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ABSTRACT This paper addresses the issue of autonomous competitive yet safe driving in the context of
the Indy Autonomous Challenge (IAC) simulation race. The IAC is the first multi-vehicle autonomous head-
to-head competition, reaching speeds of 300 km/h along an oval track modeled after the Indianapolis Motor
Speedway (IMS). We present a racing controller that attempts to maximize progress along the track while
avoiding collisions with opponent vehicles and obeying the race rules. To this end, the racing controller first
computes a race line offline. During the race, it repeatedly computes a small set of dynamically feasible
maneuver candidates, each tested for collision with the opponent vehicles. It then selects a collision-free
maneuver that maximizes the progress along the track and obeys the race rules. Our controller was tested in
a 6-vehicle simulation, managing to run competitively with no collision over 30 laps. In addition, it managed
to drive within a close range of the leading vehicle during most of the IAC final simulation race.

INDEX TERMS Autonomous vehicles, Collision avoidance, Motion planning, Multi-robot systems

I. INTRODUCTION
Autonomous racing has gained great interest in recent years
[1], resulting in a number of racing competitions [2]–[4].
In competitive driving, the challenge is to maintain safety
and minimize motion time while competing against other
vehicles that attempt to achieve the same goal. We address the
issue of competitive driving in the context of our participation
in the recent Indy Autonomous Challenge (IAC) [4]. The
IAC is an international competition intended to promote
the development of algorithms for driving under challenging
conditions. Its goal is to demonstrate the world’s first multi-
vehicle, high-speed, head-to-head autonomous racing.

(a) (b)

FIGURE 1: (a) The Indianapolis Motor Speedway (b) the AV-
21 autonomous race car.

The IAC, held on 2020-2021, was carried out in two
stages: a simulation race and a real race on the Indianapolis
Motor Speedway (IMS) with the Dallara AV-21 autonomous
race car [5]. Fig. 1 depicts the IMS and the race car. Over
30 teams from universities worldwide participated in this
challenge. A prerequisite for entering the competition was to
demonstrate autonomous driving of a real vehicle. Our team’s
entry submission is shown in [6].

While the simulation race achieved its stated goals, the real
race ended up with solo driving and controlled overtaking
between two vehicles [7]. Evidently, competitive driving with
real vehicles is not yet ready and will hence rely for the time
being on high-fidelity simulations. It is in the context of this
reality that we present our work on competitive driving.

A. CHALLENGES OF AUTONOMOUS RACING
Autonomous racing has unique challenges emanating from
the unique properties of the race vehicle, its extreme speeds,
and the competitive nature of the driving.

1) Extreme speeds
Racing speeds coupled with limited frequencies of the sensor
readings lead to state updates at large distance intervals com-

VOLUME 4, 2016 1



Hartmann et al.: Competitive Driving of Autonomous Vehicles

pared to the vehicle size and the distance between neighbor-
ing vehicles. Furthermore, driving near the vehicle’s perfor-
mance envelope in close proximity to neighboring vehicles
leaves little room for correction and hence requires high-
fidelity predictions of the behavior of the opponent vehicles.

2) Competitive driving
Competitive driving forces the competitors to race in close
proximity to opponent vehicles. As a result, the time dif-
ference between the leading teams is measured in fractions
of a second. This, in turn, forces all competitors to drive
on the performance envelope of the vehicle and the driver,
leaving little room for safety. Although the goal is to win the
race, in our opinion, especially for the first time that such
a head-to-head race is taking place, safer behavior and larger
safety margins should be preferred over pushing the vehicle’s
performance to its limits.

3) Aerodynamic forces
The aerodynamics of a race car has two main effects: a down-
force that increases the tire grip and consequently lets the
car reach a lateral acceleration of over 2.5 g, which in turn
significantly increases the vehicle’s maximal speeds along an
oval track. The second effect is slipstream, or drafting, which
reduces the drag on the vehicle that follows behind at close
range. Exploiting the slipstream is an important strategy in
car racing since it allows vehicles with identical dynamics to
overtake each other at high speeds.

4) Racing rules
The racing rules [8] for the autonomous race were derived
from the rules used in human-driven races [9]. Central to
these rules is the principle that an overtaking vehicle is
fully responsible for avoiding collision with a vehicle that is
moving on its race line, without causing it to veer off its race
line. If a collision occurs in such a situation, the overtaking
vehicle is held responsible for the collision and is removed
from the race.

B. THIS PAPER
The autonomous racing controller was developed based on
the underlying principle that emphasizes safety over perfor-
mance. To this end, our controller attempts to avoid colli-
sions, including those that the race rules placed the respon-
sibility to avoid on the opponent vehicle. While this is a
conservative approach to competitive driving that attempts
to drive safer than what is allowed by the race rules, it is
in our opinion the right approach to "responsible competitive
driving."

The racing controller is based on a repeated search for the
locally best maneuver that avoids collisions with opponent
vehicles, attempts to follow the globally optimal race line,
and obeys the race rules.

The best maneuver is selected from a tree of local maneu-
vers, generated to a set of goals across the track by applying
time optimal control to a point mass model. The selected

maneuver is then tracked using the pure-pursuit controller
[10].

Our controller was tested and analyzed in simulations with
6 competing vehicles, all running the same algorithm. It was
also tested in the IAC simulation race, where it competed
in races with up to 7 vehicles. We note that the controller
is efficient for racing with even more vehicles since the
algorithm’s complexity is linear in the number of opponent
vehicles.

Despite its simplicity, this controller demonstrated safe
and competitive driving, while overtaking other vehicles over
the 30 lap run, without causing even a single collision be-
tween any of the 6 competing vehicles. In the IAC simulation
race, our vehicle managed to avoid collisions while staying
within close range of the leading vehicle for the majority of
the semi-finals and finals. Our strategy of avoiding collisions
at all cost caused our vehicle to spin off the track while at-
tempting to avoid collision with another vehicle that entered
our safety bound. This placed our vehicle in the 6th place in
the simulation competition.

The contributions of this paper are twofold:

• Presenting a complete controller for a multi-vehicle race
that drives competitively, avoids collision, and obeys the
race rules.

• Presenting multi-vehicle (6 vehicles) race results and
providing metrics to quantify the performance of a
multi-vehicle race.

II. RELATED WORK
Most previous work in the field of autonomous racing have
focused on solo-racing [11]–[13] or racing against a single
opponent vehicle [14], [15]. Very few studies have addressed
multi-vehicle racing with more than two opponent vehicles
[16], [17]. This paper describes our multi-vehicle racing
controller and demonstrates it (in simulation) in a 6-vehicle
and 7-vehicle races.

Autonomous racing has been tested in competitions, such
as the Formula student challenge [2] or Roborace [3], which
focus mainly on solo racing. The recent IAC real race demon-
strated controlled overtaking between two vehicles [7]. A
multi-vehicle race has been so far demonstrated only in the
IAC simulation race [4]. For a comprehensive survey on
autonomous racing, see [1].

We now survey some of the existing work on autonomous
racing regarding each of our racing algorithm modules,
namely global race line planning, opponents’ trajectories
prediction, local planning, and trajectory tracking.

a: Global race line planning
A global race line is the time optimal path (the projection of
the time optimal trajectory on the track) for a one lap solo
race. Computed offline, it serves as a reference input to a
trajectory-following controller [11], [18]. It is also used in
multi-vehicle racing as a reference for the online planner, as
is demonstrated later in this paper.
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The race line optimization for autonomous racing usually
minimizes lap time, which can be computed by solving a non-
linear optimization problem that considers vehicle dynamics
and track constraints [11], [19]. An alternative approach is to
construct a race line by minimizing curvature along the path,
which impacts the vehicle’s lateral acceleration [20]. Since
vehicle speeds vary little along the oval track, optimizing path
curvature offers a good kinematic approximation for the time
optimal dynamic optimization. It is computationally efficient
and it produces race lines that differ only slightly from the
time optimal line. We used open source software [21] for the
offline race line optimization.

b: Trajectory prediction
An early approach to trajectory prediction was based on
Kalman filter to generate short time horizon predictions while
assuming a constant velocity and acceleration along each
segment [22]. A more recent approach trains recurrent neural
networks to predict the multi-modal distribution of future
trajectories [23]. While the learning-based approach, using
neural networks for prediction, is promising, it requires a
large amount of data, and it does not guarantee the quality
of the learned solution [24].

For computational efficiency, we devised a prediction
module that accounts for the opponent’s current state and
track geometry. We used a conservative assumption that
while moving across the track, the opponent vehicle will
cross the entire track, until reaching either the inner or
outer boundary, and will follow that track boundary while
maximizing its speed during the set time horizon.

c: Local planning
Model Predictive Control (MPC) was used to optimize a
local trajectory for solo driving [12], [25], and for avoiding
static [26] and dynamic obstacles [27]. To avoid obstacles,
Wischnewski et al. [27] and Liniger et al. [26] first plan a free
driving zone using graph search, then generate an optimal
trajectory within the selected zone. In [15], MPC was used
directly to overtake a single opponent vehicle in a racing
scenario.

Random sampling was used to search for a feasible,
collision-free solution using Rapid Random Trees (RRT) [28]
and RRT* [13] and CLRRT# [29] to compute an asymptoti-
cally optimal solution. It is important to note that random
sampling-based methods do not guarantee a solution in a fi-
nite computation time. Furthermore, these methods typically
require excessive computation time that is detrimental to real-
time execution at high-frequency.

A less computationally demanding solution is to select an
optimal trajectory from a small set of trajectories, generated,
for example, by simulating various constant steering angles
and velocities [26], or by generating cubic spirals to a set of
target points [30].

The above mentioned methods are either unsuitable for
high-speed racing or have not been demonstrated for more
than three vehicles. Our online planner selects a trajectory

from a small set of maneuvers generated by a point mass
model to a number of target points, while minimizing motion
time, avoiding collisions with the opponent vehicles, and
attempting to reach the optimal race line, as described later
in Section V.

d: Trajectory tracking
Trajectory tracking can be done using feedback control by
minimizing position error, [18], [31], Model Predictive Con-
trol (MPC) by generating a sequence of open loop commands
that minimize tracking error subject to dynamic constraints
[11], [27], and learning-based control that iteratively mini-
mizes lap time and tracking error [32], [33].

We opted for the pure-pursuit algorithm [10], together with
low-level linear and angular velocity controllers. It provides
satisfactory performance when fine-tuned for driving along
the smooth trajectories generated by the local planner. It is
easy to tune, owing to the low number of parameters used,
compared to other methods.

e: Reinforcement learning approach
Recently, Wurman et al. [17] beat human drivers in a rac-
ing video game, using reinforcement learning. Unlike the
hierarchical approach of the methods described earlier, the
reinforcement learning agent maps a low-dimensional state
directly to control commands. Although learning-based ap-
proaches are promising, they usually require a high amount
of training data, making it challenging to generalize them to
training safely in the real world. Such long training also made
it impractical for the IAC simulation race because of the
slower-than-real-time performance of the simulator. Another
challenge is to validate the safety of the learned controller,
which is nontransparent (i.e., black box), unlike physics-
based controllers.

f: Comparison
Most of the current research focuses on single or two-vehicle
racing, and there is currently no demonstration of a real
race with more than two vehicles. We note that it is im-
possible to directly compare different methods implemented
in different settings in the racing domain. This is because
the performance differences between racing competitors are
very small, as shown later in Section VII. In addition, in a
racing environment, all methods are extensively fine-tuned to
a specific setting, and thus, one method cannot be applied,
as is, to a different setting. These challenges emphasize the
importance of racing competitions such as the Indy Au-
tonomous Challenge that provides an opportunity to compare
the performance of various methods on a common ground.

III. SOFTWARE ARCHITECTURE
The software architecture of the racing controller is shown
schematically in Fig. 2. An optimal race line is computed of-
fline for a given track, which serves the controller throughout
the race. The data from the cameras and radars provide the
position and velocity of the surrounding opponent vehicles,
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and additional simulated sensors provide the ego-vehicle
state, e.g., position and velocity. Together with the map and
the optimal race line, these data are used by the prediction
module to predict the opponent vehicles’ future trajectories
repeatedly. The trajectory planner uses the same informa-
tion to plan an optimal local maneuver for the ego-vehicle.
This maneuver serves as an input to the trajectory-following
controller, which computes the ego-vehicle’s desired linear
and angular velocities. The linear and angular velocities
are controlled by the velocity controller, which outputs the
steering, throttle, and brake commands.

Radar

Cameras

Ego-vehicle 
state State Estimation

Perception

Trajectory planner

Trajectory followingVelocity controlControl 
commands

Prediction Map

Optimal
race line

Simulator Online Offline 

FIGURE 2: The software architecture.

IV. COMPUTING THE OPTIMAL RACE LINE
The optimal race line is a time-optimal trajectory when no
other vehicles are present on the track. It is computed offline,
based on the track geometry and vehicle dynamics.

The IMS is an oval track, 4, 023 m (2.5 miles) long, as
depicted in Fig. 3a.

We computed the optimal race line using an open-source
trajectory optimization software [21]. The optimal race line
typically minimizes curvature by entering the corner on the
outside boundary of the track, passing through the apex on
the inner boundary to the exit point on the outside boundary,
as shown in Fig. 3b.
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FIGURE 3: (a) The IMS track. (b) The optimal race line
around a corner of the track.

V. ONLINE TRAJECTORY PLANNING
The online trajectory planner computes a collision-free tra-
jectory at 25 Hz. This rate was dictated by the frequency of
the simulator sensors updates. This in turn resulted in a travel
distance of 3 m between trajectory updates.

The trajectory computed by the online planner is used
as a reference for the trajectory-following controller (see
Section VI). The planner first generates a tree of dynamically
feasible maneuver candidates to 8 points that span the track
width. The best candidate that maximizes progress along the
path and avoids collision with the opponent vehicles is then
selected.

The online trajectory planner uses a horizon of 200 m,
which the stopping distance at 80 m/s. This is also compatible
with the sensor range of 200 m. The limited planning horizon
decreases the optimality of the local trajectory. However, we
mitigate this by attempting to merge with the optimal race
line, which is in itself globally optimal. Despite the short
time horizon, we demonstrate that the vehicle is able to drive
safely and competitively, as described later in Sec. VII.

A. COORDINATE SYSTEM
The coordinate system used in planning the trajectory is
attached to the ego-vehicle with the x-axis tangent to the left
track boundary and the y-axis normal to track. The position
of the ego-vehicle is denoted (xe, ye). The ego-vehicle is
always located at xe = 0, and ye represents the ego-vehicle’s
normal offset from the left boundary (see Fig. 4).

FIGURE 4: Road-aligned coordinate system.

In our coordinate system, for every point (xi, yi), |xi|
represents the distance from the ego-vehicle along the track
(a negative xi represents a point behind the ego-vehicle), and
yi represents the offset from the track boundary regardless of
the track shape and the ego-vehicle’s location.

B. POINT-TO-POINT TRAJECTORY
We now present the computation of a trajectory between two
end points, for a point mass model. This is repeatedly used to
predict the trajectories of opponent vehicles and for planning
maneuver candidates for the ego-vehicle.

Let ps = {x0, y0, ẋ0, ẏ0} be the starting point, and
pg = {xg, yg, ẋg, ẏg} be the goal point. We wish to plan
a trajectory C(t) = {x(t), y(t), ẋ(t), ẏ(t)}, t ∈ [0, T ] so
that C(0) = ps and C(T ) = pg . We assume a constant
longitudinal speed (along the x axis) so that ẋs = ẋg . The
travel time T to the goal is therefore T = (xg − x0)/ẋ0.
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Since the longitudinal distance to the goal is by choice greater
than the track width, C is thus generated by using bang-bang
control in the lateral direction, while applying the minimum
lateral force with a single switch so that the lateral and the
longitudinal end points would be reached both at time T [34].

The lateral force Fy that generates the bang-bang trajec-
tory is:

Fy =
−
√
2A− T (ẏg + ẏ0) + 2(yg − y0)

T 2m
(1)

where

A = (T 2(ẏ20 + ẏ2g)− 2T (yg − y0)(ẏg + ẏ0) + 2(yg − y0)
2
),

(2)
and the switching time Ts is

Ts =
m(ẏg − ẏ0) + FyT

2Fy(t)
. (3)

C(t) is thus computed for t ∈ [0, T ] by:

x(t) = x0 + ẋ0t (4)

y(t) =

 y0 + ẏ0t+
1
2
Fy

m t2

y(Ts) + ẏ(Ts)(t− Ts)− 1
2
Fy

m (t− Ts)2

t ≤ Ts

t > Ts

(5)
ẋ(t) = ẋ0 (6)

ẏ(t) =

 ẏ0 +
Fy

m t

ẏ0 +
Fy

m (2Ts − t)

t ≤ Ts

t > Ts

(7)

Figure 5 illustrates an example of a trajectory between two
given end states.

(a)

(b) (c)

FIGURE 5: A trajectory between given start and goal points.
(a) Force Fy is applied on mass m to create a continuous
trajectory between the points. (b) The lateral force Fy profile
and (c) the lateral velocity ẏ(t).

C. TRAJECTORY PREDICTION OF OPPONENT
VEHICLES
An important part of motion planning in a dynamic envi-
ronment, especially in racing, is predicting the future po-
sitions and velocities of all other vehicles surrounding the
ego-vehicle. This is performed by the prediction module,
which receives the track boundaries and an opponent vehicle
state s = {x0, y0, ẋ0, ẏ0, ω0} as input, where x0, y0 is
the opponent vehicle’s position, ẋ0, ẏ0 is its velocity, and
ω0 is its angular velocity. The module predicts the future
trajectory J(t) = {x(t), y(t), ẋ(t), ẏ(t)} up to a predefined
time horizon Tmax, which was set to 3 seconds to match the
planning horizon.

The prediction module predicts each opponent’s trajectory
based on its current state under the following two assump-
tions: the opponent vehicle intends to stay within the track
boundaries (as described earlier) and attempts to maximize
its velocity (as described in Section V-E). Namely, for a
given opponent vehicle, we first predict a future trajectory,
Ĵ , that keeps a constant curvature κ, which we approximate
by: κ = ωo

||ẋo+ẏo|| .
It is assumed that the opponent vehicle will stay within the

track boundaries. to this end, our prediction module accounts
for the track boundaries as follows: Let (x̂, ŷ) be the first
position on Ĵ , at which the opponent vehicle approaches
one of the track boundaries at a distance dmin. We define
three points, p0, p1 and p2, each point consisting of pi =
{xpi , ypi , ẋpi , ẏpi}. The prediction module connects these
points by a point mass maneuver as explained in Section V-B.

The first point, p0 is derived from the opponent vehicle’s
current state s, such that xp0

= xo ,yp0
= yo, ẋp0

= ẋo,
and ẏp0

= ẏo. The second point, p1, is based on (x̂, ŷ), but
we assume that the opponent vehicle will not increase its
curvature; therefore, we assume that ŷ will be reached later
on, by a predefined factor, k. That is, xp1

= k(x̂−xo), yp1
=

ŷ, ẋp1
= ẋo, ẏp1

= 0}.
The third point, p2 retains a path parallel to the boundary,

up to Tmax, i.e., xp2 = ẋoTmax, yp2 = ŷ, ẋp2 = ẋo, and
ẏp2 = 0}. Examples of predicted trajectories are shown in
Fig. 6.

D. CREATING MANEUVER CANDIDATES
The online trajectory planner plans a set of dynamically
feasible maneuver candidates and selects one according to
multiple criteria, as follows:

1) Lateral-shift maneuver
Given the ego-vehicle’s state se = {xe, ye, ẋe, ẏe} and a
lateral-shift target ŷ, the planner module creates a lateral-
shift maneuver, C ŷ , by connecting three points, qi =
{xqi , yqi , ẋqi , ẏqi}, i ∈ {0, 1, 2}, consisting of the q0, the
ego vehicle’s current state, q1 being the target point of the
lateral-shift, and q2 being a point down the track that retains
the lateral shift of q1. More formally, q0 = se, q1 =
{(ŷ−ye)b+c, ŷ, ẋe, 0}, q2 = {xmax, ŷ, ẋe, 0}, where ŷ is the
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(a)

(b)

FIGURE 6: Examples of predicted trajectories of an oppo-
nent vehicle (marked as an orange bounding box). Black in-
dicates constant curvature trajectory Ĵ , and yellow indicates
the predicted trajectory J , which also considers the track
boundaries. In (a) Ĵ exceeds track boundaries; therefore, a
lateral-shift trajectory is predicted by J ; in (b), although the
vehicle drives on a straight line, the predicted trajectory J
follows the track geometry.

lateral-shift target, b, c are constants and xmax is the planning
horizon. Figure 7a illustrates a lateral-shift maneuver.

(a) (b)

FIGURE 7: Illustration of the maneuver candidates planning:
(a) lateral-shift maneuver and (b) a maneuver to the optimal
race line.

We define N equally spaced lateral-shifting targets repre-
senting potential ŷ values. The first and last targets are far
enough from the boundaries to allow a vehicle to reach them
safely. Our planner generates N lateral-shift maneuvers, one
for each defined target. Let M ′ be the set of all lateral-shift
maneuvers:

M ′ =

N−1⋃
i=0

C ŷi , ŷi = dmin +
w − 2dmin

N − 1
i (8)

where dmin is the minimal distance to keep away from track
boundaries. The width of the track, w, in most segments
along the oval is 14 m; we set the number of lateral-shift
maneuvers N = 7 to achieve a distance between targets that
is close to the vehicle’s width (2 m ).

2) Maneuver to the optimal race line
In addition to these lateral-shift maneuvers, we plan a
maneuver CJopt , which smoothly merges with the optimal
race line Jopt. We define the following three points q̃i =
{xq̃i , yq̃i , ẋq̃i , ẏq̃i}, where i ∈ {0, 1, 2}.

The first point q̃0 = se; the second, q̃1 ∈ Jopt such that
(yq̃1−ye)b̃+ c̃ = xq̃1 , where b̃ and c̃ are predefined constants.
Finally, q̃2 ∈ Jopt such that xq̃2 = xmax. See Fig. 7b).

The full set of the maneuver candidates is M = M ′ ∪
CJopt , as shown in Fig. 8.

FIGURE 8: Example of 7 lateral-shift maneuvers (green) and
a maneuver that merges with the optimal race line (blue).

E. VELOCITY RE-PLANNING
Although the maneuver candidates M and the predicted
trajectories of the opponent vehicle include velocities in ad-
dition to positions, these velocities were only used to define
the direction of the paths and to estimate the lateral forces
on the vehicle. Therefore, the velocity profiles are re-planned
to represent the future motion more accurately by assuming
that the vehicles accelerate along the trajectories until they
reach the maximal velocity. This is possible because our
planned trajectories approximate the vehicle dynamics and
thus allow maintaining maximal velocity—without losing
control—when following them.

F. COLLISION
To avoid collisions, we define a safety bound around the
vehicle owing to the uncertainty inherent in our problem. We
attempt not only to avoid a collision with another vehicle but
also to avoid any overlap between the safety bounds around
both vehicles. We use a rectangular safety bound, which
best matches the vehicle’s shape (as shown in Fig. 9). The
vehicle’s length is 5 m, and its width is 2 m. We defined the
longitudinal safety bound as 0.3 of the vehicle length, both
front and rear, and the lateral safety distance as 0.5 of the
vehicle width, right and left. This creates a safety longitudinal
distance of 6 m between vehicles (3 m from each safety
bound) and a lateral distance of 4 m between vehicles. We
note that the simpler circular safety bound is less appropriate
for this case because of the length of the race car is more than
twice its width.

Two trajectories C1 and C2 collide if there exists some t
such that the safety bounds of both associated vehicles at time
t overlap. See Fig. 10 for an illustration.

A maneuver candidate is considered free if it does not
collide with a predicted trajectory of any opponent vehi-
cle. However, if an opponent vehicle is directly behind the
ego-vehicle, and the ego-vehicle completely blocks it, our
controller ignores it because changing the path to allow the
opponent vehicle to overtake is clearly an uncompetitive
behavior.

6 VOLUME 4, 2016



Hartmann et al.: Competitive Driving of Autonomous Vehicles

(a) (b)

FIGURE 9: Rectangular safety bound. In (a) No overlap
between safety bounds; (b) the safety bounds overlap.

(a) (b)

FIGURE 10: Two trajectories describing the location of each
vehicle and its safety bounds. In (a), the vehicles collide at
time t6; in (b), the vehicles do not collide since the overlap
of their safety bounds is at different times.

G. MANEUVER SELECTION
Our planner considers all free maneuver candidates. Collid-
ing candidates that assume maximal velocity are updated by
reducing the speed along them to avoid collision, as shown in
Fig. 11.

FIGURE 11: Updating a maneuver candidate to become free
by decelerating towards a blocking vehicle that drives at a
velocity of v2 (green), instead of accelerating to the maximal
velocity, vmax (red), and causing a collision.

If more than one maneuver is free, each maneuver is given
a cost that is the sum of three criteria: travel time, denoted
T (C), nearness to the optimal race line, denoted N (C), and
continuity, denoted K(C), as detailed below. This produces
the cost function Cost(C) for each free maneuver:

Cost(C) = T (C)−N (C)−K(C);C ∈ M . (9)

1) Travel time
T (C) represents the estimated travel time for maneuver C.
It is computed by integrating the maneuver’s velocities along
C.

2) Nearness to the optimal race line
The search for the fastest maneuver with a limited time
horizon is local by nature. A global search is ineffective
because of the unpredictable behavior of the opponent vehi-
cles. A sensible compromise is to attempt to merge with the
precomputed race line, which is globally optimal, wherever
possible. The function N (C) thus equals Ropt if C is the
closest to the optimal race line among the free candidates and
0 otherwise.

3) Continuity
To avoid frequent oscillations between maneuver candidates
of similar optimality, it is preferred, when possible, to main-
tain the same maneuver unless another maneuver is con-
spicuously better. This is done by rewarding the maneuver
that is similar to the current maneuver. For maneuver C,
K(C) equals Rk if C is the same maneuver as the maneuver
that the vehicle currently drives on and 0 otherwise. Clearly,
switching to a new maneuver is less desired if a switch has
just occurred, but once some time has elapsed since the last
switch, the controller should be more lenient towards another
switch. This is accomplished by decaying Rk linearly at the
rate Rd, as long as the same maneuver has been followed.

(a)

(b)

(c)

(d)

FIGURE 12: Maneuver selection examples, green: free ma-
neuvers, red: blocked maneuvers, blue: chosen maneuver. (a)
The planner selects a minimum-time lateral-shift maneuver
to avoid slowing down because of the blocking vehicle. (b)
The planner prefers the longer maneuver because it returns
to the optimal race line (shown in light blue). (c) The planner
selects a free maneuver that is the closest to the optimal race
line. (d) None of the maneuver candidates are free; therefore,
the planner selects the safest maneuver.

H. BEHAVIOR WHEN NO MANEUVER IS FREE
In dynamic environments, such as a multi-vehicle race, there
might occur situations when no free maneuver exists. In such
sitatuations, the optimality criteria are irrelevant, and then the
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FIGURE 13: Pure pursuit geometry. The red line represents
the reference trajectory C; the algorithm finds a curve with a
constant curvature 1/R that will lead the vehicle to a target
on C that is at a distance ld from the vehicle.

only selection criterion is safety. The planner then determines
the imminent collision and selects the maneuver that is as far
as possible from that collision (see an example in Fig. 12d).

VI. CONTROL
The control module outputs throttle, brake, and steering
commands that drive the vehicle as close as possible to the
selected maneuver.

A. LATERAL CONTROL
The pure pursuit algorithm [10] is used to compute the
desired angular velocity based on the current ego-vehicle’s
state and the selected maneuver, which is mapped to the
Cartesian coordinates. The pure pursuit algorithm pursues
a target on the selected maneuver C. Let v be the vector
representing the ego-vehicle’s velocity. The distance to the
target is defined to be proportional to the vehicle’s speed
v = |v|, that is, ld = ktv, where kt is a predefined constant.
The angle between the velocity vector v to the vehicle-target
vector is denoted as α (see Fig. 13). The desired angular
velocity of the vehicle, ωd is 2v sinα/ld. The desired angular
velocity ωd is used as a reference for a proportional angular
velocity controller that computes the steering command:
δ = kω(ωd − ω) where ω is the current angular velocity of
the vehicle and kω is a proportional gain.

B. LONGITUDINAL CONTROL
The desired speed vd is provided by the selected maneuver,
which is typically used as a reference for the longitudinal
controller. However, when closely following a vehicle, we
modify the desired speed to: vd = vf − kf (Ld − L), where
vf is the speed of the leading vehicle, L is the distance to the
leading vehicle, Ld is the desired distance to maintain, and kf
is a proportional gain. This modification allows for smooth
driving and maintaining a constant distance from the leading
vehicle. Figure 14 illustrates the vehicle-following scenario.
Finally, the throttle and brake command u is computed by a
proportional speed controller: u = kv(vd − v) where kv is a
proportional gain.

We note that the vehicle was operated most of the time at
high speeds where the vehicle has low acceleration capabil-

FIGURE 14: The ego-vehicle follows another vehicle. The
distance between the ego-vehicle and the vehicle ahead, L,
is less than the predefined following distance, Ld. Therefore,
the ego-vehicle will slow down to increase L.

ities because of the high aerodynamic drag at these speeds.
Therefore, we could assume that the longitudinal dynamics
are linear and tune the longitudinal controller for the best
performance at those speeds range.

VII. EXPERIMENTS
A. SIMULATION ENVIRONMENT
The simulation platform used by all teams was the Ansys
VRXPERIENCE simulator [35], which simulates the AV-21
dynamics and the IMS track (see Fig. 15). The VRXPERI-
ENCE simulator enables multi-vehicle head-to-head racing,
in which every vehicle is controlled by a separate controller.
The sensors are simulated at 25 Hz and the ego-vehicle’s
state at 100 Hz, in simulator time. Each controller receives
the ego-vehicle’s state and the sensor data from the simulator
and sends back the throttle, brake, and steering commands.

FIGURE 15: The VRXPERIENCE simulator used for the
simulation race.

We use the pre-processed cameras and radars data from
the simulator to obtain the position and linear and angular
velocity of all vehicles in the sensors range. Our controller
is based on Autoware.auto [36], which is an open-source au-
tonomous driving framework that uses ROS2 as middleware.
The computation time of each cycle at our algorithm is 20
milliseconds, on average, on an Intel Core i7 2.90 GHz CPU,
which enables our algorithm to run in real time. A video
demonstrating our controller is available in [37].

B. SIMULATION RESULTS
We first tested the solo lap performance of our controller,
that is, driving along the track without other vehicles. The
lap time was 50.0 seconds, and the vehicle had an average
speed of 80.83 m/s. The vehicle ran at full throttle along the
entire lap. The speed and the lateral accelerations during a
single lap are shown in Fig. 16. As depicted by the figure,
the vehicle’s speed dropped slightly at the corners from a
top speed of 82.72 m/s to 78.79 m/s. That is owing to the
increased tire slip, which detracts from the longitudinal tire
force during the turns. Furthermore, the lateral acceleration
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during the turns was over 2.5 g, which is way above what
is expected of a regular passenger car, reflecting the high
down-force generated by the race car due to its high speed
and aerodynamic properties.
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FIGURE 16: (a) Path, (b) velocity profile, and (c) lateral
acceleration during the solo lap. The vehicle slows down
from a speed of 82.72 m/s to 78.79 m/s in the corners, labeled
A-D. The lateral acceleration in the corners exceeds 2.5 g due
to the high down-force.

We then tested our controller in a multi-vehicle scenario,
running the same controller on 6 vehicles over 30 laps. Every
controller instance operated independently of the other con-
trollers and received information only from its own vehicle
sensors. During the entire test, all vehicles drove safely while
respecting the race rules; a collision or loss of control never
occurred. Fig. 17 shows two typical snapshots from the plan-
ner of the black vehicle. Notably, all vehicles are very close

to the leading vehicle (approximately 40 m) while moving
at very high speeds (over 80 m/s), resulting in approximately
0.5 s separating the leading vehicle from the last. A recording
of this test, which took 28 minutes, is available at [38] and the
raw data at [39].

(a) (b)

FIGURE 17: Snapshots of planning in a crowded scenario
with 5 opponent vehicles.

The lap times in the multi-vehicle test ranged from 49.84
to 51.24 seconds, a difference of less than 3% between the
extremes. The average lap time was 50.25 seconds, which is
very close to the solo lap time of 50.0 seconds. The lap-time
distribution is shown in Fig. 18. Interestingly, some of the
individual laps were faster than the solo-lap. This is owing to
the higher speeds that individual vehicles can achieve while
taking advantage of the slipstream of the leading vehicles.

49.6 49.8 50.0 50.2 50.4 50.6 50.8 51.0 51.2
Lap-time [s]

0

5

10

15

20

25

30

Nu
m

be
r o

f l
ap

s

FIGURE 18: Lap times distribution of all 6 vehicles over 30
laps. The red line represents the solo-lap time.

Figure 19 shows the distribution of the longitudinal dis-
tance between the first and last vehicles over the 30 laps. The
average distance was 64.7 m, which indicates a very tight
race.

Another indication of the race tightness and the compet-
itive behavior of all vehicles is shown in Fig. 20. It shows
the longitudinal distance from all vehicles to the first vehicle
during the last 10 laps. Remarkably, the vehicle starting
far behind all other vehicles (represented by the red line)
crossed the finish line ahead of the other vehicles. The last
vehicle crossed the finish line only 0.32 seconds after the
first vehicle. Note that, as mentioned in I-A3, the vehicles
can overtake each other, although having identical dynamics,
by exploiting the slipstream generated by the leading vehicle.
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FIGURE 19: Distribution of the longitudinal distance be-
tween first and last vehicle.

1200 1300 1400 1500 1600
Time [s]

60

40

20

0

20

40

60

80

Lo
ng

itu
di

na
l d

ist
an

ce
 b

et
we

en
 v

eh
icl

es
 [m

]

FIGURE 20: The longitudinal distance from each vehicle
(each represented by a line with a different color) relative
to the first vehicle over time. It shows a time frame of the
last 10 laps of the multi-vehicle racing test. Intersections be-
tween the lines represent overtakes between vehicles, which
indicates that the vehicles repeatedly overtake each other. The
marked red line shows that this vehicle overtook all vehicles
and finished first.

Figure 21 shows a sequence of snapshots of one overtaking
maneuver with three competing vehicles. As shown, the
black vehicle, starting second in Fig. 21b, gains a slight
advantage over the blue vehicle at every corner until it
successfully overtakes the blue vehicle, as shown in Fig. 21g.
This overtaking maneuver took approximately 40 seconds
and 3 km to complete. We note that explicitly planning such
a maneuver requires a planning horizon of a few kilome-
ters, which is computationally expensive. Nevertheless, our
planner executes such maneuvers by repetitive local planning
over a horizon of 3 seconds. Although some of our con-
troller’s attempts to overtake other vehicles may fail, it does
not compromise the vehicle’s safety.

C. THE IAC SIMULATION RACE
Sixteen teams reached the simulation race. All teams first
competed on one solo lap, with an initial speed of 100 km/h
(rolling start), to determine the vehicles’ order for the multi-
vehicle race. Our solo lap time of 51.968 seconds placed us
in the 7th place; the first place finished at 51.848, only 0.12

(a) (b)

(c) (d)

(e) (f)

FIGURE 21: A sequence of snapshots of an overtaking
maneuver—the black vehicle overtakes the blue vehicle.
Each snapshot lasts 0.8 seconds. The track with marked
snapshot segments is depicted on the top. (a) The black
vehicle initiates an overtake. (b) The black vehicle drives
parallel to the blue and red vehicles. (c) The black vehicle
prevents the blue vehicle from continuing on the optimal race
line, i.e., reaching the apex. (d) The black vehicle gains a
slight advantage at the corner. (e) At the next corner, the blue
vehicle is overtaken because it is forced to stay on the outside
of the corner. (f) The black vehicle returns to the optimal race
line.

seconds (0.23%) ahead of us. The average time of all teams
was 53.041 seconds.

Only 10 teams passed the multi-vehicle safety tests and
were qualified to proceed to the semi-final, which consisted
of a multi-car, 10-lap competition. The 10 teams were split
into two heats, 5 vehicles on each. Based on our solo lap
time, we were placed in the 3rd place in our heat. We finished
the semi-final in the 3rd place, at 505.428 seconds, only 0.44
seconds (0.0871%) after the winner. The average time for this
heat was 506.711 seconds. In the second heat, three of the
five teams lost control or crashed. That left seven teams for
the final race.

We started the final race in 5th place, and our vehicle
overtook two vehicles over the first lap. Throughout the race,
our controller demonstrated collision-free and competitive
driving capabilities and was able to keep the 3rd place a sig-
nificant part of the time. With three laps to go, another vehicle
entered our safety zone from the right, which triggered a
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collision avoidance action. Being on the far left track, with no
room to maneuver, the collision was avoided by stepping on
the brakes. Driving at that moment along the turn caused our
vehicle to spin off the track, which placed us at the 6th place
in the finals. Four vehicles completed the race without being
responsible for a collision. The recording of the simulation
race is available in [40].

D. REMARKS
One of the interesting results accomplished by the racing
controller presented here is its ability to balance competitive-
ness and safety. This was demonstrated by driving 6 vehicles
for 30 laps each, which accounts for 180 laps over 720 km,
without any collision. This resonates with our collision-free
run in the IAC simulation race over a total of 17 laps.

This notable result did not diminish the racing controller’s
competitiveness, as demonstrated by the 6-vehicle race,
where the average lap time of all vehicles was only 0.25
seconds greater than the optimal solo-lap time. This implies
that the vehicles were running in close proximity to each
other, thus demonstrating the great challenge of high-speed
racing.

It is interesting to note that despite all vehicles being driven
by the same controller, they continuously overtook each other
by exploiting the slipstream from the leading vehicle, as was
depicted in Fig. 20.

VIII. CONCLUSIONS
This paper describes a competitive racing controller for an
autonomous racing car developed in the context of the Indy
Autonomous Challenge simulation race. Its development was
guided by an attempt to strike a balance between compet-
itiveness and safety. To this end, the controller attempts to
avoid collisions, even those that the race rules placed the
responsibility on the opponent vehicle to avoid.

The online planner generates a set of dynamically feasible
maneuver candidates using a point mass model. Of those
candidates, a maneuver is selected that is collision-free, min-
imizes travel time along the track, and maximizes proximity
to the race line. It is then tracked by a pure-pursuit controller.
The speed is controlled by a speed controller that follows the
velocity profile along the trajectory and regulates the speed
to avoid collision with neighboring vehicles.

Our controller demonstrated competitive and safe driving
in a test run with 6 vehicles, all driven by the same controller,
and in the IAC simulation race. Our vehicle finished 3rd in
the semi-finals with only 0.44 seconds behind the winner,
and maintained 3rd place for a significant part of the final
race. It demonstrated responsible driving, yet competitive,
and was not involved in any collision during the entire race. It
is important to note that very few vehicles were not involved
in any collision with any other vehicle. Clearly, while the
challenge of safe and competitive driving is still unresolved,
the Indy Autonomous Challenge competition brought us
closer to driving autonomously under extreme conditions.
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