
1

Deep Learning Architectures for Approximating
Goldbach’s Function in New Regions

Avigail Stekel, Amos Azaria

Computer Science Dept., Ariel University, Israel

Abstract—Goldbach conjecture is one of the most famous open
mathematical problems. He asserts that: Every even number
greater than two is the sum of two prime numbers. The Goldbach
function receives an even number and returns the number of
different ways to write it as an unordered sum of two prime num-
bers. We developed a simple multi-layer perceptron that attempts
to predict Goldbach’s function. This simple model performs well
when trained and tested on numbers up to 4 million. However,
as expected, the model’s performance significantly deteriorates
when trained on smaller numbers (up to 4 million) but tested on
larger numbers (4− 10 million).

To overcome this problem, we present two novel deep learning
architectures. In these architectures we introduce two types of
multiplication layers, which we believe are more appropriate for
solving mathematical relations. We show that both architectures
significantly outperform the simple multi-layer perceptron when
trained on smaller numbers and tested on larger numbers.
We further improve the performance of the deep learning
architectures by using a known analytically derived estimation
that is used in order to normalize the model’s output.

Index Terms—Goldbach’s function; Deep learning; Out-of-
scope inference.

I. INTRODUCTION

In June 1742, the mathematician Christian Goldbach wrote
a letter to his friend, Leonard Euler, describing his conjecture
that states that every even integer larger than two is a sum
of two prime numbers [1]. Since then mathematicians have
tried to prove this conjecture or disprove it. Even though more
than two hundred and fifty years have passed, the conjecture
remains open. To this date, Goldbach’s conjecture has been
verified manually up to 4×1018 [2]. During the past centuries,
despite no actual proof being found, there has been some
important and significant progress related to this conjecture.

A more general problem is to determine the number of
different options there are for a given even number, n, to be
written as a sum of two prime numbers. Each such option is
called a Goldbach partition. That is, a Goldbach partition is
composed of three numbers: two primes, which sum to a given
even number, n. This problem is known as the Goldbach’s
function, denoted G(n) [3]. Rephrasing Goldbach’s conjecture
in terms of Goldbach’s function would state that the value of
Goldbach’s function (for all even numbers greater than 2) is
greater than or equal to 1. For example, G(100) = 6, because
100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 =
47 + 53 and there any other. The plot of the Goldbach’s
function has a form of a comet and is consequently called
“Goldbach’s comet” [3] (See Figure 1 for Goldbach’s function
values for all even numbers up to 4× 106.

Several works ([4], [5]) have suggested different approxima-
tions of Goldbach’s function, which they derived analytically.
Unfortunately, some of these approximations are very far from
the actual values taken by Goldbach’s function, while others
require prime factorization (prime decomposition), which is
believed to be an intractable operation on large numbers. In
this paper we suggest a different approach to approximate
Goldbach’s function, by utilizing unique architectures for
neural networks (i.e., deep learning).

Deep learning is a hierarchical based approach to ap-
proximate complex functions, which most commonly uses
neural network architectures that are composed of multiple
layers. Training the network is performed by executing grading
descent, which adjusts the weights of the network in order to
minimize a loss function. Indeed, deep learning has shown
success in many different fields [6]. However, it may seem
that deep learning is not a suitable approach for this type
of problems, as the input to the approximation function is
only a single number, and deep learning has shown success in
situations in which the input is composed of a large vector
or a matrix. We therefore propose a simple, yet powerful
concept of translating the number into different bases. Using
our approach, a simple multi-layer perceptron performs well
when trained on some numbers up to 4 million and tested on
other numbers up to 4 million as we show in [7]. However,
the simple multi-layer perceptron’s performance significantly
deteriorates when trained on smaller numbers (up-to 4 million)
but tested on larger numbers (4-10 million).

To overcome the problem of the multi-layer perceptron
model that does not perform well when tested on a new
distribution, we present two novel deep learning architectures.
In these architectures we introduce two types of multiplication
layers, which we believe are more appropriate for solving
mathematical relations. The first architecture includes a mul-
tiplication layer, in which some of the neurons are multiplied
before serving as an input for the next layer. In the second
architecture, an additional layer is included, in which all
inputs are activated using a logarithmic function, and then
all outputs are activated with an exponential function. This
allows the multiplication of any input neurons. We show that
both architectures significantly outperform the simple multi-
layer perceptron when trained on smaller numbers and tested
on larger numbers. We further improve the performance of
the deep learning architectures by using a known analytically
derived estimation (see Equation 6) that is used in order to
normalize the model’s output.

2

Fig. 1: Goldbach’s function values for all even numbers between 4 and 10 × 106. This function is sometimes referred to as
Goldbach’s comet, due to its shape.

II. BACKGROUND

Prime and natural numbers have always aroused mathemati-
cians’ interest. In 1900 Hillbert made his famous speech at
the 2nd International Congress of Mathematics held in Paris,
saying there are 23 unsolved problems for mathematicians
of the 20th century [8]. One of those math problems was
Goldbach’s conjecture.

A. Approximations of Goldbach’s Function

Goldbach’s Conjecture is divided into two conjectures:
1) The ‘weak’ Goldbach’s conjecture states that ‘every odd

number greater than 5 can be expressed as a sum of three
primes’. For example, 11 is the sum of 3, 3 and 5. 21 is
the sum of 2, 2 and 17. The weak conjecture was finally
proved in 2013 [9].

2) The ‘strong’ Goldbach’s conjecture, which states that
‘every even integer greater than 2 is a sum of two
primes’. The number 6 for example, can be presented
with only one pair of prime numbers, 3 + 3. However,
when examining even numbers greater than 12 , there
are apparently, at least two pairs of prime numbers that
sum to each number. One might assume that the greater
the even number, the more different pairs it has, yet by
observing different even numbers this assumption does
not always hold. For example, while 34 and 36 have
4 Goldbach partitions each, 38 has only 2 Goldbach
partitions. There have been multiple attempts to make
progress with respect to the strong Goldbach’s conjec-
ture, some of which were very recent [10], [11], [12].
However, this conjecture remains open to date.

In this paper we focus on Goldbach’s function, which
provides the number of Godlbach’s partitions an even number
has. More formally, let n ∈ N. Then, Goldbach’s function is
given by:

G(n) =
∑

{p,q}∈P×P ∧ p≤q

1{p+ q = n} (1)

where, P is the set of all prime numbers, and 1 is the indicator
function that returns 1 if the expression is true and otherwise
0.

Over the years there have been several attempts to find
an analytic approximation of Goldbach’s function. Hardy and
Littlewood [4] proposed the following approximation:

G1(n) = 2 · C2
n

(ln(n))2

∏
p|n

(
p− 1

p− 2
) (2)

where n is an even number, p denotes all the prime factors of
n. C2 is a number that they refer to as the twin prime constant,
which equals:

C2 =
∏
p≥3

(
1− 1

(p− 1)2

)
∼= 0.6601618158 (3)

where p denotes all prime numbers. We note that C2 is called
the twin prime constant because it was previously used in
formula developed to estimate the number of twin primes (i.e.,
two primes, p1 and p2 such that |p1−p2| = 2) that are smaller
than a given number.

While this function was originally proposed as an upper-
bound, it is widely used as an approximation. Baker suggested
multiplying G1(n) by 3

5 to yield a better approximation [5]
(we will refer to Baker’s approximation as G1′(n)). As stated
by Hardy & Littlewood [4] the G1(n) function can only be
used as a good approximation when approaching the limit (i.e.,
for very large numbers). Therefore, Granville [13] provides the
following function, which achieves a better approximation for
smaller numbers:

G2(n) = C2

∫ n−2

2

dt

ln(t) · ln(n− t)

∏
p|n

(
p− 1

p− 2
). (4)

Granville [13] shows that G′2(n) = G2(n) ·(
1− 4√

n

∏
p≥3(1−

n/p
p−2)

)
yields a better approximation.

Note that G1(n), G1′(n), G2(n) and G′2(n) require factor-
ing n, which is assumed to be a hard problem. Currently, the

3

best known prime factorization algorithm (GNFS) [14] runs
in a time complexity of:

O

(
exp

((
3

√
64

9
+ o(1)

)
3
√

log(n) 3
√

(loglog(n))2
))

where n is the number factored. Note that the input size is
considered log(n), since the number of digits required to
represent n is log(n). We therefore do not consider those
approximations in this paper (see [7] for a comparison of a
deep learning based method with these methods).

To overcome the factorization requirement, the following
approximation of Goldbach’s function was proposed [15]:

G3(n) =
n

(ln(n))2
(5)

This approximation is derived from Gauss’ approximation
provided in 1793 for the probability of a number being prime.
According to Gauss, this probability is given by:

f(m) =
m

ln(m)

Therefore, for an even number n the following may be used
as an approximation of its number of Goldbach partitions:

n/2∑
m=3

m

ln(m)
· n−m

ln(n−m)
≈ n

2ln(n)2

Note that G3 is monotone, and thus cannot capture the
phenomenon that larger numbers may sometimes have less
Goldbach partitions than smaller numbers. The following
approximation, which is also monotone, was proposed by
Markakis et al. in [16]:

G4(n) =
n

(ln(n/2))2
. (6)

We note that G4 was shown to outperform G3 (see [7]).

III. DEEP LEARNING BASED ARCHITECTURES FOR
GOLDBACH’S FUNCTION APPROXIMATION

In this section we present several deep learning based
models to approximate Goldbach’s function values. In previous
work we compared the simple deep learning based model (the
Multilayer perceptron Basic Model) to other baselines when
trained and tested on numbers up to 4M [7]. In this paper
we focus on the performance of our models when trained on
numbers up to 4M , but tested on larger numbers (4− 10M).

A. Data Composition
In order to train and evaluate the different methods, we

composed a dataset consisting of the number of Goldbach
partitions that all even numbers from 4 to 4 × 106 have. To
that end, we first computed all prime numbers at that range,
and stored them as a list and as a hashmap. For each even
number, n, we iterated on all prime numbers (using the list
of all primes) that are smaller than or equal to n

2 . For each
of these prime numbers, p, we tested (using the hashmap)
whether n− p is a prime number itself. If so, we incremented
n’s counter by one.

We shuffled the data and split it into a training-set, (90%
of the data; 18 × 105 numbers), and the remaining 10% was
reserved for the 0− 4M test-set (2× 105 numbers).

B. Model Features

From each number we extracted the following 26 features.
We converted every number to its binary representation,
ternary representation (base 3), quinary representation (base
5) and septenary representation (base 7). The time complexity
of computing these base representations for a number n is
O(log(n)). In practice we computed those representations
while composing the data. In order to compute the base-
representations, we iteratively divided the number by the
required base. We truncated the base representations and used
the 6 least significant digits for each representation. The
intuition behind using these different representations lies in
the fact that these transformations are computationally cheap
to extract and that they might allow the model to retrieve
underlying information on the number. The first 4 prime
numbers (2, 3, 5, 7) were selected as the bases. We used the
6 least significant digits because it is the largest number of
digits that allows the biggest base (base 7) to complete at least
two cycles with the training data. That is, 2 × 77 < 4 × 106,
but 78 > 4 × 106 (and therefore, we cannot use 7 digits). In
addition to the representations in the different bases, we added
the number itself (divided by 2,000,000, which is the average
of the training-set), and the logarithm of the number.

IV. MODEL ARCHITECTURES

We used 3 different model architectures:

A. Basic-MLP

This simple model uses a fully connected neural network.
The number of neurons was set to 200 on each hidden layer,
and the Adam optimizer [17] was used, with a learning rate
of 0.001. We used a mini-batch size of 1024 and trained the
model for approximately 200 epochs on the data. These values
are similar to those we used in previous work [7]. In previous
work, [7], we tested several options for finding the optimal
number of hidden layers; the model with 5 hidden layers
outperformed all other options. We therefore used 5 hidden
layers in this paper as well.

For a given number n, the time complexity of generating
the features and evaluating our model is O(log(n)), which is
the best time complexity one could expect from an algorithm
that reads the entire input (which requires O(log(n)) digits to
represent).

We now introduce our novel architectures that were de-
veloped for the Goldbach’s function approximation in new
regions.

B. Multiplication-Layer Model

The multiplication-layer model includes a layer that multi-
plies pairs of neurons (see Figure 2). Namely, after several
fully connected layers (in our case 2) a fraction of the
following layer is separated from the rest (in our case 40% of
the neurons were separated). The architecture includes random
connections between some of the separated neurons; these
neurons were multiplied by each other. In practice the model
shuffles the rows of an identity matrix, which we denote J .

4

The group of neurons that were separated, denoted V , is then
multiplied, on the right side, by J . The result, V × J , is
component-wise multiplied by the original group of separated
neurons, V . This process implies that each of the neurons
is paired exactly twice (each time with a different neuron).
It is possible however, that a neuron will multiply itself, or
multiply the same neuron twice.

The motivation behind this architecture was inspired by the
analytically derived approximations (G1 and G2 functions),
which perform relatively well but require prime factorization
and are therefore not practical for large numbers. As can be
seen, G1 and G2 are based on the multiplication of primary
factors. We believe that the real solution of the function must
include multiplication components. However, a standard neural
network cannot multiply two features by each other, but can
only approximate such an action. Unfortunately, while such
an approximation might perform well when tested on the
training-set scope, its performance significantly deteriorates
when tested on larger numbers. Therefore, by using the
multiplication-layer model there will be actual multiplications
between some neurons; this may improve the model perfor-
mance, especially when predicting numbers larger than the
scope of the training-set.

C. Ln-Layer Model

Another architecture introduced in this paper is the ln-layer
model (see Figure 3). Similar to the multiplication-layer
model, in the ln-Layer model after several fully connected
layers, the neurons are divided into two groups. The first
group of neurons is fully connected to the next layer (using
ReLU activation). The second group is activated first by
ReLU and then by the natural logarithm, and its output serves
as an input to a separate fully connected layer. That layer is
then activated by an exponential function. The two groups are
then concatenated and continue with a simple fully connected
architecture. Converting the neuron data to natural logarithm
and then back by an exponential function enables the network
to multiply multiple neurons by each-other.

In addition to the previously introduced architectures, we
consider an additional method that make use of Goldbach’s
function approximation formula developed by Markakis et al.
[16], G4 (see equation 6). This formula was selected because
it is the most accurate among the analytically derived formulas
that do not require prime factorization.

D. Normalization of the Result

We normalize the result by G4. To this end, each of
the previously presented models (basic model, multiplication-
layer model and ln-layer model), is trained to predict the
value of Goldbach’s function divided by G4 (rather than
simply predicting the value of the Goldbach’s function). In
addition to the obvious benefit from normalizing the prediction
value, dividing by G4 will likely improve the performance
of all models when tested on values that are not in the
same distribution area. This is because the model learns the

relation between Goldbach’s function and G4; we believe
that this relation is less prone to changes (than the actual
Goldbach’s function) as the number grows. We denote this
method by adding ‘+n’ to the original model (that is, the Basic-
MLP model with normalized result is denoted Basic-MLP+n,
and the Multiplication-layer and Ln-layer models are denoted
Multiplication-layer+n and Ln-layer+n, respectively).

E. Results

Test range Basic-MLP Multiplication-layer Ln-layer

4-5 0.4 0.2 0.29
5-6 1.58 1.19 1.58
6-7 7.65 4.67 6.43
7-8 32.53 12.6 18.49
8-9 96.42 23.8 46.3
9-10 178.88 38.71 107.75

TABLE I: MSE of the basic-MLP model, Multiplication-layer
model and the Ln-layer model. Note that all models were
trained on numbers up to 4 million and were tested on numbers
between 4 and 10 million. All the numbers are in millions

Table I presents the performance of our models in compari-
son to G4 (equation 6), in terms of mean squared error (MSE).
All models were trained on numbers up to 4 million, and
were tested on numbers up to 10 million. The numbers in the
overlapping part (i.e. up to 4 million) were carefully split into a
training-set (90% of the data) and a test-set (10% of the data).
As expected, the MSE grows as the numbers grow. As we
hypothesised, both the Multiplication-layer and the Ln-layer
models outperformed the basic-MLP. Somewhat surprisingly,
the Multiplication-layer outperformed the Ln-layer model.

Table II presents the MSE of the models normalized by G4.
As expected, the performance of all the methods significantly
improved (see Figure 4). Interestingly, the Ln-layer+n model,
gained the lead, and outperformed both basic-MLP+n and
multiplication-layer+n. However, we would like to note that
the derivation of the G4 formula is not trivial, and therefore,
the Multiplication-layer architecture may be used in different
domains, in which such an analytically derived function (such
as G4) is not available.

We compare the performance of the Multiplication-layer
and the Ln-layer+n models with the performance of the basic
MLP model and the G4 function (which does not require
factorization). As depicted by Table III, the Multiplcation and
the Ln-layer+n methods outperform the basic MLP and G4

at all ranges. The Multiplciation model, which does not use
any analytically derived formula, outperforms the Ln-layer+n
on the 0-4M range (on the test-set), and achieves very close
performance in the 4-5M range.

In addition, we test the performance of the Ln-Layer+n
model when trained on a subset of the training set. Recall
that the training set is composed of 90% of the even numbers
between 0 to four million. Table IV presents the performance
of the Ln-Layer+n when trained on 100%, 50%, 10% and 1%
of the training set. As expected, the performance of the model
is much better when trained on a larger data-set; however, even
with only 1% of the training set, the Ln-Layer+n performs

5

a1*a2

a6*a4

a5*a3

a6

a5

a4

a3

a2

a1

a3 ∗ a1

a2*a6

a4*a5

input

full connected layers
multiplication layer

a6

a5

a4

a3

a2

a1

Fig. 2: An illustration of the multiplication architecture. The arcs between the purple neurons (a1 − a6) demonstrate the
multiplication. Note that each of the neurons is paired exactly twice with another neuron. The other neurons (which appear in
blue) follow a standard fully connected architecture.

Test range Basic-MLP + n Multiplication-layer + n Ln-layer + n
4-5 0.17 0.21 0.19
5-6 0.46 0.47 0.37
6-7 1.47 2.08 1.41
7-8 4.15 8.5 3.72
8-9 10.54 20.95 6.54
9-10 23 35.16 10.79

TABLE II: MSE of models normalized by G4. All numbers are in millions

Test range Multiplication Ln-layer + n basic MLP G4

0-4 (test-set) 0.034 0.052 0.1 22.5
4-5 0.2 0.19 0.4 73
5-6 1.19 0.37 1.58 105.6
6-7 4.67 1.41 7.65 140.69
7-8 12.6 3.72 32.53 180.14
8-9 23.8 6.54 96.42 223.55
9-10 38.71 10.79 178.88 270.89

TABLE III: MSE of the Multiplication-layer model and the Ln-layer+n model compared to the MSE of G4. All the numbers
are in millions.

Test range 100% of training set 50% of training set 10% of training set 1% of training set G4

0-4 (test-set) 0.052 0.13 0.2 1.8 22.5
4-5 0.19 0.28 0.4 7.1 73
5-6 0.37 0.76 1.2 11.3 105.6
6-7 1.41 2.1 3.7 20.1 140.6
7-8 3.72 5.13 8.18 29.6 180.1
8-9 6.54 10.4 15.2 48.8 223.5
9-10 10.79 17.96 23.6 67.3 270.8

TABLE IV: MSE of the Ln-layer+n model when trained on 100%, 10%, and 1% of the training set, which is composed of
90% of the even numbers between 0-4 million, compared to the MSE of G4.

significantly better than G4 at all ranges. Finally, Table V
presents the average number of Goldbach partitions for each
of the ranges, the mean absolute error (MAE) values of our
selected model (ln-layer+n) along with the MAE of G4, and
the error rate of our selected model. We note that the error

rate is less than 5% also in the higher ranges.

V. DISCUSSION

As stated in the introduction, Goldbach’s conjecture was
verified up to 4 × 1018. This verification was performed by

6

Test range Average no. Ln-layer + n Ln-layer + n G4

of partitions MAE error rate
0-4 (test-set) 10.7 0.13 1.2% 3.4
4-5 22.0 0.25 1.1% 7.1
5-6 26.2 0.4 1.5% 8.5
6-7 30.3 0.7 2.4% 9.8
7-8 34.3 1.1 3.3% 11.1
8-9 38.2 1.4 3.8% 12.4
9-10 42.1 1.9 4.5% 13.6

TABLE V: The average number of Goldbach partitions for each of the ranges in thousands, the mean absolute error (MAE)
values of our selected model (ln-layer+n) along with the MAE of G4 in thousands, and the error rate of our selected model.

fully connected

log
activation

exp
activation

fully connected

fully
connected

Fig. 3: An illustration of the ln-layer architecture. One of the
layers is divided into two sets of neurons. The green set is
fully connected to the next layer, while the blue set is first
activated by the natural logarithm, then fully connected and
activated by an exponent.

using an exhaustive search (see also [18] for an implemen-
tation requiring minimal space). Our approximation model
may allow a selective search method in which Goldbach’s
conjecture can be verified only for suspicious numbers ac-
cording to our model. In other words, only numbers that our
model predicts will have a very low number of partitions. This
approach can also be used to find numbers that violate the
lower-bound proposed by [15]. The methods presented in this
paper may allow training on smaller numbers while performing
the selective search on larger numbers.

In previous work [7], we used the 10 least significant digits
of each base presentation. This model performed well when
trained and tested on numbers up to 4 million. However, when
this model was tested on large numbers we observed a large
gap between its error on 5 − 6 million and 6 − 7 million.
Namely, when tested on numbers between 4 and 5 million
the error was 0.35 million, when tested on 5 − 6 million it
was 0.77 million, but when tested on 6 − 7 million, it rose
to 128.68 million. This gap is attributed to the fact that in
the 0 − 4 million region (the training data), the 9th and 10th
digits in septenary (base-7) were constantly 0, and the 8th
digit in septenary increased monotonically. This is because
the number 4, 000, 000 is written as 45, 666, 544 in septenary
(with 0 in the 9th and 10th digits). This caused the weights
associated with the 9th and 10th septenary digits to remain
with their initial assigned values (noise). Furthermore, since

the 8th digit of base-7 increased monotonically, the trained
model usually assigned higher values to numbers that had a
higher value in the 8th septenary digit. That is, the model
did not see any large numbers with a low value, or a 0, in
the 8th septenary digit. Therefore, when tested on numbers
with 0 in the 8th septenary digit, the model predicted a small
value (despite the given number being large). For example, 6.5
million is written as 106, 151, 303 in septenary, and therefore
has a 0 in the 8th digit location. To overcome this problem and
avoid this type of over-fitting, in this paper, we used only the
6 least significant bits. Therefore, in all models presented in
this paper, the error rose gradually. For example, in the basic-
MLP model presented in this paper, which has an architecture
similar to the model presented in [7], the MSE was 0.4 for
4−5 million, 1.58 for 5−6 million, and 7.65 for 6−7 million.

In this paper though we do not attempt to use a deep
neural network (DNN) to actually prove a theorem (which is a
completely different field), we believe that DNN can be used
to help solving open mathematical problems in different ways.
The first method is by finding counterexamples (e.g. using
selective search) and the second by analyzing the features that
the DNN considers when computing its values. In our example
we show that using different base representations (which can
be computed inexpensively) is very useful for approximating
Goldbach’s function, (as opposed to the expensive prime fac-
torization computation which was previously known). Future
advancements in explainable neural networks, might help shed
additional light on this problem when applied to our results.
While deep learning has shown great success in many different
fields [19], [20], [21], we believe that the success shown in
this paper related to an open mathematical problem in number
theory, is a big step and should not be disregarded as being
merely another deep learning application. Our work may lead
to a new paradigm of using deep learning (or machine learning
in general) to solve mathematical problems such as prime
factorization, friendly numbers, finding prime twins and many
similar problems, which may currently seem out of the scope
of deep learning methods.

VI. CONCLUSIONS

Goldbach’s conjecture and Goldbach’s function have re-
mained open mathematical questions for over two and a
half centuries. There have been several analytic attempts
to approximate Goldbach’s function, but unfortunately, these
approximations either do not work well in practice or require
prime factorization (prime decomposition) which is a hard

7

Fig. 4: This plot compares the MSE of the three models (Basic-MLP, Multiplication-layer and Ln-layer) with the MSE of their
normalized versions (lower is better). As depicted in the figure, all models gain from this normalization.

problem. In previous work, we developed a basic multi-
layer perceptron and show that this simple model performs
well when trained and tested on numbers up to 4 million.
However, the model’s performance significantly deteriorates
when trained on smaller numbers (up-to 4 million) but tested
on larger numbers (4− 10 million).

To overcome this problem, in this work we presented two
novel deep learning architectures. In these architectures we
introduced two types of multiplication layers; in the first archi-
tecture some of the neurons of a specific layer are multiplied
by each-other (the Multiplication-layer model). In the second
architecture a log activation is performed at the output of a
set of neurons that is followed by a fully connected layer with
an exponential activation (the Ln-layer model). We showed
that both architectures significantly outperform the basic multi-
layer perceptron when trained on smaller numbers and tested
on larger numbers. We further improved the performance of
the deep learning architectures by normalizing the model’s
output by a known analytically derived estimation (G4).

REFERENCES

[1] C. Goldbach, Letter to L, Euler 7 (1742) 1.
[2] T. Oliveira e Silva, S. Herzog, S. Pardi, Empirical verification of the even

Goldbach conjecture and computation of prime gaps up to 4 × 1018,
Mathematics of Computation 83 (288) (2014) 2033–2060.

[3] H. F. Fliegel, D. S. Robertson, Goldbach’s comet: the numbers related
to Goldbach’s conjecture, Journal of Recreational Mathematics 21 (1)
(1989) 1–7.

[4] G. H. Hardy, J. E. Littlewood, Some problems of diophantine approxi-
mation: The lattice-points of a right-angled triangle, Proceedings of the
London Mathematical Society 2 (1) (1922) 15–36.

[5] J. Baker, Excel and the Goldbach comet, Spreadsheets in Education
(eJSiE) 2 (2) (2007) 2.

[6] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1,
MIT press Cambridge, 2016.

[7] A. Stekel, M. Shukrun, A. Azaria, Goldbach’s function approximation
using deep learning, in: 2018 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), IEEE, 2018, pp. 502–507.

[8] Y. Wang, The Goldbach Conjecture, Vol. 4, World scientific, 2002.
[9] H. A. Helfgott, The ternary Goldbach conjecture is true, arXiv preprint

arXiv:1312.7748 (2013) 1–79.

[10] I. O. Bado, New discovery on goldbach, International Journal of
Progressive Sciences and Technologies 13 (2) (2019) 216–221.

[11] C. Liu, A study of relationship among goldbach conjecture, twin prime
and fibonacci number., IJ Network Security 19 (3) (2017) 406–412.

[12] A. Berdondini, The importance of finding the upper bounds for prime
gaps in order to solve the twin primes conjecture and the goldbach
conjecture, arXiv preprint arXiv:2002.07174 (2020) 1–10.

[13] A. Granville, Refinements of goldbach’s conjecture, and the generalized
riemann hypothesis, Functiones et Approximatio Commentarii Mathe-
matici 37 (1) (2007) 159–173.

[14] J. P. Buhler, H. W. Lenstra, C. Pomerance, Factoring integers with the
number field sieve, in: The development of the number field sieve,
Springer, 1993, pp. 50–94.

[15] C. Provatidis, E. Markakis, N. Markakis, Rule of thumb bounds in
Goldbach’s conjecture, American Journal of Mathematical Analysis 1 (1)
(2013) 8–13.

[16] E. Markakis, C. Provatidis, N. Markakis, Some issues on Goldbach
conjecture, Number Theory 29 (2012) 1–30.

[17] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
Proceedings of the 3rd International Conference on Learning Repre-
sentations (ICLR) (2014) 1–15.

[18] J. Richstein, Computing the number of goldbach partitions up to 5 10
8, in: International Algorithmic Number Theory Symposium, Springer,
2000, pp. 475–490.

[19] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang, Traffic flow prediction with
big data: a deep learning approach, IEEE Transactions on Intelligent
Transportation Systems 16 (2) (2015) 865–873.

[20] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, F. A. G. Osorio, A deep
learning architecture for image representation, visual interpretability
and automated basal-cell carcinoma cancer detection, in: International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, Springer, 2013, pp. 403–410.

[21] B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning,
Nature biotechnology 33 (8) (2015) 831.

	Introduction
	Background
	Approximations of Goldbach's Function

	Deep Learning Based Architectures for Goldbach's Function Approximation
	Data Composition
	Model Features

	Model Architectures
	Basic-MLP
	Multiplication-Layer Model
	Ln-Layer Model
	Normalization of the Result
	Results

	Discussion
	Conclusions
	References

