a

method to persuade a driver to reduce the energy consump-
tion of the climate control system of her electric car. CARE
is designed for a single round interaction with a driver, and
is not adaptive to the driver’s actions. That is, the driver
receives advice which does not change throughout the ride.
Furthermore, CARE requires the driver to report her“initial
comfort level” (how comfortable the driver feels in the begin-
ning of the ride) in order to personalize the advice such that
different drivers receive different advice depending on their
initial comfort level. Without obtaining this initial comfort
level, CARE is not personalized, and all drivers would receive
advice depending solely on the external and internal temper-
atures. In real world implementation we would like the agent
to be able to personalize and adapt the advice to the drivers’
actions and refrain from explicitly requesting data from the
driver, as requesting such information may be annoying and
even dangerously distracting [27]. In this work, the agent
elicits the drivers’ preferences implicitly from their observed
actions and interactions with the system and does not re-
quire any additional information from the driver, prior to or
during the ride.

Agents who consider their own utility while offering advice
are common in the literature. While most of these works as-
sume one-shot interactions, some do consider the long term
effect of the advice in repeated interactions [23, 5]. The two
state-of-the-art approaches for the latter used Markov De-
cision Process (MDP) modeling and maximized a weighted
social utility function in a Social agent for Advice Provision
model (SAP). The MDP and SAP models were compared
in [4] in a simulated CCS environment, yet their results are
inapplicable in our setting as the authors assumed explicitly
given utility functions for both the agent and the user. In our
work, we confront a much greater challenge: first, we assume
no prior knowledge on the driver’s preferences and utility.
Second, the utility which the driver gains from the differ-
ent climate control settings is not homogeneous among the
drivers. Thus, an extensive context and preference related
analysis of observed actions was conducted in this work to
provide a probabilistic estimation of the driver’s reactions to
possible advice. This estimation was in turn combined into
an advice provision model in which the human driver could
be persuaded to save the energy consumed by her electric
car’s climate control system.

3. THE CHEVROLET VOLT CLIMATE CON-
TROL SYSTEM

Our study is based on the GM Chevrolet Volt climate
control system. In this system the drivers have control over
the setting S which is a tuple (T, F,D,M) consisting of the
following variables:

• Temperature (T ): this variable can receive values be-
tween 16 and 35, and is associated with a temperature
in Celsius.

• Fan strength (F ): this variable can receive values be-
tween 1 and 6 and is associated with the fan blower
power.

• Air delivery (D): in the Volt climate control system,
the air delivery may be set to face (panel), face and
feet, only feet and windshield and feet. In our study
we limited the air delivery to either the face (in which



Figure 1: Main screen.

D is set to 0) or the face and feet (in which D is set
to 1).

• Mode (M): This variable may either be set to ’eco’
(when M is set to 0) or to ‘comfort’ (when M is set to
1).

The Volt climate control system also allows the following ad-
ditional variables to be set, which we did not include in this
study. These variables are heating of the driver and passen-
ger seats, recirculation to either manual or automatic, and
a ’fan only’ mode which does not use the climate control’s
compressor. In all the experiments we set the air source to
recirculation. Figure 1 presents the climate control system
panel.

Additional important parameters are E, which is the ex-
ternal temperature as displayed in the central stack, and I,
which is the internal temperature as we measured with a
manual thermometer located between the 2 front seats. We
denote these two parameters together as world state v ∈ V ,
where V is the set of all possible world states.

Given a setting s, we use subscript sT to refer to the
temperature in that setting, sF to refer to the fan strength,
sD for the air delivery and sM for the mode of the setting.

3.1 Energy Consumption Model
We followed the model of the CCS energy consumption as

described in [3]. This model was compared by the authors to
others and yielded the greatest fit for the data they collected.

e(T, F,D,M,E, I) = (w1 · (−T ) + w2 · F + w3 ·D+

w4 · E + w5 · I) · ((1 + w6) ·M) (1)

We use the same w1, w2, ..., w6 calculated by the authors.

4. THE REPEATED ADVICE PROVISION
PROBLEM

In our setting, there is a repeated interaction between a
receiver (the driver) and a sender (the agent). The inter-
action is composed of rounds (intuitively, different rides in
the car). In round t, after i interactions in that round, the
sender observes the state of the world v = (E, I) ∈ V , the
current climate control settings s = (T, F,D,M) ∈ S and
the history of interactions with the agent, ht,i, and suggests
to the receiver to change its climate control setting to some

d ∈ S. The agent is also allowed to “keep silent” and not of-
fer any suggestion. After observing advice d from the sender
(if given) the receiver chooses one of the following reactions
{accept, reject}. Regardless of d and the timing, the receiver
can choose any s′ ∈ S at her discretion.

The prediction model, which we will soon describe, is in-
tended to assess P (accept | d, t, v, s, ht,i), the probability
that the receiver will choose to accept the sender’s sugges-
tion d at the time and context in which d was provided.

For a given world state v, settings s and history ht,i−1,
we define the sender’s expected cost for action d as follows:

ECt,iS (v, s, ht,i−1, d) =
∑

a∈{accept,reject}

P (a | d, t, v, ht,i−1)

(
R(a, v, s, d) + γ(t, i)

∑
v′∈V,s′∈S

p(v′, s′ | a, v, s, d)(min
d′

ECα(t,i),β(t,i)s (v′, s′, ht,i, d′))
)

(2)

Where R(a, v, s, d) is the immediate reward/cost function,
which in our domain is the expected energy consumption
given the current world state v, setting s, advice d and the
drivers reaction a. γ(t, i) is the discount factor, which rep-
resents the difference in the significance between future re-
wards and present rewards. p(v′, s′ | a, v, s, d) is the proba-
bility of reaching world state v′ and setting s′ from state v
and setting s, when the receiver takes action a and the ad-
vice was d, which in our case corresponds to the probability
that the world state will change from v to v′ and the setting
will change from s to s′ between consecutive interactions.
Note that not only may the settings s change according to
the receiver’s action, but also the world state v. For exam-
ple, acceptance (a = accept) of suggestion d while in state v
may change the internal temperature.

Intuitively, the EC
α(t,i),β(t,i)
s sums up the expected util-

ity in the current time period and in the future. α(t, i) =

t +
⌊
tl−mod(i/tl)

tl

⌋
and β(t, i) =

{
i+ 1, if i < tl

1, otherwise
where

tl is the limit on the number of interactions per round.

EC
α(t,i),β(t,i)
s considers the possible responses and multi-

plies the probability that the receiver will choose this action
(P (a | d, t, v, s, ht,i)) with the sum of two elements; The first
specifies the immediate reward (R(a, v, s, d)) and the second
specifies the expected future reward. The future expected
reward first depends on whether the interactions will con-
tinue at all, which will happen with a probability depending
on the number of rounds and interactions γ(t, i). Then, it
depends heavily on the future world state v′ and setting s.
For any possible future world state v′ and settings s′ that
will occur with a probability of p(v′, s′ | a, v, s, d) the agent
will choose the best advice d′ and will obtain, recursively,
the expected utility from giving this advice in the next in-
teraction i+ 1 with the updated history ht,i.

The advice that minimizes the sender’s cost is

π∗(v, s, ht,i−1) = argmindEC
t,i
S (v, s, ht,i−1, d) (3)

Where π∗ is the advice function.
Hitherto, we have dealt with all variables in the opti-

mization problem except P (a | d, t, v, s, ht,i) and p(v′, s′ |
a, v, s, d) which require estimations. The next subsection is
dedicated to the data collection and analysis which in turn
resulted in prediction models for the above.



Figure 2: Advised screen.

4.1 Data Collection
In order to estimate P (a | d, t, v, s, ht,i) we recruited 38

subjects, of whom 20 were males and 18 were females1 rang-
ing in age between 23 and 67, with a mean of 35.

Each subject was given 10 minutes to be in the car and
he or she was free to tell the experimenter what settings to
set in the climate control system once the experiment began.
The experiment screen (see Figure 1) was displayed on a lap-
top while the central stack screen was covered. The system
presented advice (if available) as a small “Go Eco-Friendly”
button on the bottom left side of the experiment screen. The
subject could choose to click on that button at any given
moment, and thereby change the climate control setting to
the advice suggested by the agent (see Figure 2). Notice
that the advice itself is not presented to the driver before
“Go Eco-Friendly” is applied. The system merely presents
the energy saving the advice would yield. During the next
10 seconds the drivers could choose whether to accept the
advice (keep the new settings) or reject it (return to her
previous setting). If for the next 10 seconds the driver does
not react, the new setting is automatically accepted2. Re-
gardless of the advice, the subject could change the climate
control settings in whichever way she saw fit – the experi-
menter updated the climate control of the car as many times
as requested by the driver. While in the car the subject was
given a cell phone with a driving simulator “Bus Simula-
tor 3D”3 to be played while the experiment was conducted.
The motivation was to set the conditions similar to regu-
lar driving conditions and give the subjects something to
do. After 10 minutes, the subject had to exit the car and
wait until the inside of the car was warm again to simulate
initial conditions. This phase took about 10 minutes while
the car was switched off and the car doors and trunk were
left open. Then, the subject reentered the car to simulate
a new trip. This was repeated for another 10 minutes once
more. That is, each subject spent 30 minutes in the car in
three 10-minute sessions and an additional 20 minutes wait-
ing between the different rounds. Including the collection of
demographic data and payment, each subject spent about
60 minutes in our garage.

1All experiments with human subjects were approved by the
corresponding IRB.
2We designed several GUI’s to provide advice and carried
out an experiment to identify the most preferred GUI.
3Available free at Google Play store.

In order to have a variety of advice and drivers’ responses,
we had to develop algorithms for repeated advice provision.
The goal of these algorithms was to simulate varying inter-
actions between the agent and different subjects. Simulat-
ing different interactions is challenging. The time with each
driver is limited thus testing all possible advice in every pos-
sible order is impossible. Consequently, we needed to collect
data on “reasonable” interactions, that is, interactions which
we believed people might consider to accept as the agent’s
advice.

We used the advice that would have been generated by
CARE [3] as a starting point. We removed the initial com-
fort level parameter from CARE’s comfort model and re-
trained the model using the data the authors originally col-
lected. We emphasize that the goal of the experiment was
not to evaluate these algorithms but rather collect data
on driver’s behavior as the basis for the development of a
methodology for advice provision in repeated interactions.
During the experiment we logged all the actions performed
by the agent, all the actions performed by the subjects and
the energy consumption of the car.

We implemented two algorithms; The Pusher algorithm,
which advises the settings that maximize the comfort level
but consume no more than the average between the current
consumption and the “ideal consumption”, that is – CARE’s
advice. The intuition behind this algorithm is that the sys-
tem will always try to persuade the subject to choose the
“ideal” settings. The Lenient algorithm, which advises the
settings that maximize the comfort level but consume no
more than the “ideal consumption” (CARE’s advice) plus
the delta between the user’s maximal consumption and the
current consumption. The intuition behind this algorithm
is that if the driver is willing to compromise and consume
less energy (than her maximal consumption) the system is
also willing to compromise and offer more “generous” advice
(in terms of energy consumption).

Nineteen subjects participated in the experiments with
the Pusher algorithm. The average number of times in which
new advice was suggested to a subject per session was 3.44.
In 74% of the cases the subject chose to consider the advice
and clicked the “Go Eco-Friendly” bottom. Furthermore, in
59% of these cases she chose to accept the advice. Similarly,
19 subjects participated in the experiments with Lenient.
The average number of new advice given to a subject per
session was only 1.18. Moreover in only 59% of the cases in
which new advice was proposed, the subject chose to con-
sider the advice and chose the “Go Eco-Friendly” button.
Furthermore, in 59% of these cases she chose to accept the
advice. There was no significant change between the ses-
sions.

We compared the energy consumption per condition. While
in the first condition the consumption was slightly higher
(0.1605KWH vs 0.1525KWH), the difference was not statis-
tically significant. It is also interesting to observe that the
energy saving average “Go Eco-Friendly” suggested to the
subject was -16.86% with Pusher and -36.91% with Lenient.

As for the rounds: in the first round 0.76 of the times
a new advice appeared the subjects clicked on it, however,
only 0.69 of the times the subjects clicked on new advice
in rounds 2 and 3. In the first round the subjects rejected
0.37 of the advice received, in the second round 0.46 and in
the third 0.42. The number of advices received per subject
dropped from 2.8 in round 1 to 2.6 in round 2 and 2.2 in



Table 1: List of Features
notation meaning

save d’s energy saving percentage of the advice.
∆T AC temperature difference from current settings.
∆F AC fan difference from current settings.
∆I d’s difference from internal temperature.
∆F AC fan difference from current settings.
d% the advice acceptance rate thus far.
d%t the advice acceptance rate in round t.
acc∆T the average ∆T of accepted advice so far.
acc∆F the average ∆F of accepted advice so far.
rej∆T the average ∆T of rejected advice so far.
rej∆F the average ∆F of rejected advice so far.
acc∆t

T the average ∆T of accepted advice in round t.
acc∆t

F the average ∆F of accepted advice in round t.
rej∆t

T the average ∆T of rejected advice in round t.
rej∆t

F the average ∆F of rejected advice in round t.

round 3. The average saving of the advice offered dropped
from -22.5% in round 1 to -20.8% in round 2 and -18.1% in
round 3. The average consumption was reduced from 0.162
in round 1 to 0.155 in rounds 2 and 3. Combining all this
data, seemingly, although the subjects received less advice in
the latter rounds they seemed to consume less energy. This
is because the subjects were probably influenced by the first
round and consumed less energy to begin with and therefore
required less advice. However, the advice still seemed to
have a large impact on the subjects also in the later rounds.

We also separated all rounds according to the algorithms
used (Pusher, Lenient). With the Pusher algorithm the rate
of final acceptance of new advice (percent of advice in which
the subjects also clicked on “Go Eco-Friendly” and also ac-
cepted the advice) did not vary much in the rounds (0.45
in the first round, 0.41 in the second and 0.49 in the third).
Lenient demonstrated a major drop from the first round’s
final acceptance rate, 0.57, to 0.1 in the last round’s final
acceptance rate.

4.2 Prediction Model
Recall that in order to calculate Eq. 2 we need to esti-

mate P (a | d, t, v, s, ht,i−1). Given the data obtained in the
Data Collection phase, denoted Λ, we extracted features,
as described in table 1, which help predict the driver’s re-
sponse given the advice d, the round t, the world state v, and
the interaction history ht,i−1. For each d,t,v,s,ht,i−1 we en-
countered in the data we extracted the features and labeled
the instances accepted or rejected according to their status.
This process merely translated the interaction (which was
in a textual format) to a set of vectors, whereby each is a
set of features and a label – the subjects response. This
vector represents a single interaction in the experiment and
was used in the prediction model.

The resulting labeled set ψ was divided in a one-left-out
fashion, where for every subject j we created ψj as a test
set and ψ−j as a training set. Then, a prediction model
using K-Nearest-Neighbors algorithm (KNN) was created.
The Algorithm was trained on ψ−j and tested over ψj for
every j. KNN is a classical non-parametric lazy classifying
algorithm in which an object is classified according to its k
nearest neighbors (k is a positive integer, typically small).
If k = 1, then the object is simply assigned to the class of

that single nearest neighbor. The classes in our settings were
accepted and rejected, and k was set to 21 as it provided
the highest prediction accuracy on ψ.

Unfortunately, ψ turned out to be very unbalanced; out
of the 436 instances in ψ, 324 where accepted and 112 were
rejected instances. This was caused due to the use of the
Pusher and Lenient agents that only advised settings which
we priory believed the driver would accept (predicted com-
fort of at least 7). We used 2 methods to overcome this prob-
lem; 1) We oversampled the minority group (rejected). 2)
We synthetically injected instances in the following manner
– for every rejected labeled instance in ψ we added rejected
instances for any warmer advice than the one rejected. For
example, if a subject rejected a setting of T = 23, F = 1 she
would most likely reject T = 24, F = 1 and T = 25, F = 1
as well. We were very careful with this injection and en-
sured that the suggestion was rejected because it was too
hot and not because it was too cold. We only synthetically
created instances for actual rejected instances with temper-
atures higher than 22 and fan lower than 3.

Of the 436 suggestions, we correctly classified 337 in-
stances (78%), where we had greater success with accepted
instances (85%) than with the rejected group (59%). More-
over, we identified which features were good predicative fea-
tures and which were not. Namely, save,∆T ,∆F ,∆I ,∆F ,d%
features were found to be influential whereas the rest had
little (if any) effect on the accuracy rate (features appear in
Table 1).

We note that the use of different machine learning algo-
rithms such as SVM and Decision Trees provided very sim-
ilar yet lower prediction rates (72%, 63%, respectively).

The use of the KNN algorithm, also provided a probably
measurement of P (a | d, t, v, s, ht,i−1), which was needed
to design the agent. We estimated P (a | d, t, v, s, ht,i−1)
as the number of accepted labeled instances among the 21
nearest neighbors - divided by 21. That is, if 7 of the 21
nearest neighbors are labeled accept we would assume that
the probability of the current advice d to be accepted, in
the context in which it is given, would be 1/3. We mesured
the Mean Absolute Error and Root Mean Squared Error of
our probability mesurment which were found to be 0.37 and
0.42, respectivly.

4.3 Agents
Based on both the prediction model and the energy con-

sumption model we constructed two agents, SAP agent –
Social Advice Providing agent and MACS. MACS tries to
solve the optimization problem given in Equation 3 whereas
the SAP agent does not.

4.3.1 MACS
A Markov decision process (MDP) [25] is a tuple (O,A, T ,R)

where

1. O is the set of possible states of the system (S);

2. A is the set of possible advice the agent can suggest,
in our case it is S∪{“Silent”};

3. T represents the interaction dynamics – the driver’s
reactions to advice and the environmental changes;

4. R is the energy consumption function for each s ∈ S.

Acting in a Markov decision process results in a sequence
of states and actions o0, a0, o1, a1, o2, . . ..



A policy π is a sequence of mappings (µ0, µ1, µ2, . . . , µtl),
where, at time t the mapping µt(·) determines the action
at = µt(ot) to take when in state ot. tl denotes the limit on
the number of advices the agent can suggest.

The objective is to find an optimal policy that minimizes
the expected cost accumulated over time. In particular, a
policy π is good if its Expected Cost is low. Expected Cost
is defined as:

ExpectedCost(π) = E[

tl∑
t=1

γR(ot)|π] (4)

γ is the probability of continuing to the next round. In our
environment the decision maker is the advisor (the agent),
which has to decide which, if any, advice to provide. The
driver controls the actual dynamics of the system as she
controls the actual climate control settings.

We model this environment using an MDP. Each state
o ∈ O consists of a world state, v, the current climate con-
trol setting, s, interaction number i, round number t and the
advice acceptance rate thus far, d%. These states cover all
possible scenarios in which the agent is required to provide
an advice or to keep silent. There is an infinite number of
states, which requires discretization. We discretized the en-
vironment by rounding degrees to the closest integer and the
acceptance rate was restricted to 2 digits after the floating
point. This process resulted in about 100,000 states. The
current state is completely observable by the agent from the
car’s data and the previous interaction with the driver. As
such, no uncertainty is induced as to which state the agent
works in.

The agent can only suggest climate control settings to the
driver or it can keep silent, i.e. A = T×F×D×M∪{silent},
where T × F × D ×M is the space of all possible climate
control settings. Notice that all of these actions are possible
at each state.
T (o, d, o′) provides the probability of reaching MDP state

o′ given advice d in MDP state o. In our environment this
transition is controlled mainly by the driver. The driver
is free to change the climate control settings whenever she
chooses to, and as shown in [3], drivers are also influenced
by the agent’s advice, even when it is rejected. Because
the drivers are free to change the climate control settings
regardless of advice, it is hard to model these changes. Fur-
thermore, the external and internal temperatures may vary
during the experiment. This makes it extremely hard to ac-
curately assess T . For example, after advice is rejected the
climate control settings are automatically switched back to
the previous ones. Before the next advice appears, a time
we configured to 60 seconds (as proposed by our engineers)
to avoid distracting the driver, the driver can change the
CCS setting in whichever way she wants and the internal
temperatures tend to decline. We could not detect any clear
behavior of the driver’s settings changes except for when a
driver was considering whether to accept or reject advice.
Thus, we assumed that the climate control settings change
only by explicitly accepting and/or at the beginning of each
round. This assumption is restricted only for modeling — in
actual implementation the driver receives advice according
to her actual state, regardless of how she reached that state
— namely by advice or by manual changes. Due to the
short time intervals in which the experiment is conducted
(10-minute episodes), the external temperature is unlikely to

change and therefore was assumed to remain constant. The
internal temperature on the other hand tended to change,
mostly decreasing during the experiment. We estimated
these changes using pc(v

′ | a, v, s, d) which was estimated
using another KNN model (with k again set to 21). Each
instance in ψ was translated into a feature vector contain-
ing a, v, s, d and was labeled with the change of the I during
the 60 second intervals between the different suggestions.
For example, given I = 35, E = 36 , T = 19, F = 2, D =
0,M = 0, an advice of T = 22, F = 1, D = 0,M = 0 which
was accepted we estimated a 9.5% chance of I decreasing
by 1 degree Celsius and a 90.5% chance of I not changing.
This was due to the fact that 2 of the 21 nearest neighbors
experienced a decline of 1 degree Celsius and 19 did not.
In addition, the driver can choose to ignore the advice by
avoiding clicking on the “Go Eco-Friendly” button. This fac-
tor was also learned statistically by a Maximum Likelihood
Estimator, denoted ps(stop | t, i). That is, given t, i, we es-
timated the probability of an interaction to stop at t, i (not
to continue to i+ 1) by dividing the number of instances in
round t and interaction i which did not continue to i+ 1 by
the number of instances of round t and interaction i in ψ.
T is derived from the prediction model described above,

pc(·) and ps(·). The prediction model provides us with the
probability of suggestion d being accepted in state o, which
leads us to a new state – o′. Yet, regardless of the estimation,
pc(·) and ps(·) are applied and therefore there are multiple
possible outcomes: “accept” with I declining by 1 degree
Celsius, “accept” with no change to I, “ignore” etc. . . If we
predict that the driver will stop the interaction we again as-
sume she will keep the current setting of the climate control
system.

The R function is naturally derived from the previously
described Energy Consumption Model. At each phase the
agent faces a cost, which is the energy consumed by the
CCS. The accumulation of all costs encountered during the
interaction is the payoff to the agent, which it tries to min-
imize.

Recall, tl is the horizon of the interaction, which in our
experimental setting is set to 9 (3 rounds, 3 advices per
round). tl was chosen according to GM’s experience in de-
signing driver-interacting systems. γ is 1 if t ≤ 9, and oth-
erwise 0. This is due to the fact that we do not distinguish
between the different rounds in terms of energy consump-
tion. t in the equation indicates the current number of the
interaction (t ≤9).

We solved the MDP problem using Dynamic Program-
ming [21] and received a policy π∗, which determines which
advice d (if any) to provide in every states o. We note again
that π∗, an optimal policy for the given MDP, does not take
into account the manual changes the driver can perform.
Nevertheless, if the driver reconfigures the climate control
setting manually (by changing her climate control setting)
the suggestion will be according to her new state. We an-
ticipate that π∗ will still provide solid recommendations.

To deploy π∗ in the GM Chevrolet Volt car, we enumer-
ated all states and advice as < o,Π∗(o) > pairs and saved
them in a table. The agent loads the table at the begin-
ning of the interaction and simply identifies each state (when
needed) and provides the specified advice.

4.3.2 SAP agent
According to social preference theory, people consider the



outcomes of others as well as their own when making strate-
gic decisions. SAP modeling explicitly reasons about the
trade-offs between the costs to both participants in the se-
lection process based on a social weight [4]. SAP modeling
provides an advice that maximizes a social utility function
which is a weighted sum of the agent and human’s utilities.
SAP uses simulation runs of repeated human-agent interac-
tion to identify the weights that maximize the agent’s utility
over time.

In climate control settings the agent’s utility is based on
the energy consumption and the driver’s utility is based
mainly on her comfort level. Unfortunately, the driver’s
comfort level (even if the driver is able to quantify it) is not
available to the agent in a real car deployment. In [4], the
authors asked the participants explicitly to quantify their
comfort level on a scale of 1 to 10 where 7 means —“I’m
comfortable; I would like to drive under these conditions.”.
However, preferences over final outcomes vary according to
the reference point from which those outcomes are judged
[14]. That is, the comfort level setting s provided depends
heavily on the last setting the driver experienced. Therefore,
the proposed comfort level function is not adaptive to the
reference point and the projected comfort level from setting
s relies solely on s’s components – sT , sF , sD and sM . Nev-
ertheless, we wanted to test the predicatory ability of the
comfort level function (as calculated in [4]). An analysis of
Λ (see section Data Collection) reveals that although sug-
gesting only settings in which the comfort level suggested
will result in a comfort level of 7 (at least), we encountered
41% misclassifications – that is, 41% of the suggestions were
rejected despite their expected comfort level to be 7 or more.

In order to work around this problem we propose to es-
timate the driver’s comfort using the prediction model de-
scribed above. We assume that there is a strong correlation
between the acceptance probability of a suggestion and the
utility that suggestion provides to the driver– the higher the
probability of acceptance, the higher the utility of the driver
and vice versa.

The SAP agent provides advice d which maximizes the
following social utility function u, given a defined weight w.

u(d) = −w · e(d) + (1− w) · P (accept | d, t, v, s, ht,i−1) (5)

That is, given w (which is defined offline) and t, v, s, ht,i−1

the SAP agent searches for advice d which maximizes u.
This advice will be presented to the driver.

In order to compute the optimal weight w∗ of the social
utility function we performed an (offline) exhaustive search
over all possible weights in the interval [0, 1] in steps of
0.01, each simulated with 100000 games of 9 interactions.
At each interaction in the simulation, similarly to MACS,
the SAP agent provides advice while maximizing Eq. 5.
If the advice is considered by the simulated driver (using
ps(·)), P (accept | d, t, v, s, ht,i−1) was applied to simulate
the driver’s response. Immediately thereafter, the change in
I using pc(·) is simulated.

In order to avoid online calculations we generated all states
offline and created a table of < s, d >.

4.4 Empirical Evaluation
The aforementioned agents; MACS and SAP agent, along-

side a Silent agent (that does not provide any advice), were
tested in the exact same fashion as described in the Data

Collection section above.
We recruited 45 subjects in order to evaluate the 3 agents.

Of the 45 subjects, 23 were males and 22 were females rang-
ing in age from 23 to 72 with mean of 41.

Each subject spent about 60 minutes in our garage. Due
to that fact, we could not implement a within-subject ex-
perimental setting (it would take too long). In our between-
subjects experimental setting the testing of policies in ex-
tremely similar world-states is important for the integrity of
the results. All subjects who took part in this stage of the re-
search participated in the experiments between mid-August
2014 and mid-September 2014. In these 4 weeks, between
11 : 00− 15 : 00 (the time of the experiment), temperatures
in our garage were almost constant. All participants experi-
enced temperatures between 35-37 degrees Celsius, without
any exceptions.

4.4.1 Results
The MACS and SAP agent were limited to 3 advices per

round (9 overall), yet both of them did not reach the 9 sug-
gestions limitation. MACS offered 6.07 advices to each sub-
ject whereas the SAP agent offered 6.13 suggestions (on av-
erage). Of the 91 suggestions MACS offered its 15 subjects,
84% of the time (76) - “Go Eco-Friendly” was clicked, and
58% of such clicks resulted in the suggestion being accepted
(44). On the other hand, SAP offered 92 advices to its 15
subjects, yet only 64% of the time “Go Eco-Friendly” was
clicked (59), and 54% of such clicks resulted in the sugges-
tion being accepted (32).

When we break down the data according to rounds, we
can see that the low click rate of the SAP agent starts from
the first round and keeps declining. In the first round 67%
of the time new advice was presented, the subjects clicked
on “Go Eco-Friendly”. However, in the second and third
rounds a decline was recorded – 65% and 59%, respectively.
The number of advices per round also declined from 2.2 in
the first round to 2.1 in the second and 1.8 in the third. How-
ever, the average savings from the advice offered increased
from 32.5% in the first round to 33.3% and 35.8% in the
second and third rounds, respectively. The average energy
consumption varied across the rounds, where in round 1 an
average consumption of 0.249KWH was recorded and only
0.216KWH was recorded in the second round. In the third
round the consumption increased to 0.247KWH.

MACS on the other hand, kept a relatively constant click
rate (the percentage of times new advice was considered via
the “Go Eco-Friendly” button) across the different rounds
— 85%,82%,83%, respectively. Similarly to the SAP agent,
in the first round 2.2 new advice was presented to the sub-
ject (on average). Yet in the second round it offered only
1.8 advice and 2 in the third round. As for the energy
consumption, in the first round 0.191KWH on average was
recorded whereas in the second and third rounds 0.158KWH
and 0.173KWH were recorded, respectively.

4.4.2 Analysis
A total of 45 participants took part in the experiment.

We used a between-subject design, with three levels of con-
ditions (MACS, SAP agent, and Silent). Each participant
performed the task under one of the three conditions and
performed three consecutive runs. The data was analyzed
with a univariate ANOVA, with condition and repetition as
the independent factors and the energy consumption as the



Figure 3: Agents’ energy consumption per round
(on average, in KWH).

dependent variable. Post-hoc comparisons among the three
conditions were also run.

The energy consumption was significantly affected by the
condition, F(2,126)=14.0, p < 0.001, η2 = 0.18. Figure 3
shows the mean energy consumption (total, for the 3 rounds)
and 95% confidence intervals under the three experimental
conditions. Post-hoc comparisons among the conditions (us-
ing Bonferroni correction for multiple comparisons) showed
that MACS was significantly different from both SAP and
Silent agents, p < 0.001. On average, a subject using MACS
consumed 33% less energy than the benchmark group of
Silent. Subjects who used the SAP agent consumed 5% less
energy than subjects equipped with Silent, though this dif-
ference was not found to be statistically significant using the
post-hoc comparison.

4.5 Discussion
A decline in the clicking rate (the percentage of times new

advice was considered by clicking on “Go Eco-Friendly”) is
natural as the subjects learn different settings and perhaps
find a setting for which they are unwilling to compromise.
Therefore, there is a small decline in the advices provided
by the agents as the experiment proceeds. Both MACS and
the SAP agent offered 33 advices in the first round opposed
to 30 and 27 in the last round (respectively).

Our results show that MACS outperforms the SAP agent
in our repeated interaction CCS settings. This result con-
tradicts previous results presented in [5], which have shown
that the authors SAP based agent outperformed their MDP
based agent. However, recall, that in our implementation
of SAP we used the probability estimation of the driver to
accept a suggestion rather than the driver’s actual utility
function which we could not articulate. Learning the driver’s
precise utility function, if one even exists, may be possible,
but would certainly require a lot more data on each driver.

Our findings show that the SAP agent was much more ag-
gressive in its suggestions than MACS. On average, the SAP
agent offered to reduce 33.7% of the energy consumption in
its advice, whereas MACS offered to reduce the energy by
23.1%. It seems that this aggressiveness was the reason why
some subjects stopped trying the advice. Those who did
choose to continue to click on the “Go Eco-Friendly” button
demonstrated a relatively good acceptance rate (54%).

In the implementation of both MACS and SAP agents, we
used a KNN prediction model to assess P (a | d, t, v, s, ht,i−1).

We reevaluated the model to examine whether its predic-
tions of drivers’ reactions to advice were accurate w.r.t the
observed interaction with MACS and SAP agents. When we
tested the model on the data collected by Pusher and Le-
nient algorithms (using 1-left-out methodology) we revealed
a prediction accuracy of 78%, a Mean Absolute Error of
0.37 and a Root Mean Squared Error of 0.42. We retested
the prediction model using the interactions with MACS and
SAP agents as a test-set. The model’s prediction accuracy
was found to be 76% while its Mean Absolute Error and
Root Mean Squared Error were 0.39 and 0.41, respectively.
These findings suggest that our prediction model is able to
generalize across different drivers and agents.

It has been shown in literature that women are more likely
to “express thermal dissatisfaction” and are more sensitive
to cooler conditions in indoor experimentation than men
[13]. Our data also shows a significant difference between
men and women in automotive CCS settings. On average, a
woman equipped with one of the three agents set her CCS to
22 degrees and a fan speed of 2, whereas a man, set his CCS
to 20 degrees temperature and a fan speed of between 3 and
4 on average. Consequently, men consumed 0.72KWH and
women consumed 0.59KWH (on average, per subject) in 3
rounds total. This difference was statistically significant us-
ing post-hoc testing (p = 0.02). Although women accepted
more advice than men on average (59% vs. 51%) the differ-
ence was not statistically significant and does not provide
an explanation for the difference in energy consumption.

5. CONCLUSIONS
In this work we present a methodology for the develop-

ment of a repeated interacting agent for automobile climate
control systems, MACS. MACS offers adaptive advice which
considers the drivers’ reactions and the long term effect of
each advice. The use of machine learning techniques en-
abled us to satisfactorily predict different drivers’ reactions
to different advice, which in turn was used for the model-
ing of MACS. This prediction and modeling resulted in an
adaptive policy which was found to be beneficiary – drivers
equipped with MACS consumed 33% less energy (on aver-
age) than those who were not.

We can conclude that an MDP modeling for the long-term
effect of advice is good practice for advising agents operating
in environments with repeated settings. The use of machine
learning techniques helped us bridge over the lack of prior
knowledge of the human’s preferences and desires which is
required to correctly model interactions. Despite the very
few examples, which required simulating different repeated
interactions in a reasonable fashion, and having limited pre-
diction accuracy over the minority group (the rejected ad-
vice) we were able to generalize our findings to provide solid
prediction accuracy and beneficiary adaptive advising poli-
cies.

The methodology presented herein can be used in different
domains and settings which require strategic advice provi-
sion by self-interested agents and is not restricted to auto-
motive climate control systems.

Our agent and methodology is being considered for imple-
mentation in future GM cars.
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