
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 00.000/ACCESS.2021.DOI

Efficient Computation and Estimation of
the Shapley Value for Traveling
Salesman Games
CHAYA LEVINGER1, NOAM HAZON2, AND AMOS AZARIA 3
1chaya.levinger@msmail.ariel.ac.il
2noamh@ariel.ac.il
3amos.azaria@ariel.ac.il
Department of Computer Science, Ariel University, Ariel, Israel 4070000

Corresponding author: Noam Hazon (e-mail: noamh@ariel.ac.il).

This research was supported in part by the Ministry of Science, Technology & Space, Israel.

ABSTRACT The traveling salesman game (TSG) consists of dividing the cost of a round trip among
several customers. One of the most significant solution concepts in cooperative game theory is the Shapley
value, which provides a fair division of the costs for a variety of games including the TSG, based on the
marginal costs attributed with each customer. In this paper, we consider efficient methods for computing the
Shapley value for the TSG. There exist two major variants of the TSG. In the first variant, there exists a fixed
order in which the customers are serviced. We show a method for efficient computation of the Shapley value
in this setting. Our result is also applicable for efficient computation of the Shapley value in ride-sharing
settings, when a number of passengers would like to fairly split their ride cost. In the second variant, there is
no predetermined fixed order. We show that the Shapley value cannot be efficiently computed in this setting.
However, extensive simulations reveal that our approach for the first variant can serve as an excellent proxy
for the second variant, outperforming the state-of-the-art methods.

INDEX TERMS Shapley value, Traveling salesman games, Vehicle routing problem.

I. INTRODUCTION
An important combinatorial optimization problem is the
Vehicle Routing Problem (VRP), where there is a set of
customers situated in different locations on a map, and the
goal is to find an optimal route for a vehicle to deliver or pick
up some goods to the customers [1]. This problem and its
variants have been extensively studied over the past 50 years,
mainly in the operation research and transportation science
communities [2], [3]. In several VRP instances, there is also
the need to allocate the cost of the tour among the customers
served. For example, a manufacturer that delivers supplies to
stores may use the same truck for delivering the supplies to
several stores. Each store is required to pay for the delivery,
and the total charge should not be more than the total travel
cost. The central question is how should the cost be fairly
allocated among the stores. Another example may include
a travelling circus. In this scenario, a circus traverses many
different locations (the customers) according to a predeter-
mined schedule. The problem is again to determine a fair
allocation of the travel cost to the customers. We note that in
this scenario, it is quite likely that if some customers cancel

their show, the circus cannot arrive earlier at other locations.
Therefore, the circus may need to follow a tour that is not
necessarily the least costly one.

Settings similar to the supplies delivery and the traveling
circus, in which the customers are required to cover the
travel cost, are formalized as Traveling Salesman Games
(TSGs) [4], [5]. In this paper, we study a fair allocation
of the cost of the tour for TSGs. We concentrate on the
Shapley value [6] as our notion of fair cost allocation. The
Shapley value is widely used in cooperative games, and is
the only cost allocation satisfying efficiency, symmetry, null
player property and additivity. The Shapley value has been
even termed the most important normative division scheme
in cooperative game theory [7]. However, the Shapley value
depends on the travel cost of each subset of the customers.
Therefore, as stated by Özener and Ergun [8], “In general,
explicitly calculating the Shapley value requires exponential
time. Hence, it is an impractical cost-allocation method un-
less an implicit technique given the particular structure of the
game can be found”. In the first part of this paper, we tackle
this challenge.

VOLUME 4, 2016 1



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

There are two variants of TSGs. In the first variant, termed
routing games [9], there is a fixed order in which the cus-
tomers are serviced. In the context of supplies delivery, the
order may be attributed to the order in which the requests
were received, the urgency of the service, or the frequency of
customer usage of the service. In such cases, the order must
be preserved when determining the travel cost of the tour
with a subset of the customers. In the context of a traveling
circus, the order is usually fixed and predetermined. We note
that Yengin [9] conjectured that there is no efficient way
for computing the Shapley value in routing games. In the
more general TSG, there is no predetermined fixed order.
In such cases, it is assumed that the tour to a subset of the
customers is performed using the shortest (or cheapest) tour
that traverses their locations.

In this paper, we show an efficient computation of the
Shapley value for routing games. Our method is based on
smart enumeration of the components that are used in the
computation of the Shapley value. Our approach can be gen-
eralized to ride-sharing settings, in which several passengers
share a taxi and split the traveling cost. We then move to
analyze the more general TSG and show that, unless P =
NP , there is no polynomial time algorithm for computing
the Shapley value. Fortunately, we show through extensive
simulations that computing the Shapley value for routing
games results in an excellent proxy for the Shapley value of
the more general TSGs. We compare our method with three
recently studied proxies [10], [11] and show that our method
outperforms all of them.

To summarize, the contributions of this paper are two-fold:
1) We show an efficient method for computing the Shap-

ley value of each customer for routing games, which
is in contrast to a previous conjecture made in the
literature [9].

2) We show that, while there exist no polynomial algo-
rithm for computing the Shapley value of the general
TSG (unless P = NP ), the Shapley value computed
for routing games can be used as an excellent proxy for
the Shapley value in a TSG, establishing a new state-
of-the-art.

II. RELATED WORK
In the first part of our paper, we show an efficient technique
for computing the Shapley value in routing games. One
variant of routing games is the fixed-route traveling salesman
problems with appointments. In this variant, the service
provider is assumed to travel back home (to the origin)
when she skips a customer. This variant was introduced by
Yengin [9], who also showed how to efficiently compute the
Shapley value for this problem, but stated that her technique
does not carry over to routing games.

The routing game can also be interpreted as a generaliza-
tion of the airport problem [12] to a two-dimensional plane.
In the airport problem, we need to decide how to distribute
the cost of an airport runway among different airlines, who
need runways of different lengths. In our case, we distribute

the cost among customers who need to be serviced at dif-
ferent locations. Indeed, it was shown that the Shapley value
can be efficiently computed for the airport problem, however
achieving efficient computation of the Shapley value in our
setting requires a different technique.

The computation of the Shapley value for the general
TSG has rarely received serious attention in the literature,
due to its complexity. Notably, Aziz et al. [10] suggested a
number of direct and sampling-based procedures for calcu-
lating the Shapley value for the TSG. They further surveyed
several proxies for the Shapley value that are relatively easy
to compute, and experimentally evaluate their performance.
Unfortunately, the performance of their proposed proxies is
not satisfying, e.g., the deviation from the correct Shapley
value is more than 30% in many settings, as we show in
Section V-C.

Recently, Popescu and Kilby [11] developed two proxies
for computing the Shapley value for the Euclidean TSG, in
which the cost associated with any two locations uses the
Euclidean distance between their coordinates. Their proxies
are also suitable for the general TSG. They experimentally
showed that their proxies outperform the best proxies of
[10]. Unfortunately, the performance of their first proposed
proxy (Appro-1) remains unsatisfying, while their second
proposed proxy (Appro-2) requires extensive computation.
In this paper, we develop a proxy for the Shapley value for
the general TSG problem, which is based on the Shapley
value for routing games, and show that it outperforms the
current state-of-the-art proxies without requiring extensive
computation.

One of the most well-studied applications of the TSG
is the domain of shared transportation, in which shippers
collaborate and bundle their shipment requests together to
achieve better rates from a carrier [13]. However, Özener
and Ergun [8] stated that “we do not know of an efficient
technique for calculating the Shapley value for the ship-
pers’ collaboration game”. Indeed, Fiestras-Janeiro et al. [14]
developed the line rule, which is inspired by the Shapley
value, but requires less computational effort and relates better
with the core [15]. However, the line rule is suitable only
for a specific inventory transportation problem. Özener [16]
described an approximation of the Shapley value when trying
to simultaneously allocate both the transportation costs and
the emissions among the customers. Frisk et al. [17] and
later Sun et al. [18] study axiomatic properties of the Shapley
value and other cost sharing methods in the domain of shared
transportation. In another domain, Bistaffa et al. [19] intro-
duced a fair payment scheme, which is based on the game
theoretic concept of the kernel, for the social ride-sharing
problem (where the set of commuters are connected through
a social network).

We note that computing the Shapley value is a challenging
task in other domains as well, in which scholars try finding
efficient methods to estimate the Shapley value. For example,
in the field of machine learning, the Shapley value is used
for interpreting results obtained by a machine learning model

2 VOLUME 4, 2016



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

[20], [21].

III. PRELIMINARIES
We are given a weighted graphG(V,E) that represents a road
network; V is the set of possible locations, and E is a set of
weighted edges that represents the set of roads. We are given
an ordered set U = {u1, u2, ..., un} of customers (users)
where customer u1 must be serviced first, customer u2 must
be serviced second, etc. Each customer ui has a correspond-
ing location di ∈ V . The salesman departures from d0 ∈ V .
Note that we do not require that the set will be ordered
according to the optimal order, which minimizes the total tour
cost (unlike [5]). We denote by δ(ui, uj) the shortest travel
distance between the locations of ui and uj in G (di and dj ,
respectively) and δ(ui, ui) = 0. To simplify the notation, we
define dummy customers, u0 and un+1, associated with d0.
See Figure 1 for a graphical representation of an example
with 4 customers. Given a set S ⊆ U , let c(S) be the cost
associated with the subset S. That is, c(U) is the total cost of
the tour. We note that c(S), where S ( U , depends on the
order in which the customers are serviced. Therefore, c(S)
is defined differently in routing games (in which the original
order in U is preserved) and in the traveling salesman game
(in which the shortest path is used to determine the order).
The Shapley value for a customer ui is formally defined as
[6]:

φ(ui) =
∑
S⊆U

(|S| − 1)!(|U | − |S|)!
|U |!

(
c(S)− c(S \ {i})

)
.

(1)
That is, the Shapley value is an average over the marginal
costs of each customer. For ease of notation, we omit the
reference to the function c when referring to the Shapley
value, since it is clear from the context.

FIGURE 1. A graphical representation of an example with 4 customers. Note
that d0 is associated with the two dummy customers, u0 and u5.

IV. THE SHAPLEY VALUE IN ROUTING GAMES
In this section, we consider the setting of routing games, and
efficiently compute the payment for every customer using the
Shapley value. Note that this is an unexpected result, since it
refutes the conjecture in [9] that there is no efficient way for
computing the Shapley value in routing games.

A. NOTATIONS

Given a set S ⊆ U , let Ord(S) be the set S ordered in
ascending order (according to the order imposed by U ), and
let S[i] be the customer that is in the i-th position in Ord(S).
For ease of notation, we use S[0] and S[|S|+1] to denote u0.

Given a set S ⊆ U , let v(S) be the shortest travel distance
of the tour that starts at the origin d0, traverses all of the desti-
nations of the customers in S according to an ascending order

and returns back to d0. That is, v(S) =
|S|∑
i=0

δ(S[i], S[i+ 1]).

This value (v(S)) serves as the cost associated with a subset
of customers, c(S), in the computation of the Shapley value.
Let R be a permutation on U and let PRi be the set of the
previous customers to ui in permutation R.

B. EFFICIENT COMPUTATION OF THE SHAPLEY VALUE

We are interested in determining the payment for each cus-
tomer, ui, according to the Shapley value, φ(ui). We use
the following formula for computing the Shapley value,
which is equivalent to Equation 1 [22], to derive an efficient
computation.

φ(ui) =
1

n!

∑
R

(
v(PRi ∪ {ui})− v(PRi )

)
. (2)

Given a permutationR and a customer ui, let u` ∈ PRi be a
customer such that ` < i and ∀uj ∈ PRi , j ≤ ` or i < j. If no
such customer exists, then u` is defined as u0. Similarly, let
ur ∈ PRi be a customer such that i < r and ∀uj ∈ PRi , j < i
or r ≤ j. If no such customer exists, then ur is defined as u0.
We note that for ease of notation, we do not include R and i
when referring to ul and ur. We use λ (and ρ) to denote the
position of u` (and ur) in Ord(PRi ), respectively. If u` = u0
then λ = 0, and if ur = u0 then ρ = |PRi |+ 1. We note that
PRi [λ] = u`, PRi [ρ] = ur and ρ = λ+ 1.

For example, assume U = {u1, u2, u3, u4, u5, u6} and
R = {u6, u2, u5, u4, u3, u1}, we get PR4 = {u6, u2, u5}
and thus Ord(PR4 ) = {u2, u5, u6}, u` = u2 (i.e., λ = 1),
ur = u5 (i.e., ρ = 2), and PR4 [λ] = u2. Figure 2 further
illustrates the example. See Table 1 for a summary of all
notations.

Our first observation is that Equation 2, in our setting, can
be rewritten as the sum over the distances between pairs of
locations.

Observation 1. φ(ui) = 1
n!

n∑
p=0

n+1∑
q=p+1

αip,qδ(up, uq), for

some αip,q ∈ Z.

VOLUME 4, 2016 3



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

FIGURE 2. An illustration of the definitions of u` and ur .

TABLE 1. Notation summary

Notation Meaning
U = {u1, u2, ..., un} An ordered set of customers (users).
δ(ui, uj) The shortest travel distance between the loca-

tions of ui and uj in G.
ui, un+1 dummy customers associated with d0.
C(S) the cost associated with the subset S.
φ(ui) The Shapley value for a customer ui.
Ord(S) The set S ordered inascending order, according

to the order imposed by U .
S[i] The customer that is in the i-th position in

Ord(S).

v(S)
|S|∑
j=0

δ(S[j], S[j + 1]).

R A permutation on U .
PR
i The set of the previous customers to ui in per-

mutation R.
u` The customer before ui in Ord(PR

i ).
ur The customer after ui in Ord(PR

i ).
λ The position of u` in Ord(PR

i ).
ρ The position of ur in Ord(PR

i ).

Proof. We note that φ(ui) ·n! is a sum over v(S) for multiple

S ⊆ U . By definition, v(S) =
|S|∑
j=0

δ(S[j], S[j+1]), such that

S[j] = up and S[j + 1] = uq where p < q.

We now show that we can rewrite the computation of the
Shapley value in our setting as follows.

Lemmaa 1. For any customer ui,

φ(ui) =
1

n!

∑
R

(
δ(u`, ui) + δ(ui, ur)− δ(u`, ur)

)
.

Proof. v(PRi ) =
|PR

i |∑
j=0

δ(PRi [j], PRi [j + 1]) =

λ−1∑
j=0

δ(PRi [j], PRi [j+1])+δ(u`, ur)+
|PR

i |∑
j=ρ

δ(PRi [j], PRi [j+

1])

In addition,

v(PRi ∪ {ui}) =
λ−1∑
j=0

δ(PRi [j], PRi [j + 1])+ δ(u`, ui) +

δ(ui, ur) +
|PR

i |∑
j=ρ

δ(PRi [j], PRi [j + 1]).

By definition,

φ(ui) =
1

n!

∑
R

[
v(PRi ∪ {ui})− v(PRi )

]
=

1
n!

∑
R

(
λ−1∑
j=0

δ(PRi [j], PRi [j+1])+δ(u`, ui)+δ(ui, ur)+

|PR
i |∑

j=ρ

δ(PRi [j], PRi [j + 1]) −
( λ−1∑
j=0

δ(PRi [j], PRi [j + 1]) +

δ(u`, ur) +
|PR

i |∑
j=ρ

δ(PRi [j], PRi [j + 1])
))

=

1
n!

∑
R

(
δ(u`, ui) + δ(ui, ur)− δ(u`, ur)

)
Following Observation 1 and Lemma 1 we now show that

we can rewrite the computation of the Shapley value as a sum
over distances, that can be computed in polynomial time.

Theorem 1. For each i, φ(ui) =
i∑

p=0

n+1∑
q=i

βip,qδ(up, uq),

where q 6= p, and βip,q ∈ Q are computed in polynomial
time.

Proof. By definition, ` < i < r. According to Lemma 1
φ(ui) · n! is a sum over δ(up, uq), where p ≤ i ≤ q. There
are several terms in this sum:
• βi0,i multiplies δ(u0, ui). Now, δ(u0, ui) appears in
φ(ui) in every permutation R when u` = u0. That is,
in all of the permutations where customer ui appears
before any other customer ux such that x < i. We
now count the number of such permutations. There
are

(
n
i

)
options to place the customers u1, u2, ..., ui

among the n available positions. For each such op-
tion, there are (i − 1)! options to order the customers
u1, u2, ..., ui such that ui is the first customer among
them. Finally, there are (n− i)! options to order the cus-
tomers ui+1, ui+2, ..., un. Therefore, δ(u0, ui) appears
in
(
n
i

)
· (i − 1)! · (n − i)! = n!

i permutations, and by
inserting 1

n! into the sum we get that βi0,i =
1
i .

• For each q > i, βi0,q multiplies δ(u0, uq). Now,
δ(u0, uq) appears negatively in φ(ui) in every permu-
tation R when u` = u0 and ur = uq . That is, in all
of the permutations where customer uq appears before
ui (i.e., uq ∈ PRi ), but any other customer ux such that
x < q, appears after ui. We now count the number of
such permutations. There are

(
n
q

)
options to place the

customers u1, u2, ..., ui, ..., uq among the n available
positions. For each such option, there are (q−2)! options
to order the customers u1, u2, ..., ui, ..., uq such that
uq is the first customer and ui is the second customer
among them. Finally, there are (n− q)! options to order
the customers uq+1, uq+2, ..., un. Therefore, δ(u0, uq)
appears negatively in

(
n
q

)
· (q − 2)! · (n− q)! = n!

q·(q−1)
permutations, and by inserting 1

n! into the sum we get
that βi0,q = − 1

q·(q−1) .
• For each 0 < p < i, βip,i multiplies δ(up, ui). Now,
δ(up, ui) appears in φ(ui) in every permutationR when
u` = up. That is, in all of the permutations where

4 VOLUME 4, 2016



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

customer up appears before ui (i.e., up ∈ PRi ), but
any other customer ux such that p < x < i, appears
after ui. We now count the number of such permuta-
tions. There are

(
n

i−p+1

)
options to place the customers

up, up+1, ..., ui among the n available positions. For
each such option, there are (i − p + 1 − 2)! options
to order the customers up, up+1, ..., ui such that up is
the first customer and ui is the second customer among
them. Finally, there are (n − (i − p + 1))! options to
order the customers u1, u2, ..., up−1, ui+1, ui+2, ..., un.
Therefore, δ(up, ui) appears in

(
n

i−p+1

)
·(i−p−1)!·(n−

(i − p + 1))! = n!
(i−p)·(i−p+1) permutations, and by in-

serting 1
n! into the sum we get that βip,i =

1
(i−p)·(i−p+1) .

• For each q > i, βii,q multiplies δ(ui, uq). Now, δ(ui, uq)
appears in φ(ui) in every permutation R when ur = uq .
That is, in all of the permutations where customer uq
appears before ui (i.e., uq ∈ PRi ), but any other cus-
tomer ux such that i < x < q, appears after ui. We
now count the number of such permutations. There are(

n
q−i+1

)
options to place the customers ui, ui+1, ..., uq

among the n available positions. For each such option,
there are (q − i + 1 − 2)! options to order the cus-
tomers ui, ui+1, ..., uq such that uq is the first customer
and ui is the second customer among them. Finally,
there are (n − (q − i + 1))! options to order the cus-
tomers u1, u2, ..., ui−1, uq+1, uq+2, ..., un. Therefore,
δ(up, ui) appears in

(
n

q−i+1

)
· (q − i − 1)! · (n − (q −

i+ 1))! = n!
(q−i)·(q−i+1) permutations, and by inserting

1
n! into the sum we get that βii,q =

1
(q−i)·(q−i+1) .

• For each p, q such that p < i < q, βip,q multiplies
δ(up, uq). Now, δ(up, uq) appears negatively in φ(ui)
in every permutation R when u` = up and ur = uq .
That is, in all of the permutations where customers
up, uq appear before ui (i.e., up, uq ∈ PRi ), but any
other customer ux such that p < x < q, x 6= i,
appears after ui. We now count the number of such
permutations. There are

(
n

q−p+1

)
options to place the

customers up, up+1, ..., ui, ..., uq among the n available
positions. For each such option there are (q−p+1−3)!
options to order the customers up, up+1, ..., ui, ..., uq
such that up is the first customer, uq is the second and
ui is the third customer among them. Similarly, there are
(q − p + 1 − 3)! options to order these customers such
that uq is the first customer, up is the second and ui is
the third. Finally, there are (n− (q− p+1))! options to
order the customers u1, u2, ..., up−1, uq+1, uq+2, ..., un.
Therefore, δ(up, uq) appears in

(
n

q−p+1

)
· 2 · (q − p −

2)! · (n − (q − p + 1))! = 2·n!
(q−p−1)·(q−p)·(q−p+1)

permutations, and by inserting 1
n! into the sum we get

that βip,q = − 2
(q−p−1)·(q−p)·(q−p+1) .

• For each p < i, βip,n+1 multiplies δ(up, un+1). Now,
δ(up, un+1) appears negatively in φ(ui) in every per-
mutation R when u` = up and ur = un+1. That is,
in all of the permutations where customer up appears

before ui (i.e., up ∈ PRi ), but any other customer ux
such that p < x, x 6= i, appears after ui. We now count
the number of such permutations. There are

(
n

n−p+1

)
options to place the customers up, up+1, ..., ui, ..., un
among the n available positions. For each such option,
there are (n − p + 1 − 2)! options to order the cus-
tomers up, up+1, ..., ui, ..., un such that up is the first
customer and ui is the second customer among them.
Finally, there are (p−1)! options to order the customers
u1, u2, ..., up−1. Therefore, δ(up, un+1) appears nega-
tively in

(
n

n−p+1

)
· (n − p + 1 − 2)! · (p − 1)! =

n!
(n−p)·(n−p+1) permutations, and by inserting 1

n! into
the sum we get that βip,n+1 = − 1

(n−p)·(n−p+1) .
• βii,n+1 multiplies δ(ui, un+1). Now, δ(ui, un+1) ap-

pears in φ(ui) in every permutationRwhen ur = un+1.
That is, in all of the permutations where customer ui ap-
pears before any other customer ux such that i < x. We
now count the number of such permutations. There are(

n
n−i+1

)
options to place the customers ui, ui+1, ..., un

among the n available positions. For each such option,
there are (n− i+1− 1)! options to order the customers
ui, ui+1, ..., un such that ui is the first customer among
them. Finally, there are (i−1)! options to order the cus-
tomers u1, u2, ..., ui. Therefore, δ(ui, un+1) appears in(

n
n−i+1

)
·(n−i)!·(i−1)! = n!

n−i+1 permutations, and by
inserting 1

n! into the sum we get that βii,n+1 = 1
n−i+1 .

We note that routing games are very similar to the setting
of the last mile variant of prioritized ride-sharing. In ride-
sharing, several passengers share a taxi and split the traveling
cost. In the last mile variant, it is assumed that all the
passengers are positioned at the same origin location (e.g. an
airport), and each has a destination [23]. In the prioritized
ride-sharing problem, it is further assumed that there is a
fixed priority order in which the passengers are dropped-
off (e.g. elderly, disabled, pregnant women, etc.). Clearly,
our problem is almost identical: the taxi corresponds to the
salesman and the passengers correspond to the customers.
The only difference is that in the ride-sharing setting the
passengers do not pay the cost of the trip back to the origin.
Indeed, the results presented in this section carry over to ride-
sharing.

Theorem 2. The Shapley value in the last mile prioritized
ride-sharing problem can be computed in polynomial time.

Proof. We use our previous definitions and results with
the following slight modifications. We re-define the dummy
customer un+1 such that it is no longer associated with d0
and thus for every i ∈ {0, 1, ..., n}, δ(ui, un+1) = 0. In
Observation 1, we need to modify the bound in the outer
sum (with the index p) to n − 1 and the bound in the inner
sum (with the index q) to n. In addition, we use the proof of
Theorem 1, but we modify the bound in the inner sum (with
the index q) to n. Therefore, βip,n+1 and βii,n+1 are no longer
needed.

VOLUME 4, 2016 5



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

V. THE GENERAL TRAVELING SALESMAN GAME
Similar to routing games we are given an initial order, which
the customers are serviced. However, in this variant we do
not enforce the initial order for every subset of customers.
Instead, given a strict subset of customers S, the cost asso-
ciated with it, c(S), is the length of the shortest path that
traverses all the locations corresponding to the customers in
S and traveling back to the origin.

A. THE HARDNESS OF COMPUTING THE SHAPLEY
VALUE
In Section IV, we showed that the Shapley value can be
efficiently computed for routing games. In essence, the com-
putation could be done efficiently since most of the travel
distances cancel out, and only a polynomial number of terms
remain in the computation. Unfortunately, this is not the case
with TSG, where the Shapley value cannot be computed
efficiently unless P = NP .

We begin by defining the len-TSP problem as the problem
of finding the length of the shortest cycle (not necessarily
a simple cycle) that starts at a specific node, v0, traverses
all nodes in a graph, and returns to v0. Clearly, the len-
TSP problem cannot be performed in polynomial time, unless
P = NP 1. We use len-TSP to show that the Shapley value
for the TSG cannot be computed efficiently, unless P = NP .
We note that Theorem 1 in [10] has a flaw, and therefore
cannot be used2.

Theorem 3. There is no polynomial time algorithm that
computes the Shapley value for a given customer in the TSG
unless P = NP .

Proof. Given an instance of the len-TSP on a graph G(V,E)
we denote the solution by x. We construct the following
instance. We build a graph G′(V ′, E′), where we add a node
v′, i.e., V ′ = V ∪ {v′}. If e ∈ E then e ∈ E′ with the
same weight, and we also add (v0, v

′) and (v′, v0) to E′ with
a weight of 1. Finally, we set U = V ′ \ {v0} (where every
customer ui is associated with location vi), d0 = v0, and
the initial order is arbitrarily chosen. Recall that c(U) is the

1The NP-hardness of len-TSP is proved by a reduction from the Hamilto-
nian path problem. Given a graphG(V,E) to the Hamiltonian path problem,
we construct a full graph G′ where all edges that appear in graph G have a
weight of 1, and all edges that do not appear in G have a weight of 2. G′

includes a new vertex v′ that has a weight of 1 to all vertices in the graph.
v′ serves as the origin vertex to the len-TSP problem, and G′ serves as the
input graph. Clearly, if the result from the len-TSP problem equals |V |+ 1,
then there exists a Hamiltonian path in G, otherwise, if the result is greater
than |V |+ 1, there is no Hamiltonian path.

2The proof shows that if an α-approximation of the Shapley value of a
location in a TSG exists, for a constant α, then it can be used to decide the
existence of a Hamiltonian cycle in a graphG. It shows that givenG we can
construct a transitive closure G′, in which we can use the α-approximation
of the Shapley value in order to decide the existence of a Hamiltonian cycle
in G. However, consider the following two undirected graphs: G1 has the
following edges: (v1, v2), (v2, v3), (v3, v4), (v4, v1). Obviously, there is
a Hamiltonian cycle in G1. G2, which is a star graph, has the following
edges: (v1, v2), (v1, v3), (v1, v4). Clearly, there is no Hamiltonian cycle
in G2. However, the transitive closure of both graphs is the same: a clique
of v1, v2, v3 and v4, and thus G′

1 = G′
2. That is, an α-approximation of

Shapley on G′ does not decide the existence of a Hamiltonian cycle in G.

total travel cost associated with the chosen order. We ask to
compute the Shapley value of customer u′ that is associated
with the location v′.

Clearly, the marginal contribution of u′ to any strict subset
of U \ {u′} is exactly 2. However, the marginal contribution
of u′ to the complete set U \ {u′} is exactly c(U) minus x
(the length of the shortest cycle starting at v0, traversing all
nodes in V , and returning to v0). That is,

φ(u′) =
(|U | − 1)!

|U |!
(c(U)− x) + |U |!− (|U | − 1)!

|U |!
· 2

After some simple mathematical manipulations we get that
x = (|U | − 1)2 − |U |φ(u′) + c(U). Therefore, if we can
compute φ(u′) in polynomial time then we can solve the
len-TSP problem in polynomial time, which is not possible
unless P = NP .

B. SHAPLEY APPROXIMATION BASED ON A FIXED
ORDER
In Section IV, we presented a method for efficiently comput-
ing the Shapley value in routing games. In this section, we
show that our method may be also applicable to a general
TSG as an efficient proxy for the Shapley value. We term
our proxy SHAPO: SHapley APproximation based on a fixed
Order. Specifically, SHAPO provides a proxy for the Shapley
value in TSG by treating the input as an instance of a routing
game and applying the formula developed in Theorem 1.
More formally,

SHAPO(ui) =

i∑
p=0

n+1∑
q=i

βip,qδ(up, uq),

where the values of βip,q are according to Theorem 1. See
Algorithm 1 for an explicit description of SHAPO.

Algorithm 1: SHAPO
Input: An ordered set U = {u1, u2, ..., un} of users
An index of a user (i).
A function, δ, which returns the shortest travel

distance between the locations of two users.
Result: A cost associated with user ui, which serves

as a proxy for φ(ui).
Res← δ(u0,ui)

i + δ(ui,un+1)
n−i+1

for p = 1 to i− 1 do
Res← Res+

δ(up,ui)
(i−p)·(i−p+1) −

δ(up,un+1)
(n−p)·(n−p+1)

end
for q = i+ 1 to n do

Res← Res+
δ(ui,uq)

(q−i)·(q−i+1) −
δ(u0,uq)
q·(q−1)

for p = 1 to i− 1 do
Res← Res− 2·δ(up,uq)

(q−p−1)·(q−p)·(q−p+1)

end
end
return Res

6 VOLUME 4, 2016



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

We compare SHAPO with the following three state-of-
the-art proxies for computing the Shapley value in traveling
salesman games.

a: Depot Distance
This method divides the total travel cost proportionally to the
distance from the origin (depot), i.e.

Depot(ui) =
δ(u0, ui)∑n
j=1 δ(u0, uj)

c(U).

For example, a customer serviced at a location that is twice
as distant from the origin as another customer has to pay
twice the cost, regardless of the actual tour. This baseline was
selected as it is very simple, yet it was shown to be effective
on real data [10].

b: Appro-1
[due to [11]] Appro-1 is a method that generalizes the char-
acteristics of computing the Shapley value on a 1D line to an
Euclidean space. Formally, let

SC(x1, x2, ..., xk) =

k∑
i=1

yi
i(i+ 1)

,

where the vector [y1, y2, . . . , yk] represents the vector
[x1, x2, . . . , xk] sorted in descending order of its values.
Let si,j = δ(u0, ui) + δ(u0, uj) − δ(ui, uj). Finally,
let IntA1(ui) = si,i − SC(s1,i, ..., si−1,i, si+1,i, ..., sn,i).
Then,

Appro-1(ui) =
IntA1(ui)∑n
j=1 IntA1(uj)

C(U).

Appro-1 was shown to outperform all state-of-the-art proxies
for the Shapley value in TSGs [11].

c: Appro-2
[due to [11]] The Appro-2 method is an improvement of
Appro-1 that generalizes the shared cost function, SC. This
method is more involved and therefore requires additional
computation time (see [11] for a complete description of this
method). Appro-2 is currently the state-of-the-art method for
estimating the Shapley value in TSGs [11].

C. EXPERIMENTAL SETTINGS
In order to evaluate the performance of SHAPO, we compare
the payments computed by each of the methods to the ground
truth Shapley value. We use two different graphs; the road
network of the city of Toulouse and that of New York city.
We randomly choose 11 different origins for each graph.
The location vertices are randomly sampled using a uniform
distribution over all vertices, and each of the methods is
evaluated 100 times against the true Shapley value of all
customers, resulting in 2200 computations of the Shapley
value per customer. Due to the extensive time required to
compute the Shapley value we only evaluate the performance
of all methods with up-to 15 locations (including the origin).

We therefore computed the Shapley value 224, 400 times, in
total.

We run two sets of experiments. In the first set of ex-
periments, the set of customers is ordered according to the
shortest tour. This is reasonable, since if there is no fixed
order, it is very likely that, in order to reduce the overall cost,
the service would use the shortest tour (computed once). Note
that the other proxies from the literature do not explicitly
require the shortest tour since they only compute the induced
fractional allocation of the cost of the shortest tour. However,
in order to compute an approximation for the Shapley value,
the cost of the shortest tour is required for all proxies [10],
[11]. In the second set of experiments, we show that SHAPO
performs well even when the given order is according to an
approximation for the shortest tour (which can be computed
efficiently)3.

D. RESULTS USING AN OPTIMAL TOUR
We evaluate the performance of SHAPO against the three
other proxies using 5 different statistical measures (averaged
on all 100 iterations). We use X(ui) to denote the estimated
Shapley value by the evaluated proxy.

1) Percent: The average percentage of the deviation
from the Shapley value. Formally, Percent =
1
n

∑n
i=1

|X(ui)−φ(ui)|
φ(ui)

.
2) MAE: The mean absolute error, MAE =

1
n

∑n
i=1 |X(ui)− φ(ui)|.

3) MSE: The mean squared error, MSE =
1
n

∑n
i=1(X(ui) − φ(ui))

2. This measure gives
higher weight to larger deviations.

4) RMSE: The root mean squared error, RMSE =√
1
n

∑n
i=1(X(ui)− φ(ui))2.

5) Max-Error: The maximum deviation among all cus-
tomers between the real and estimated Shapley value,
Max = maxni=1(|X(ui)− φ(ui)|).

TABLE 2. Average percentage of the deviation from the Shapley value
(Percent). Averaged over 100 iterations. Lower is better. An asterisk (*)
indicates that the difference between SHAPO and the next best proxy is
statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.00% 16.99% 1.90% 0.00%
5 0.22% 21.79% 3.33% 0.15%
6 0.57%* 24.93% 4.57% 0.61%
7 0.93%* 27.12% 5.82% 1.28%
8 1.29%* 28.62% 6.94% 1.97%
9 1.65%* 29.20% 8.00% 2.78%

10 2.08%* 30.37% 8.89% 3.70%
11 2.41%* 31.60% 9.72% 4.59%
12 2.78%* 32.27% 10.57% 5.32%
13 3.11%* 32.59% 11.33% 6.10%
14 3.43%* 33.07% 12.05% 6.91%
15 3.71%* 33.76% 12.76% 7.64%

Average 2.34% 30.37% 9.35% 4.46%

3Simulation software including the code of the algorithms, and the
datasets of the two graphs are available online at https://github.com/
Chaya-Levinger/ShapleyValue.

VOLUME 4, 2016 7



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

TABLE 3. The mean absolute error of the deviation from the Shapley value
(MAE). Averaged over 100 iterations. Lower is better. An asterisk (*) indicates
that the difference between SHAPO and the next best proxy is statistically
significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 $0.00 $1.06 $0.15 $0.00
5 $0.01 $1.23 $0.22 $0.01
6 $0.03 $1.26 $0.26 $0.02
7 $0.04* $1.27 $0.30 $0.05
8 $0.05* $1.25 $0.32 $0.07
9 $0.06* $1.21 $0.33 $0.10

10 $0.07* $1.18 $0.34 $0.12
11 $0.08* $1.17 $0.35 $0.15
12 $0.09* $1.14 $0.36 $0.16
13 $0.09* $1.10 $0.36 $0.18
14 $0.1* $1.08 $0.37 $0.2
15 $0.1* $1.06 $0.37 $0.21

Average $0.07 $1.15 $0.33 $0.14

TABLE 4. The mean squared error of the deviation from the Shapley value
(MSE). Averaged over 100 iterations. Lower is better. An asterisk (*) indicates
that the difference between SHAPO and the next best proxy is statistically
significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.000 1.783 0.055 0.000
5 0.002 2.434 0.100 0.001
6 0.004 2.678 0.130 0.004
7 0.008* 2.806 0.162 0.010
8 0.011* 2.794 0.182 0.017
9 0.015* 2.670 0.204 0.025

10 0.020* 2.615 0.216 0.038
11 0.023* 2.608 0.222 0.051
12 0.027* 2.518 0.236 0.061
13 0.030* 2.400 0.241 0.075
14 0.034* 2.301 0.254 0.092
15 0.035* 2.282 0.255 0.149

Average 0.022 2.492 0.212 0.06

TABLE 5. The root mean squared error of the deviation from the Shapley
value (RMSE). Averaged over 100 iterations. Lower is better. An asterisk (*)
indicates that the difference between SHAPO and the next best proxy is
statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.000 1.172 0.163 0.000
5 0.014 1.406 0.255 0.008
6 0.032 1.499 0.312 0.029
7 0.051* 1.544 0.361 0.059
8 0.067* 1.552 0.390 0.087
9 0.083* 1.517 0.418 0.120

10 0.101* 1.511 0.434 0.156
11 0.113* 1.510 0.445 0.189
12 0.125* 1.492 0.461 0.214
13 0.134* 1.460 0.468 0.238
14 0.145* 1.432 0.481 0.268
15 0.151* 1.424 0.485 0.287

Average 0.105 1.471 0.425 0.178

TABLE 6. The maximum deviation among all customers between the real and
estimated Shapley value (Max-Error). Averaged over 100 iterations. Lower is
better. An asterisk (*) indicates that the difference between SHAPO and the
next best proxy is statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 $0.00 $1.60 $0.22 $0.00
5 $0.02 $2.16 $0.40 $0.01
6 $0.06 $2.54 $0.52 $0.05
7 $0.09* $2.84 $0.64 $0.10
8 $0.13* $3.04 $0.73 $0.15
9 $0.17* $3.14 $0.82 $0.22

10 $0.21* $3.32 $0.88 $0.31
11 $0.25* $3.44 $0.93 $0.39
12 $0.28* $3.53 $0.99 $0.47
13 $0.32* $3.59 $1.03 $0.54
14 $0.35* $3.61 $1.09 $0.63
15 $0.38* $3.73 $1.11 $0.7

Average $0.24 $3.28 $0.89 $0.39

The results are depicted in Tables 2, 3, 4, 5 and 6. The
AVG row represents the average across all customers (which
is different from the simple average across each column).
SHAPO significantly outperforms the other proxies in all
measures, with seven or more locations (using a pairwise
t-test with α = 0.05). Note that the units of MAE and
Max-Error are dollars and the average cost per customer
was $4.65. That is, as depicted in Table 3, SHAPO deviated
by only 7 cents, on average, from the actual Shapley value.
The depot distance deviated by $1.15, Appro-1 deviated by
33 cents and Appro-2 deviated by 14 cents. Similarly, the
maximal deviation of SHAPO was 24 cents (on average),
while the maximal deviation of depot distance, Appro-1 and
Appro-2 was $3.28, 89 cents and 39 cents (respectively).

FIGURE 3. Running time, in seconds, required to compute a single instance
of the Shapley value (in logarithmic-scale).

Table 7 shows the average running time of all methods,
averaged over 4-15 locations. Figure 3 shows the running
time of all methods using a logarithmic scale. We use a 2.2
GHz Intel Xeon CPU with 24 cores for running the simu-
lations; all running time results are reported using a single
core. Note that we continue to run SHAPO and the other

8 VOLUME 4, 2016



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

TABLE 7. Running time, in seconds, required to compute a single instance of
the Shapley value. Averaged over 4− 15 locations, 100 iterations, 2 maps and
11 different origins.

Running time
Shapley 10871.7430584
SHAPO 0.0000043

Depot Dist. 0.0000004
Appro-1 0.0000134
Appro-2 0.0005419

proxies up to 30 locations only for examining the differences
in running time. As depicted by the figure, SHAPO can be
computed almost instantaneously; even with 15 locations,
SHAPO can be computed in 0.0001 seconds, on average.
Moreover, SHAPO is between 10 and 100 times faster than
Appro-2, and is even faster than Appro-1.

We note that computing the exact Shapley value is done
in a reasonable time (up-to 0.005 seconds) when the number
of locations is seven or less. Hence, a proxy is needed when
the number of customers is larger; therefore, SHAPO is the
new state-of-the-art efficient proxy for estimating the Shapley
value.

E. SHAPO IN A NEARLY-OPTIMAL TOUR
In this section, we show that the results presented in the previ-
ous section carry-out also to situations in which the given tour
is very close to being optimal but not necessarily the exact
optimal order. Namely, we use a polynomial time heuristic
to compute an approximate solution for finding the shortest
tour, and then compare the performance of SHAPO to the
other proxies. We use the 2-opt local search algorithm [24],
which starts with a random tour and tries to improve it
by swapping non-adjacent edges. We limit the number of
swapped edges to n2 for ensuring a polynomial running time.
In practice, computing the shortest tour (or its length) once,
as required by all the proxies, is not too costly: the average
time required to find the optimal shortest tour for 4 to 15
locations was 0.17 seconds, while the average time required
to find the tour for 4 to 15 locations with the 2-opt algorithm
was only 0.0013 seconds.

TABLE 8. Average percentage of the deviation from the Shapley value
(Percent). Averaged over 100 iterations. Lower is better. An asterisk (*)
indicates that the difference between SHAPO and the next best proxy is
statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.00% 17.05% 1.86% 0.00%
5 0.25% 21.48% 3.39% 0.18%
6 0.67% 24.30% 4.71% 0.65%
7 1.20%* 26.73% 5.98% 1.37%
8 1.78%* 27.79% 7.09% 2.18%
9 2.28%* 29.64% 8.04% 3.03%

10 2.96%* 30.32% 9.17% 3.96%
11 3.57%* 30.77% 10.02% 4.81%
12 4.13%* 31.50% 11.02% 5.66%
13 4.63%* 32.03% 11.79% 6.48%
14 5.18%* 32.73% 12.43% 7.26%
15 5.75%* 33.14% 13.18% 8.07%

Average 3.46% 29.92% 9.65% 4.73%

TABLE 9. The mean absolute error of the deviation from the Shapley value
(MAE). Averaged over 100 iterations. Lower is better. An asterisk (*) indicates
that the difference between SHAPO and the next best proxy is statistically
significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 $0.00 $1.08 $0.15 $0.00
5 $0.01 $1.21 $0.22 $0.01
6 $0.03 $1.24 $0.27 $0.03
7 $0.05 $1.25 $0.30 $0.05
8 $0.07* $1.24 $0.32 $0.08
9 $0.08* $1.23 $0.33 $0.11

10 $0.10* $1.20 $0.35 $0.13
11 $0.12* $1.16 $0.36 $0.16
12 $0.13* $1.13 $0.37 $0.17
13 $0.14* $1.11 $0.38 $0.19
14 $0.15* $1.09 $0.38 $0.21
15 $0.16* $1.06 $0.38 $0.23

Average $0.11 $1.15 $0.34 $0.15

TABLE 10. The mean squared error of the deviation from the Shapley value
(MSE). Averaged over 100 iterations. Lower is better. An asterisk (*) indicates
that the difference between SHAPO and the next best proxy is statistically
significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.000 1.827 0.054 0.000
5 0.002 2.383 0.101 0.001
6 0.007 2.587 0.137 0.005
7 0.014 2.668 0.167 0.012
8 0.024 2.757 0.191 0.020
9 0.030 2.761 0.200 0.031

10 0.040* 2.694 0.222 0.044
11 0.052* 2.562 0.235 0.060
12 0.062* 2.475 0.248 0.070
13 0.066* 2.408 0.254 0.086
14 0.077* 2.383 0.266 0.102
15 0.082* 2.287 0.270 0.122

Average 0.049 2.493 0.221 0.062

TABLE 11. The root mean squared error of the deviation from the Shapley
value (RMSE). Averaged over 100 iterations. Lower is better. An asterisk (*)
indicates that the difference between SHAPO and the next best proxy is
statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 0.000 1.193 0.163 0.000
5 0.016 1.395 0.258 0.009
6 0.037 1.473 0.319 0.031
7 0.063 1.506 0.364 0.064
8 0.091* 1.532 0.398 0.099
9 0.110* 1.543 0.416 0.133

10 0.136* 1.529 0.442 0.167
11 0.158* 1.496 0.456 0.201
12 0.180* 1.476 0.472 0.228
13 0.192* 1.461 0.481 0.256
14 0.212* 1.456 0.493 0.283
15 0.225* 1.426 0.499 0.311

Average 0.148 1.471 0.434 0.191

The results are depicted in Tables 8, 9, 10, 11 and 12.
Similar to the results when using an optimal tour, SHAPO
significantly outperforms the other proxies in almost all
measures, with nine or more locations. The only exception is
the MSE measure, where SHAPO significantly outperforms
the other proxies with ten or more locations. Clearly, the

VOLUME 4, 2016 9



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

TABLE 12. The maximum deviation among all customers between the real
and estimated Shapley value (Max-Error). Averaged over 100 iterations. Lower
is better. An asterisk (*) indicates that the difference between SHAPO and the
next best proxy is statistically significant.

No. of Locations SHAPO Depot Dist. Appro-1 Appro-2
4 $0.00 $1.63 $0.22 $0.00
5 $0.02 $2.16 $0.40 $0.01
6 $0.06 $2.49 $0.54 $0.05
7 $0.11 $2.75 $0.65 $0.11
8 $0.17 $3.00 $0.74 $0.18
9 $0.22* $3.19 $0.81 $0.25

10 $0.28* $3.34 $0.90 $0.33
11 $0.35* $3.42 $0.96 $0.42
12 $0.41* $3.50 $1.00 $0.50
13 $0.46* $3.58 $1.05 $0.58
14 $0.53* $3.69 $1.11 $0.66
15 $0.56* $3.74 $1.15 $0.75

Average $0.34 $3.28 $0.91 $0.42

running time of all the proxies when using the near-optimal
tour is essentially identical to the running time when using an
optimal tour.

The results presented in this section clearly demonstrate
that SHAPO significantly outperforms all other proxies for
the general TSG, establishing a new state-of-the-art. We
believe that SHAPO’s performance stems from the fact that it
relies on an exact solution to a very similar problem, i.e. the
routing game.

VI. CONCLUSIONS

The Shapley value is considered one of the most important di-
vision scheme of revenues or costs, but its direct computation
is often not practical for a reasonable size game. Therefore,
Mann and Shapley [25] suggest to consider restrictions and
constraints in order to find games where the Shapley value
can be efficiently computed. We showed that a routing game
is an example of such a game by showing that the Shapley
value can be efficiently computed. However, we show that
the general TSG cannot be efficiently computed (unless P =
NP ). Interestingly, the method of computing the Shapley
value in a routing game can still serve as an efficient proxy
for the Shapley value for the TSG.

There are several interesting directions for future work.
One possible direction is to adapt our proxy for computing
the Shapley value to the domain of sustainable transportation.
That is, following the work of Özener [16], we would like
to use SHAPO when allocating both the transportation costs
and the emissions among the customers. From a theoretical
perspective, we showed that computing the Shapley value for
the TSG is a hard problem. However, the hardness may be
derived also from the hardness of len-TSP. There are several
polynomial time approximations and heuristics for TSP that
can be adjusted for len-TSP. It is thus interesting to analyze
the computational complexity of finding the Shapley value,
where c(S) is computed using one of these approximations
or heuristics.

ACKNOWLEDGMENT
We would like to thank Dan Popescu and Philip Kilby for
providing their code, which was used to run Appro-1 and
Appro-2.

REFERENCES
[1] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Man-

agement Science, vol. 6, no. 1, pp. 80–91, 1959.
[2] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing

problems: Three decades and counting,” Networks, vol. 67, no. 1, pp. 3–31,
2016.

[3] Y. Molenbruch, K. Braekers, and A. Caris, “Typology and literature review
for dial-a-ride problems,” Annals of Operations Research, vol. 259, no. 1,
pp. 295–325, 2017.

[4] P. Fishburn and H. Pollak, “Fixed-route cost allocation,” The American
Mathematical Monthly, vol. 90, no. 6, pp. 366–378, 1983.

[5] J. A. Potters, I. J. Curiel, and S. H. Tijs, “Traveling salesman games,”
Mathematical Programming, vol. 53, no. 1-3, pp. 199–211, 1992.

[6] L. S. Shapley, “A value for n-person games,” Contributions to the Theory
of Games, vol. 2, no. 28, pp. 307–317, 1953.

[7] E. Winter, “The Shapley value,” Handbook of game theory with economic
applications, vol. 3, pp. 2025–2054, 2002.

[8] O. Ö. Özener and Ö. Ergun, “Allocating costs in a collaborative trans-
portation procurement network,” Transportation Science, vol. 42, no. 2,
pp. 146–165, 2008.

[9] D. Yengin, “Characterizing the shapley value in fixed-route traveling
salesman problems with appointments,” International Journal of Game
Theory, vol. 41, no. 2, pp. 271–299, 2012.

[10] H. Aziz, C. Cahan, C. Gretton, P. Kilby, N. Mattei, and T. Walsh, “A study
of proxies for Shapley allocations of transport costs,” Journal of Artificial
Intelligence Research, vol. 56, pp. 573–611, 2016.

[11] D. C. Popescu and P. Kilby, “Approximation of the shapley value for the
euclidean travelling salesman game,” Annals of Operations Research, vol.
289, no. 2, pp. 341–362, 2020.

[12] S. C. Littlechild and G. Owen, “A simple expression for the shapley value
in a special case,” Management Science, vol. 20, no. 3, pp. 370–372, 1973.

[13] M. Guajardo and M. Rönnqvist, “A review on cost allocation methods
in collaborative transportation,” International transactions in operational
research, vol. 23, no. 3, pp. 371–392, 2016.

[14] M. G. Fiestras-Janeiro, I. García-Jurado, A. Meca, and M. A. Mosquera,
“Cost allocation in inventory transportation systems,” TOP, vol. 20, no. 2,
pp. 397–410, 2012.

[15] R. J. Aumann, “The core of a cooperative game without side payments,”
Transactions of the American Mathematical Society, vol. 98, no. 3, pp.
539–552, 1961.

[16] O. Ö. Özener, “Developing a collaborative planning framework for sus-
tainable transportation,” Mathematical Problems in Engineering, vol.
2014, 2014.

[17] M. Frisk, M. Göthe-Lundgren, K. Jörnsten, and M. Rönnqvist, “Cost
allocation in collaborative forest transportation,” European Journal of
Operational Research, vol. 205, no. 2, pp. 448–458, 2010.

[18] L. Sun, A. Rangarajan, M. H. Karwan, and J. M. Pinto, “Transportation
cost allocation on a fixed route,” Computers & Industrial Engineering,
vol. 83, pp. 61–73, 2015.

[19] F. Bistaffa, A. Farinelli, G. Chalkiadakis, and S. D. Ramchurn, “Recom-
mending fair payments for large-scale social ridesharing,” in Proceedings
of the 9th ACM Conference on Recommender Systems, 2015, pp. 139–146.

[20] R. Mitchell, J. Cooper, E. Frank, and G. Holmes, “Sampling permutations
for shapley value estimation,” arXiv preprint arXiv:2104.12199, 2021.

[21] I. Covert and S.-I. Lee, “Improving kernelshap: Practical shapley value es-
timation using linear regression,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2021, pp. 3457–3465.

[22] G. Chalkiadakis, E. Elkind, and M. Wooldridge, “Computational aspects
of cooperative game theory,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 5, no. 6, pp. 1–168, 2011.

[23] S.-F. Cheng, D. T. Nguyen, and H. C. Lau, “Mechanisms for arranging ride
sharing and fare splitting for last-mile travel demands,” in Proceedings of
the 13th International Conference on Autonomous Agents and Multi-agent
Systems, 2014, pp. 1505–1506.

[24] G. A. Croes, “A method for solving traveling-salesman problems,” Opera-
tions research, vol. 6, no. 6, pp. 791–812, 1958.

10 VOLUME 4, 2016



Levinger et al.: Efficient Computation and Estimation of the Shapley Value for Traveling Salesman Games

[25] I. Mann and L. S. Shapley, “Values of large games. 6: Evaluating the
electoral college exactly,” RAND CORP SANTA MONICA CA, Tech.
Rep., 1962.

CHAYA LEVINGER is a Ph.D. student at Ariel
University, Israel. She received a B.Sc. degree
in computer science from Lev Academic Center,
Israel, in 2015 and a M.Sc. degree in computer
science from Ariel University in 2020.

NOAM HAZON is a senior lecturer at Ariel
University, Israel. He received a B.Sc. degree in
computer science from Bar Ilan University, Israel,
in 2003, a M.Sc. degree in computer science from
Bar Ilan University in 2005, and a Ph.D. degree
in computer science from Bar Ilan University in
2010. Dr. Hazon then was a post-doctoral fellow
at CMU, Pittsburgh PA. During his M.Sc. degree
he worked as a Software engineer in Applied
Materials, Israel. Dr. Hazon won an ISF grant in

2014, a planning grant from Volkswagen foundation in 2018, and a grant
from the Ministry of Science, Technology & Space, Israel, in 2019. Dr.
Hazon has co-authored over 40 papers, and he serves as a senior program
committee member and a program committee member in the leading AI
conferences. His research interests include computational social choice,
human-computer interactions, coalitional game theory, stochastic search,
influence maximization and multi-robot coverage.

AMOS AZARIA is a senior lecturer at Ariel Uni-
versity, Israel. He received a B.A. degree in com-
puter science from the Technion Institute of Tech-
nology, Haifa, Israel, in 2004, a PhD degree from
Bar Ilan University, Ramat Gan, Israel in 2015 and
was a post-doctoral fellow at CMU, Pittsburgh PA.
After completing the Bachelor’s degree he spent
several years in the industry, some of which in-
cluded working with Microsoft R&D Haifa, Israel.
Azaria has co-authored over 60 papers, has won

the Victor Lesser distinguished dissertation award for 2015, and was a
member of the winning team of the DARPA SMISC competition, 2015 on
bot detection. His research interests include human-agent interaction, deep
learning, human aided machine learning and natural language processing.

VOLUME 4, 2016 11


