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Abstract: This work presents a concept of intelligent vision-less micro-drones, which are motivated1

by flying animals such as insects, birds, and bats. The presented micro drone (named BAT: Blind2

Autonomous Tiny-drone) can perform bio-inspired complex tasks without the use of cameras. BAT3

uses LIDARs and self-emitted optical-flow in order to perform obstacle avoidance and maze-solving.4

The controlling algorithms were implemented on an on-board microcontroller - allowing BAT to be5

fully autonomous. We further present a method for using the information collected by the drone6

to generate a detailed mapping of the environment. A complete model of BAT was implemented7

and tested using several scenarios both in simulation and field experiments, in which it was able to8

explore and map complex buildings autonomously even in total darkness.9

Keywords: Autonomous Micro Drones; Sensor Fusion; Indoor Mapping; Bio-Inspired Micro Robotics10

1. Introduction11

Autonomous robots are able to perform complex tasks, such as precise welding on a busy12

assembly-line or performing the daily cleaning task in a room. Yet, general purpose robotics is still13

in an early stage of developing. For example, commercial drones have high resolution cameras and14

sophisticated navigation sensors, yet, they are unable to land safely on trees or build a nest. Tasks that15

are commonly performed by small birds. Moreover, consider the case of beehives—with relatively low16

visual capabilities—the bees are able to conduct complex visual navigation, and perform hundreds17

of landings daily in dynamic wind conditions while having relatively low resolution visual sensing18

capabilities.19

In this paper we focus on bio-inspired micro-drones with a weight of 80-100 grams and a size20

of a little bird (see Figure 1). Micro-drones cause less commotion, are more flexible, consume less21

power, are less likely to break and cause damage if crashing, can be deployed in swarms, can operate in22

small passages, and are usually cheaper than large drones. The main goal of this work is to design the23

structure and the controlling algorithms that will allow a tiny-drone to explore and map an unknown24

indoor environment.25

1.1. Related Works26

The Research field of bio-inspired drones has attracted researchers from a wide range of27

backgrounds, see [2],[3] for recent reviews regarding such applications and challenges. Motivated by28

the abilities of flying animals, many researchers have tried to investigate bio-mechanisms for navigation29

and flying, yet it seems that we are still far from being able to fully understand those methods [4].30

Optical flow, which is the ability to to use visual sensors in order to model an ego-movement of a robot31

with respect to a seen in time, is an important capability for autonomous flying drones [5]; however,32
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Figure 1. Our Blind Autonomous Tiny-drone (BAT), which is based on the Tello commercial tiny-drone
(A). BAT is equipped with a multi ranger lidar array (front, left, right, up and back) marked by (C), and
it uses a WiFi based microcontroller (B) to control the Tello as if it was a remote control. Prop guards
are used to protect BAT (E), 4x down facing LED’s are used for low light conditions (D), a small LoRa
(UHF) antenna (F) is used to transmit mapping data to the mapping station.

up to the last decade systems with optical flow support were relatively rare and complicated (see33

[6]). Yet, recently, optical navigation capabilities became a common Commercial Off The Shelf (COTS)34

sensors, and even toy-graded drones often use optical tracking to allow the drone to maintain position.35

Modern flight controllers for drones, such as Pixhawk [7], support several inertial and navigation36

sensors (e.g., MEMS − Gyro, accelerator, magnetometer, barometer and GNSS receiver). When fused37

together, these sensors allow a relatively robust navigation in outdoor conditions. In indoor flights38

GNSS navigation is mostly insufficient; in such cases cameras and range sensors are commonly used39

for visual navigation and obstacle detecting and avoiding, [8], [9]. The vision of having a sustainable40

swarm of autonomous aerial vehicles [10] has attracted researchers from both academy and industry41

[11], [12], [13], [14]. Yet, even the concept of a single autonomous drone still encapsulates a wide42

range of challenges [15], [16]. Recent improvement in hardware and software for edge deep-learning43

platforms [17], [18] allows micro drones to use visual sensors for obstacle avoidance and navigation44

[19]. In this paper we present a vision-less alternative approach, we conjecture that in many real-world45

natural cases the suggested framework performs better than vision based solutions.46

There have been several previous attempts to deploy autonomous drones for mapping in-door47

environments, most of which require vision sensors. Dowling et al. [20] presented a method for48

mapping in-door environments using a drone. While their results seem promising, their approach49

uses the Erle-copter drone, which is relatively large (at least 10 times larger than BAT). In addition,50

their approach requires substantial computing power using a Raspberry Pi 3b. Similarly, Zhang et51

al. [21] proposed a method for 3D cave mapping for archaeology applications using a drone. Their52

proposed drone is intended for use with human support for controlling it, and thus cannot be seen53

as a fully autonomous drone. While the exact proposed drone type is not presented in the paper, the54

sensors and computer power described mitigate the possibility for using a micro-done.55

Li et al. [22] propose a method for using a drone to map mine environments. They show the56

efficiency of their method by running experiments both in simulation and in the real world with their57

developed drone. They propose the use of the DJI Matrice 100 drone, which weighs over 3kg and has a58

clearance of over one meter. As stated, all these attempts require large drones, and thus cannot benefit59

from all of the advantages of micro-drones.60



Version October 4, 2021 submitted to Sensors 3 of 15

1.2. Motivation61

Motivated by bio-inspired robotics this paper considers challenges related to sustainable62

robotics [23]. In particular to design and construct an aerial robot that can perform some kind63

of robotic-life-cycle rather than dedicated predefined tasks. The micro-drone sustainability algorithm64

will provide it with the basic abilities needed to survive in the environment, while performing the65

predefined backmapping task (e.g., sensing, searching). The scope of sustainable robotics research66

is wide and involves multi-discipline fields of research (Robotics, Machine Learning, Multi-Agent67

Systems and Human-Machine Interaction). The general use-case of a swarm of autonomous68

micro-drones is not well-defined but a general-purpose mission. Therefore, in order to accomplish69

such vision we start with defining the following individual (bio-inspired) capabilities for a single70

drone.71

• Obstacle detection: this property is required for detecting hazards while flying and acting72

accordingly.73

• Path planning: smart planning of the flying path is crucial for the drone resource saving and74

mission efficiency.75

• Mapping: allowing the micro drone to map and learn its environment, in a way that the next76

mission can benefit from information the drone has acquired in the last one, moreover - this info77

can be shared between drones.78

• Communicate with others: allowing drones to share information and perform calibrated79

missions.80

This research focuses on the notion of sustainable robotics for a single micro drone that is both81

autonomous and does not need vision for navigation.82

1.3. Our Contribution83

In this paper we present a new concept of vision-less bio-inspired micro drone, which is able to84

perform complex missions such as obstacle avoidance, navigating and mapping without the need of a85

camera. By using micro single point range sensors such as optical-flow and time-of-flight (ToF) ranging86

sensors, we were able to design autonomous controlling algorithms applicable for on-board flight87

controllers with limited computing power (microcontroller). We constructed a Blind Autonomous88

micro-drone (BAT). BAT is a stand-alone autonomous aerial vehicle, in which all computation is89

performed on-board. BAT sends the information to a mapping station in order to construct a graphic90

representation and a mapping. To the best of our knowledge this is the first work that presents a fully91

autonomous vision-less micro-drone capable of mapping in indoor settings.92

The remainder of the paper is constructed as follows. Section 2 covers BAT’s platform in terms93

of standard sensors and additional hardware required for autonomous flying. Next, in Section 3 we94

present the main autonomous control algorithm - allowing our drone to perform obstacle avoidance95

exploration of complex regions. Then, in Section 4 we present the mapping capabilities of BAT. Section96

5 describes our experimental evaluation in both simulation and field experiments. Finally, in Section 697

we conclude the research and discuss several related future problems.98

2. BAT Modeling Hardware99

This section presents the basic hardware and software functionality of BAT. We start by100

presenting the COTS micro drone (Tello), which we use. Then, we present the additional sensors and101

microcontrollers we have added to the drone in order to make it autonomous. Finally, we describe the102

configuration of the (optional) mapping station, which is used for real-time visualisation and mapping.103

2.1. Tello Drone104

The Tello drone is manufactured by Ryze Tech and powered by DJI. It has a weight of 80 grams,105

dimensions of 98mm x 92.5mm x 41mm and 3 inch propellers. The drone is equipped with a suite106
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of sensors on-board including an optical flow sensor, accelerometer, gyro, barometer, and a Time of107

Flight (ToF) range sensor. Interfacing with the drone can be done via WiFi using the companion SDK108

(provided by DJI). The Optical Flow sensor, located at the bottom of the drone facing the ground, can109

calculate the change in the X and Z coordinates over time. This sensor is basically a low resolution110

image sensor (camera), taking images every time interval, comparing consecutive frames and deriving111

the change in each coordinate. The Optical Flow sensor assists the drone with hovering over a given112

location without drift, it is also used to calculate the drone’s relative velocity. The optical flow sensor113

is only used internally by the drone in order to compute the velocity, and cannot be accessed directly.114

The ToF range sensor, located at the bottom of the drone facing the ground, is used to determine the115

relative height of the drone from an object below it, which is essential for climbing staircases and116

avoiding obstacles from below. Using the barometer the drone can detect a relative altitude (height)117

with respect to the takeoff point.118

2.2. Companion Hardware119

In addition to the hardware already available in the Tello drone, we added three components: a120

microcontroller, a multi-ranger LiDAR deck and LEDs.121

2.2.1. Microcontroller122

To command BAT autonomously and to process the various sensor data, an ESP32 based123

microcontroller was used; we have mainly focused on the WiFi LoRa 32 (V2) by HELTEC. The124

small-factor microcontroller weighs about 5 grams and has an ESP32 (dual-core 32-bit MCU + ULP125

core) Microprocessor, which includes WiFi, Bluetooth and a LoRa node chip (SX1278) with its external126

antenna.127

2.2.2. Multi-Ranger LiDAR Deck128

The sensor array used in this project is a COTS PCB (made by Bitcraze) that has 5x VL53L1X129

LiDAR based range sensors. The sensors are facing front, back, left, right and up. Combining these130

sensors with the ToF sensor facing down on the drone, we can achieve a 360 degrees range coverage.131

The VL53L1X sensors are a ToF laser-ranging sensor. With low power composition and a tiny package,132

the sensors are capable of accurately measuring distance up to 4 meters at 25Hz. See appendix for133

further details.134

2.2.3. LEDs135

The optical flow present in the Tello drone requires at least 100 lumens per square meter (lux) in136

order to function properly; this may be challenging in a dark environment. The optical flow is not only137

used for obtaining measurements required by the mapping, but a lack in lighting conditions may cause138

the drone to drift even when not receiving any commands from the microcontroller. Furthermore,139

the Tello drone does not accept any commands from the microcontroller in poor lighting conditions.140

Therefore, we added 4x down-facing LEDs to BAT’s legs in order to provide additional lighting; in141

practice, the LEDs provide enough light even in an absolutely dark environment.142

2.3. Communication143

Several different communication protocols were used in this project. The drone and ESP32144

communicate over WiFi utilizing two UDP ports, one for commanding the drone using both RC145

commands (throttle, roll, pitch and yaw) and higher level commands (i.e. “takeoff”, “land” etc.), and146

the second port is for getting the information from the drone’s on-board sensors back from the drone.147

The multi-ranger deck is connected to the I2C bus. After assigning each sensor its unique I2C address,148

all of the sensors can be addressed independently. LoRa communication is used to send the data back149

to the mapping station, human intervention if needed is also accomplished via LoRa communication.150
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Bluetooth is also used to send the data back to the mapping station, this link is less reliable and is used151

mainly when BAT is close to the mapping station. See Figure 2 for a communication diagram.

Figure 2. The communication diagram of BAT. BAT has a companion computer based on an ESP32
microcontroller which supports WiFi, Bluetooth, and LoRa. The WiFi is controlling the (original) Tello
as if it was a remote control, the communication with the mapping station is performed via Long Range
(LoRa) while the Bluetooth modem is reserved for short range debugging and in the future can be
served as a base for drone to drone (mesh) communication.

152

2.4. Mapping Station153

The mapping station is used to create a live map from BAT’s output data All the relevant data154

is transmitted from the drone back to the mapping station, the data is used for creating a live 3d155

map of the environment. The live map updates as soon as new data arrives. Alternatively, instead of156

transmitting to the mapping station, one can store the data on-board using an SD card adapter, and157

perform the mapping offline. In addition, the mapping station may be equipped with a component158

that allows controlling the drone in case of an emergency, or sending high level commands such as159

returning to takeoff point. This is achieved using an esp32 based microcontroller to establish a 2-way160

LoRa communication between the drone and the mapping station.161

2.5. Controlling API for Drones162

Drones are commonly controlled using four channels API: Throttle, Yaw, Pitch and Roll. The163

control channels are defined with respect to the drone local coordinate system (X-right, Y-up, Z-front).164

The Throttle channel controls the overall force (power) of the drone’s motors (Y-axis acceleration).165

The Yaw channel controls the angular velocity of the drone with respect to the Y-axis (Gravitation).166

The Pitch channel controls the angle of the front of the drone with respect to the horizon (i.e., Z-axis167

acceleration). The Roll channel controls the angle of the right side of the drone (X-axis acceleration).168

3. Controlling Algorithm169

Recall that BAT’s goal is to explore and map an unknown indoor environment. Therefore, its goal170

is to maximize the newly visited regions and not revisiting known areas or traveling in an endless loop,171

while performing a safe flight and avoiding obstacles. To that end, BAT’s control algorithm is based on172

the concept of the wall follower algorithm, which follows the right wall [24]. Clearly, the algorithm can173

be mirrored by following the left wall, which can be useful if BAT wishes to return to the takeoff point.174

BAT has the following discrete states:175

• Ground: BAT is on the ground. This is the initial state.176

• Takeoff: BAT starts flying upwards and gets to a predefined altitude (e.g., 1 meter).177

• Control: The main control loop.178

Rotate C.C.W.: BAT slightly rotates counter-clockwise (to align with the right wall).179

Emergency: BAT brakes to avoid crashing.180
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Tunnel: BAT centers in between the left and right walls while maintaining the desired speed.181

Turn C.W.: BAT turns 90 degrees clockwise (to find the right wall).182

Fly Forward: BAT flies forward while making minor adjustments to maintain predefined183

bounds, i.e., its distance from the right and the desired speed.184

The high-level control algorithm role is to select the next state from the five possible states (Rotate185

C.C.W., Emergency, Tunnel, Turn C.W., Fly Forward), each time the control state is reached (see Figure186

3).187

BAT’s desired value in the Roll, Pitch and Throttle is determined based on the range from the188

corresponding direction using a proportional–integral–derivative (PID) controller for each controlling189

channel. [25]. A PID controller isn’t used for the Yaw because it is controlled by the logic of the state190

machine to enable right wall navigation. When there are no obstacles, BAT accelerates until it reaches191

the predefined maximal speed and height.192

Figure 3. BAT’s controlling state machine.

Before we provide the PID controller formula, we introduce the following notation. g represents193

the desired goal value. e[t] represents the current error, i.e. the difference between g and the current194

measurement. u[t] denotes the weighted combined value computed by the controller at time t. Kp, Ki195

and Kd are manually defined constants that represent the proportional, integral and derivative gain,196

i.e. the weight given to the current, past, and predicted future error respectively.197

Finally, the PID is based on the following formula:198

u(t) = Kp · e(t) + Ki
∫

e(t)∆t + Kd · ∆e
∆t199

Note that in order to allow a robust and a reliable controller, it is a recommended practice to have200

a constraint-range for the controller output.201



Version October 4, 2021 submitted to Sensors 7 of 15

BAT’s control loop logic is described in Algorithm 1. The constants as implemented in BAT202

controllers can be found in the Appendix.203

Algorithm 1: BAT’s control loop logic.

while true do
if front < emergency_threshold then

do Emergency()
else if front < front_threshold then

do Rotate C.C.W.()
else if left < tunnel_threshold and right < tunnel_threshold then

do Tunnel()
else if right > right_far_threshold then

do Turn C.W.()
else

do Fly forward()
end

end

204

4. Mapping205

The main goal of BAT is to provide a mapping of an indoor environment. The mapping is206

performed using a coordinate system that is relative to BAT’s starting point and orientation; we207

denote this coordinate system as the global one. The mapping station performs the mapping based208

on the information received from BAT. The mapping station computes a geometrical model of209

the environment, which can be visualized in 2D (see Figure 4) and 3D (see Figure 5) graphical210

representation.211

4.1. Data212

BAT provides the following data:213

• Time: the time in seconds since the start of the mission.214

• Yaw, Pitch, Roll: BAT’s orientation in degrees around the global axes y, x, and z.215

• Vx,Vy ,Vz: the velocity relative to the global coordinate system, in m/s.216

• Ranges: the range (distance) in meters from the closest object in six directions (up, down, left,217

right, front, and back) with respect to BAT’s current position and orientation. We use R f ront to218

denote the range to the object in front of BAT, similarly for all the other directions.219

4.2. Geometrical Model220

The data provided by BAT requires processing to create a geometric model. The geometric
model contains the position of the drone at each timestamp, relative to its starting point, and all the
range-measurements sensed by BAT. To determine BAT’s position in the x axis, Px, the following
formula is used: Px[i + 1] = Px[i] + ∆tiV̇x[i + 1], where brackets denote the timestamp index, and
∆ti = Time[i + 1] − Time[i]. Py and Pz are computed using the same method. In order to add the
objects that were in BAT’s proximity to the geometrical model, each provided range is projected from
BAT’s position and orientation to the global coordinates using the following method. First, the ranges
are converted to a vector representation, in R3, in relation to BAT’s position and orientation, such that

the front range is converted to ~R f ront:

 0
0

R f ront

. Similarly, all other ranges are converted to a vector

representation with respect to their direction. That is, ranges in opposite directions (e.g., front and



Version October 4, 2021 submitted to Sensors 8 of 15

back) have opposite signs, and ranges of different axes are transformed to vector representations with

non-zero values at different entries (e.g. ~Rdown:

 0
−Rdown

0

). The resulting vector ~R is transformed by:

Ox

Oy

Oz

 = ~R

cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ

− sin β cos β sin γ cos β cos γ

+

Px

Py

Pz


After the calculation is performed, the geometrical model is used for composing visualizations of221

BAT’s environment.222

4.3. 2D223

The 2D visualization is a top-down view of the environment (See Figure 4 for an example). This224

visualization is easier to understand, but it does not represent the objects’ and obstacles’ heights. Once225

the mapping station receives BAT’s map, an offline loop-closure algorithm (see [26] and [27]), can be226

used to improve the map and reduce the drifts—on the mapping station side.227

Figure 4. A 2D mapping of a building as computed in the simulator. BAT is marked in red, its path is
marked by a dotted magenta trace, its current ranging is marked in blue rays, and the building 2D map
is marked by black dots and lines.

4.4. 3D228

The 3D visualization is a perspective view of the environment. This visualization provides a more229

complete and realistic view of the environment, but it might be more difficult to perceive the building230

scheme since a change in the Y-axis (i.e., going up or down) results in the walls visualized at different231

heights. In addition, it is hard to differentiate between a real object and noise caused by inaccurate232

data.233
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Figure 5. A 3D mapping of a building as transmitted by an actual BAT to the mapping station. BAT
(A) is marked in red, its current ranging (B) is marked in blue rays, the path (D) of BAT is marked in
magenta, and its starting point is marked as (E). The building 3D point-clouds (C) are marked by black
tiles.

4.5. Expected Map Accuracy234

In this subsection we elaborate on the expected accuracy of the mapping as performed by BAT. As235

mentioned, the coordinate system of the map is defined by the starting point (and orientation) of BAT.236

The map is constructed using several sensors, with the following expected error and drift properties:237

• IMU: in particular the gyro measuring the yaw has an expected drift of about 1 degree per minute.238

Note: the pitch and the roll values are not drifting as they are measured with respect to the earth239

gravity with an expected accuracy better than half a degree. Due to the small size of our BAT240

and the use of brushed motors, the use of magnetic field sensors are unreliable and therefore are241

not in use in most micro drones.242

• Optical Flow: has a drift which is correlated to the light and the ground texture conditions. In243

most cases the error is below 10% of the distance.244

• Barometer: evaluating the relative height from the air pressure as measured by the barometer245

may result with a drift of up to 10 cm a minute, yet from our tests during a 10 minute flight the246

expected attitude error is usually smaller than 30 cm.247

The output map as computed by the drone after flying for about 5 minutes, at an average speed of 0.5248

meter per seconds, allows us, in most cases, to compute a map with an expected error of 1-2 meters.249

5. Experimental Results250

In this section, we present two sets of experiments, one in simulation (using a simulated BAT)251

and the other is a field test of BAT in the real-world.252

5.1. Simulation253

Using the Microsoft AirSim platform, we developed a custom indoor 3D map. We further254

developed a model that simulates all the features of the real-world BAT, including the range-deck255

and the Tello drone, using the true physical parameters, such as the drone mass and dimensions. The256

simulation includes the following components:257

• A modeling of the indoor environment, which includes obstacles and a starting point.258

• BAT’s state, which includes its position, velocity and orientation, as well as the sensor reading,259

with artificially added noise.260

• BAT’s autonomous flight-controlling algorithm.261

The developed simulator allows us to first test the algorithm in the simulated environment, and262

only if the performance in the simulator is satisfying, to deploy the same algorithm on the real BAT.263
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This method eliminated hardware problems, and allowed us to solve the algorithmic part first, and264

only then to deal with the real-world hardware-related issues.265

Figure 6 presents a screenshot of the simulation. The simulated BAT successfully flew in the266

simulator without colliding with obstacles, and managed to explore a complex building with an area267

of 600 square meters over a period of 5 minutes, see [28] for the complete BAT simulation.268

Figure 6. A 3D screenshot of the simulation, The magenta line presents the path of the simulated BAT.

5.2. Real-World269

The real-world testing was performed indoors in 7 different buildings. Recall that all the270

computation is performed on the microcontroller of BAT, and it did not receive any external commands271

(see Figures 7 and 8). BAT was able to fly for approximately 5 minutes at a time (until the battery was272

drained out), without crashing and without returning to the same spot twice. See [29] for a video of273

BAT exploring a two-story building and flying up the stairs from the first floor to the second, without274

crashing into the walls.275

BAT successfully explored all the buildings, and its collected data was used to compose a mapping276

of these buildings. Figure 9 shows the 2D mapping as transmitted by BAT to the mapping-station.277

Figure 10 shows the 3D mapping as transmitted by BAT and presented using a point-cloud viewer.278

During BAT’s flight there were between three to four students watching BAT and following it; their279

main locations were captured by BAT.280

Figure 7. BAT exploring a corridor.
Figure 8. BAT flying up-stairs.
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Figure 9. A 2D mapping by BAT, performed on a two story building: BAT’s position is marked in
magenta; the left and right sensor-ranging are marked in black. Left: BAT has mapped the right side of
the first floor and then turned right and started to go up-stairs. Right: BAT reached the second floor.
Note that there are several “noisy spots" due to students following BAT.

6. Conclusions and Future Work281

This paper presents a vision-less autonomous mapping tiny-drone named BAT: Blind282

Autonomous Tiny-drone. Instead of using a camera, BAT uses 6 LiDAR sensors for navigation283

as well as mapping. We show that BAT is able to achieve high quality mapping both in simulation and284

in a field test. Motivated by bio-inspired robotics, BAT can fly autonomously in complex regions such285

as buildings and tunnels.286

By limiting the sensory data to 12 channels (6 LIDARs, optical flow and IMU) BAT can process287

the data efficiently using a low power and light-weight microcontroller. Such a companion computer288

allows BAT to perform relatively complicated tasks such as navigating, mapping and exploring289

unknown regions.290

This paper raises a set of interesting future work. Our current work involves developing a291

Graph-Slam [30] on the sparse LiDAR data in order to allow the improved BAT to learn and recognize292

known places and navigate accordingly.293

From an engineering point of view, it would be interesting to scale down the suggested BAT294

as much as possible - in order to increase its manoeuvrability and crash resistance. On the other295

hand, replacing the LiDARs by a ToF matrix ranging sensor such as Pico Flexx [31], should allow the296

improved BAT to perform a real 3D reconstruction of the environment.297

A natural generalization of this work includes using several BATs in the same region. This can298

accelerate the mapping process (assuming the relative initiate position and orientation of each BAT299

is known. Similarly to the concept of using several vacuum cleaning robots in the same building.300

Performing cooperation between drones in the same region and sharing data among them is the current301

challenge we are working on. Another interesting direction is to improve the presented framework by302

using reinforcement learning. Reinforcement learning is a machine learning based method that can be303

applied to dynamic environments, and allows the algorithm to improve its performance by interacting304

with the environment [32]. Deep reinforcement learning based methods have recently gathered great305

success in several domains [33–36], and they are extremely useful when there is a complex objective306

function such as in training autonomous vehicles [37] and drone control [38]. We believe that such an307

approach will make the system more robust to changes.308
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Figure 10. A 3D mapping of a two story building. BAT’s up, right, down and self position
sensor-ranging are shown in brown, green, black and magenta lines, respectively. BAT’s starting
point is marked by (a), (b) marks the stairs to the second floor - as shown in the lower right image.
Changes in the ceiling height are marked by (c).

Appendix309

LiDAR Sensor310

The VL53L1X sensor contains a sensing array of SPADs (single photon avalanche diode),311

an integrated 940 nm invisible light source based on an eye-safe Class 1 VCSEL (vertical cavity312

surface-emitting laser) and a low-power embedded microcontroller. For every measurement the laser313

beam is emitted from the VCSEL and reflected back from an obstacle to the 16 × 16 SPAD array, the314

embedded microcontroller derives the distance and accuracy of the measurement and sends it to the315

HELTEC microcontroller (on the I2C bus).316

The sensors are configured in a continuous ranging mode, an “inter-measurement period” and317

“ranging duration” (timing budget) can be set. Optimizing each of these parameters can help with318

measurement accuracy and repeatability, for example, on the one hand a longer inter-measurement319

period allows ranging to a farther distance, but on the other hand this may result in a reduction of320

measurement frequency making it less reliable to fly smoothly.321

All of the vl53l1x sensors have the same default I2C address (0x29), running all the sensors322

simultaneously will raise an address conflict, therefore, every sensor must be assigned a unique I2C323

address. To overcome this issue, the on-board pca9534 I2C GPIO Expander is utilised, as all the vl53l1x324

sensors XSHUT pins are connected to pca9534 I/O pins and can be controlled by software. On startup325

the sensors are cycled one by one, released from standby mode and assigned a new I2C address along326

with the sensor setup.327

Wiring328

The ESP32 is powered by the drone’s 1s battery, a pair of wires were soldered to the positive and329

negative battery connector on the drone PCB. The multi-ranger deck I2C SDA and SCL are connected330

to pins 4 and 15 respectively, as well as the power pins. VCOM (on the multi-ranger deck) must also331
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be connected to a 3.3 V power pin as it is required for properly powering the sensors. See Figure 11 for332

additional information.

Figure 11. Wiring Diagram. The sensor has 5 pins: PWR, GND, SDA, SCL and XSHUT. The XSHUT
pin can be used to hold the sensor in standby mode, useful for setting up multiple sensors.

333

Algorithm Constants334

PID Values335

For the Pitch, we set Kp to 15, Ki to 0.04, Kd to 4, and d to 0; for the Roll, we set Kp to 60, Ki to 60,336

Kd to 10, and d to 0.5; and for the Throttle, we set Kp to -0.5, Ki to -0.04, Kd to -0.1, and d to 1.337

Control Loop Values338

We set the control loop constants as follows:339

• emergency_threshold := 0.3340

• f ront_threshold := 1341

• tunnel_threshold := 0.25342

• right_ f ar_threshold := 2.5.343
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