An Entity Graph Based Recommender

System

Sneha Chaudhari

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

E-mail: sschaudh@ andrew.cmu.edu

Amos Azaria

Computer Science Department, Ariel University, Israel
E-mail: amos.azaria@ariel.ac.il

Tom Mitchell

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA

E-mail: tom.mitchell@cs.cmu.edu

Recommender Systems have become increasingly impor-
tant and are applied in an increasing number of domains.
While common collaborative methods measure similarity
between different users, common content based methods
measure similarity between different content. We propose a
privacy aware recommender system that exploits relations
present between entities appearing in content from user’s
history and entities appearing in candidate content. In or-
der to identify such relations, we use the knowledge graph
of NELL, which encodes entities and their relations. We
present a novel normalized version of Personalized PageR-
ank, to rank candidate content. We test our approach on the
movie recommendation domain and show that the proposed
method outperforms other baseline methods, including the
standard Personalized PageRank. We intend to deploy our
recommender system as a news recommendation app for mo-
bile devices.

Keywords: Recommender Systems, Knowledge-Graphs,
PageRank

1. Introduction

With the diverse and explosive growth of web infor-
mation, organization and utilization of the information
effectively and efficiently has become more and more
important. Information filtering systems which present
only relevant content to the users, have become indis-
pensable. Recommendation Systems [7] are such infor-
mation filtering systems that attempt to narrow down

Al Communications
ISSN 0921-7126, I0S Press. All rights reserved

the information relevant to the users based on their
expressed preferences, past behavior, or other data
and generate meaningful recommendations to users for
items or products that might interest them. Innumer-
able different kinds of recommendations are made on
the web every day, for example, suggestions for books
on Amazon [28], or movies on Netflix [6], are real
world examples of the operation of industry-strength
recommendation systems. They have also been widely
adopted in online applications by E-commerce web-
sites to suggest products, services, and contents to po-
tential users.

A major challenge for recommender systems is the
cold start problem [29,15]. This problem occurs any-
time a new user joins the system and any-time a new
product or content is added. In many websites the ma-
jority of users are one-time users and thus must be
considered as new, and in other types of websites the
turnover of the content is so rapid that not much in-
formation is gathered on each article. This problem is
also present if a user does not log-in to the system and
rejects web-cookies.

Privacy aware users are concerned about systems
that collect all their purchase history and make rec-
ommendations to other users based on their own
purchases[2]. Due to the increase in privacy awareness,
many major websites (e.g. Amazon and Google) al-
low the user to disallow the system to record their his-
tory. However, as a result, the recommendations that

are given to the user are completely irrelevant. We be-
lieve that some privacy aware users would be willing to
explicitly state their interests (in a general non-domain
dependent manner), if this would entail that the recom-
mendations would become more relevant to them.

Suppose a customer at a movie rental store discusses
his preferences with a saleswomen. The customer is
not likely to provide a long list of movies that he had
enjoyed watching in the past. Nor will this customer
list any friends that may have similar preference. What
people do in such cases, is providing a list of few en-
tities that they are interested in (e.g. “Tom Cruise”,
“Science-Fiction” and “Mars”) and perhaps also list a
movie or two that they enjoyed watching in the past
(e.g. “The Matrix”). This small set of interests alone
will allow the saleswomen to recommend a movie to
the customer. The recommended movie may not have
any of the specific words that the user has mentioned,
in our example, suppose the saleswoman recommends
the movie “Avatar”. This movie may not necessarily
be classified as a Science-Fiction movie (but as a fan-
tasy movie), and by no means does it take place on
Mars, but on a fictional planet moon in Alpha Centauri.
Furthermore, humans may recommend content to other
people based on interests obtained from domains dif-
ferent than the current domain in question. For exam-
ple, if a user is interested in space, she is most likely
interested in movies, books, news articles about space
as well as items such as binoculars and telescopes or
space related posters.

In this paper we present the Relation of Entities
Recommendation Agent (RERA), a new content-based
system that takes into account relations that may ex-
ist between entities that appear in the users past con-
sumed content and entities that appear in the suggested
content. For example, consider the following scenario.
Suppose some user has read articles about a football
team “Real Madrid” in the past. The recommender
system needs to decide whether to recommend a new
news article that has mentions of “James Rodriguez”
in it. A relation between “James Rodriguez” and “Real
Madrid” (“James Rodriguez” plays for the team “Real
Madrid”), can hint that this new news article is highly
relevant and present it to the user.

RERA uses a knowledge graph, in which the nodes
are real world entities (e.g. “James Rodriguez”) and the
edges are the relations between them (e.g. PlaysOn-
Team(James Rodriguez, Real Madrid)). RERA ex-
tracts the entities that appear in the content consumed
by the user (or those that appear in the description of
the items purchased by the user); this first set of enti-

ties is assumed to be the user’s interests. Once RERA
is required to recommend new items, it extracts all en-
tities that appear in each of the proposed new items
(the entire list of available items). RERA then uses
relations that exist in the knowledge graph between
the entities, in each of these new items, and the enti-
ties in the user’s interests in order to rank these new
items. Since RERA is a content-based approach and
not collaborative-based it does not require any infor-
mation on preferences of other users, that is, users
other than the user it is currently serving (other graph
based approaches such as [22], require preferences
from all users in order to be able to serve a single user).

Relying on the relations between entities in a knowl-
edge graph to provide personalized recommendations,
is of great importance, as it allows recommendations
to be domain independent. That is, RERA can pro-
vide recommendations in one domain, based on a sin-
gle user’s interest in another domain. Using the rela-
tions between entities further implies that RERA does
not require the mention of the exact same entities (or
words) to reveal related content. RERA also reduces
privacy concerns as every user receives recommenda-
tion solely based on their own preferences, and one
user’s history does not affect at all, in any way, the
recommendations that will be viewed by another user.
This approach also reduces the problem of cold-start
for new or rare content, which hasn’t been consumed
by many users.

We have enriched the Never-Ending Language Learner
(NELL) [20] with Subject-Verb-Object (SVO) triples
from the ClueWeb 2009 dataset [8] to serve as RERA’s
knowledge graph. In order to rank the suggested con-
tent, RERA uses a novel raking method which takes
into account both the PageRank of each entity and its
Personalized PageRank (PPR) [10]. We test RERA in
a movie domain (using the MovieLens data-set, com-
bined with movie synopsises crawled from IMDB) and
show that RERA, using our novel version of PPR, out-
performs PPR and other baseline methods. We further
show that RERA benefits from knowing that a user en-
joyed as little as 5 movies, without relying on any in-
formation related to those movies or other ones from
other users.

2. Related Work

At the high level, recommender systems can be clas-
sified into two categories, (i) collaborative approaches
[32,1,9], and (ii) content-based methods [17,19]. Both

methods build upon user’s history, such as an indica-
tion of whether each user has bought or viewed an
item and user ratings to recommend either a product
or some content. Collaborative methods [32,1,9] make
recommendations to each user based on the similar-
ity between different users. For example, if two users
have liked a few identical movies in the past, and one
has liked another movie that the second user hasn’t
watched, a collaborative-based recommender system
is likely to recommend that new movie to the second
user. Collaborative-based systems require a large set of
data from many users to provide effective recommen-
dations.

Content-based methods [17,19] on the other hand,
do not require a large data-set from many users, and
use the similarity between the products (or content)
that the user has previously purchased (or viewed) and
the new proposed items (or content). For example, if
the user has previously liked many action movies, a
content-based recommender system is likely to recom-
mend another action movie.

The commonly used bag-of-words approach [34,21]
limits the vocabulary to the words present in the data
and relies on an exact match of the words for com-
puting similarity. To overcome this limitation seman-
tic based recommendations have emerged [31,11,3].
These methods address the polysemy (the presence of
multiple meanings for one word) and the synonymy
(multiple words with the same meaning) problems
present in the bag-of-words-approach. These methods
try accessing the meaning of the word rather than sim-
ply the exact word. However, previous semantic based
recommendation methods do not use the connections
that may exist between different entities. For example,
if a semantic based recommender system learns that a
user is interested in movies about “cats”, it may recom-
mend movies on “felines”, but not on “dogs”, despite
being very closely related (as both are very often home
pets).

There have been many graph-based approaches
for recommender systems [33,12,18,14,22,23,13,16,
25,30]. However, in all these approaches the items (or
content) to recommend appear as nodes in the graph.
We therefore term these approaches item-graph-based
recommender systems. This is to differentiate between
our entity-graph-based approach in which the nodes in
the graph consist of entities in the knowledge base. [13,
16] are collaborative-based methods, in which, nodes
represent items. The edges on the other hand represent
similarity between items. These similarities are learned
from the attitude different users have to different items.

For example, if all users that liked item a, also liked
item b, it is likely that there will be an edge between
a and b. Furthermore, these edges are weighted in pro-
portion to the similarity between the two items. In both
[13] and [16], every user has her own graph, depend-
ing on the items the user liked (or items liked by users
similar to the current user). Once again, this group of
item-graph-based recommender systems, require data
from many users in order to provide a recommenda-
tion to a specific user. [33,12,18,14] use a bipartite
graph in which one set of nodes represent items, while
the second set of nodes represents users. Edges rep-
resent users liking or buying specific items. For ex-
ample, if user A bought items a, b and c, there exist
corresponding edges in the graph from A to a, b and
c. Different works use this graph in various methods,
with a goal to find items on the graph that should be
recommended to the user. Some works [22,23] use a
third type of nodes such as concepts, which allow ad-
ditional connections between some items to others not
necessarily via nodes that represent users. All these
item-graph-based approaches are in-fact collaborative
based, and thus require data from many users in or-
der to perform well. These methods are also not suit-
able for users who are highly privacy aware, as infor-
mation from some users must be used in order to rec-
ommend items to other users. As mentioned above, un-
like all these item-graph-based recommender systems,
in our work, nodes represent entities (e.g. “Mars”), not
items (e.g. “Avatar”) nor users. Edges in our work rep-
resent relations (e.g. “Mars” and “planet” have an edge
connecting the two, since they have an “is-a” relation-
ship). Another difference from other graph-based rec-
ommender systems is the distance algorithm. While
other graph-based recommender systems, rely mostly
on the PageRank algorithm [22,24], we present novel
method, which normalizes a personalized PageRank
by the PageRank, to determine whether connections
between different nodes are valuable. We show that
our normalized method outperforms the PageRank and
personalized PageRank methods.

3. The Knowledge-Base Graph

NELL is a computer system that reads the web and
accumulates knowledge over time. The aim of NELL is
to extract structured information from the unstructured
data present on the web. Further, it learns from this ex-
tracted information to improve its reading competence.
This structured information in the form of entities, cat-

egories and their relations is then converted into struc-
tured facts and beliefs as NELL continues to learn.
To accomplish this, NELL adopts a semi-supervised
learning approach. The inputs to NELL include (1) an
initial ontology defining hundreds of categories and (2)
10 to 15 seed examples of each category and relation.
NELL then extracts more instances of these categories
and relations from millions of web pages. Moreover, it
learns to find these categories and relations more accu-
rately over time using previously learned knowledge to
improve the subsequent learning.

The resulting knowledge-base of NELL contains the
information present on the web in the form of enti-
ties, their categories and their relations, which are basi-
cally the facts/beliefs NELL has learned from the web.
We primarily use this knowledge base of entities, cat-
egories and relations for recommendation. While the
relations in NELL are directed, every relation has an
inverse relation and therefore the graph can be viewed
as an undirected graph. For example, if there exists a
relationship of “AnimalEatsPlant” between “Cow” and
“Grass”, there exists the inverse relationship of “Plant-
ConsumedByAnimal”, between “Grass” and “Cow’”.
The NELL knowledge graph has approximately 1.5
million entities, and 4.5 million relations among them
accounting for an average degree of 3 for each entity.

In order to increase the connectivity level of the
knowledge graph, we enrich NELL’s knowledge graph
with additional edges by incorporating Subject Verb
Object (SVO) triples collected from dependency parses
of 500 million web pages from ClueWeb 2009 [8]. For
each of these SVO triples, if we find a matching entity
in NELL for both the subject and the object, then we
add a corresponding edge between these two entities
in the NELL knowledge graph. This process was very
successful as it increased the number of relations to 8
million (while still having 1.5 million entities), result-
ing in the average degree increasing to 5.3 for each en-
tity. Figure 1 illustrates the process of adding edges to
the NELL graph using the SVO triples.

4. Relation of Entities Recommendation Agent
(RERA)

RERA receives as input a set of documents (which
could be movie synopsis, new articles or item descrip-
tions) that the user either liked, in the past, or has
shown interest in. RERA assumes that each item is
basically a set (or bag) of NELL entities mentioned
in the article. At first, RERA extracts noun phrases

NELL NELL

athletéMcCltchen athletéMeClitchen
i :

&
y
AN
73%
¢
&
@
96
v
)
)

“alias" [
JSelfe,

play

svo

Fig. 1. Example of adding SVO triples to NELL

from these item descriptions using Stanford CoreNLP.
Then each of these noun phrases are given as input to
NELL’s knowledge on demand API to extract the cor-
responding NELL entities. This set is assumed to be
the entities that the user is interested in, or the set of
the user’s interests. In order to provide recommenda-
tions, RERA extracts NELL entities from the proposed
content using the same method. The basic intuition be-
hind RERA is that if the NELL entities present in the
document are well connected with the NELL entities
of the user interest, then the content should be highly
relevant.

We now formally define the entity graph based
recommendation problem. The input consists of the
knowledge base, which is a directed graph G = (V,E),
where V is the vertex set, V = {vi;v2;...;v,} and E
is the set of all edges, E = {(v;,v;) if there exists
an edge from v; to v;}. The vertex set is the NELL
entities or concepts and the edges are the relations
between these entities. The input also includes a set
of entities (or vertices) extracted from user interests
U = {u1,up,...un}, where u € V; and a set of docu-
ments D = {D;,D;,...Dy}, where each document is
referred to as a set of entities (D = dy,d>,...) where
d; € V. Given this information, the entity graph based
recommendation problem is to provide a ranking over
the set of documents.

Our proposed method follows a two step approach.
In the first stage RERA finds the entities that directly
appear in the set of the user’s interests (e.g. directly
appear in synopsis of movies liked by the user). In the
second step, RERA estimates how well connected are
the user entities and the entities present in each of the
candidates.

For a given document D, in order to determine
whether it is well connected to the user interests U we
consider three methods. The first method we consider
is the PageRank algorithm [24]. This method computes

a score for each node in the graph, which denotes a
rough estimate of how important the node is, or equiv-
alently, what is the probability of visiting that node in
a random walk. This method recommends the docu-
ments with the highest average PageRank score (the
average is computed over all entities in every docu-
ment). We use W to denote the weighted transition ma-
trix of graph G where transition from i to j is given
by W;j = 1/degree(v;). u is a normalized teleportation
vector where |u| = |V| and ||u||; =1 (.e. Y;u; = 1).
The page rank algorithm returns as output a scoring
vector r over all nodes, satisfying the following equa-
tion:

R = o+ (1 —o)ywrPk (1)

of a random walk on G arriving at node v, with tele-
portation probability o at every step to a node with dis-
tribution u. In PageRank, u is simply a uniform vector.
The motivation behind PageRank comes from a web
surfer who follows links on the web and with proba-
bility o jumps to a random page. We use PR(v) to de-
note the PR score that v obtained in 77%. The PR score
of a given document D is obtained by averaging the
PR scores of all the entities appearing in the document,
that is:

1 e
PR(D) = - ZPR(di) (2)
i=1

where, e is the number of entities in document D,
and d;,d>, ...d, are the entities in the document. Since
the PR method does not consider user interests, the
ranking is identical for all users.

The second method, is a variant of Personalized
Page Rank (PPR). The motivation behind PPR, is that
while the web surfer can still jump to a random page,
it is (more) likely to jump to a page according to his or
her unique preferences according to a normalized vec-
tor that encodes these preferences. In this method, the
recommender system recommends the items with the
highest average PPR score.

The third method takes into account both PR and
PPR. Both PR and PPR have drawbacks. The problem
with the PR method is that it does not take the user’s
preferences into account at all, and assumes all users
are the same. While PPR is personalized, it ignores the
fact that entities that get a high PPR score, may obtain
such a score not necessarily because they are highly re-
lated to the user interests, but because that they appear
to be “important” in the graph in general, i.e., have a
high PR score in the first place. For example, assume

that the entity “Sunday” appears in a document. This
entity is likely to receive a high PPR score since many
entities are connected to “Sunday” and therefore, it is
very likely that many of the user’s interests are either
directly connected to “Sunday” or connected via other
entities. However, since it is so highly connected, it is
also likely to receive a high PR score. The same argu-
ment holds for an entity that receives a low score, but
may be quite relevant to the user. For example, if an en-
tity is connected only to one other entity, but that other
entity happens to be in the user’s interest set. There-
fore, to overcome these difficulties, RERA uses PR to
normalize the PPR score and the score for RERA is
given by PPR/PR. RERA recommends the items with
the highest average PPR/PR score. Hence, the score
RERA gives a document is obtained by:

1 & PPR(d))
RERA(D) - ;Zi PRd,) 3)

For all PageRank based algorithms, due to the size
of the data, rather than using the standard PageRank
algorithm, we use the streaming PageRank algorithm
[27]. We do this for several reasons, first, in the stream-
ing PageRank algorithm there is no need to store the
entire transition matrix in memory, but only the page
rank vector. Secondly, using the streaming PageRank
algorithm all updates are local and the converge rate
is much faster than when using the standard PageRank
algorithm.

5. Experimental Evaluation

We tested the efficiency on RERA on the MovieLens
IM Dataset [26]. Since the dataset does not contain
any movie synopsis, these were crawled from IMDB.
We split the movies rated by the users into train and
test sets and measure the precision each of the methods
reaches when recommending 10 movies. We specifi-
cally use precision at 10 since recommender systems
are usually limited to a fixed number of recommenda-
tions that the user can view (without a need to scroll
down the page). Therefore, a recommender system
would try to maximize the number of items that the
user would like within that limit.

5.1. Experimental Setup
We considered the three methods mentioned above,

i.e., PR, PPR and RERA, along with two additional
baselines: Bag-of-Entities (BoE), which considers only

exact matches between the entities in the document
and the user’s interest, and the commonly used base-
line of Bag-of-Words (BoW), which uses all words in
the document (both for user interest and for proposed
content), as opposed to using only the user entities.
For BoW, we processed the documents for tokeniza-
tion, stop-word removal and stemming. For extract-
ing NELL entities from documents we used the NELL
Knowledge On Demand as described in Section 4. In
order to determine the hyper-parameters of both PR
and PPR, we performed a grid search on testing the fol-
lowing settings for PR: o € {0.05,0.1,0.15,0.2,0.25}
and for PPR: o = {0.95,0.9,0.85,0.8,0.75}, B €

{0.05,0.1,0.15,0.2,0.25} and y € {0.05,0.1,0.15,0.2,0.25}.

We picked the following hyper-parameters which per-
formed best on a validation set (this set was not used
in evaluation). For the PR approach, o was set to 0.1
whereas For PPR, a was 0.8, B was 0.15 and 'y was set
to 0.05. In the MovieLens dataset, we considered any
movie that received 4 or 5 stars as a movie that the user
liked and filtered users such that they liked or rated at
least 50 movies. The input to the different methods (the
training set that was used to compute the users’ inter-
ests) varied from only 5 movies, to 30 movies. All the
movies were selected randomly from the set of movies
the user liked. Precision at 10 values were averaged
over 10 random trials.

In addition to predicting which movies would be
liked by the user, we also tried to predict which movies
were rated by the user (movies that may have received
any number of stars). The train and test set to this
method was similar to the above, but sampling from all
movies the users have rated.

5.2. Experimental Results

Figure 2 presents the precision of each of the meth-
ods when recommending 10 movies, i.e., the fraction
of movies in the top 10 scores that appear in the test
set as those that were liked by the user. As depicted
by the figure, RERA (PPR/PR) outperformed all base-
lines in all conditions. PPR comes in second, and PR
third, with the two baselines (BoE and BoW) way be-
hind. Similar results are obtained when these methods
were used in order to predict whether the user rated
a movie (see Figure 3). As expected, the performance
of all methods generally increases as the number of
movies in the training set increases. The only excep-
tion is the PR method, which does not take into ac-
count the user history at all. Note that RERA can bene-
fit from knowledge that the user has previously liked as

0.35

03

0.25
S
» BoW
o 0.2
5 BoE
2 0.5
o =@ =PR
5 | _oce2

0.1 . ool «e@ < PPR

== RERA

0.05

5 10 20 30
Number of movies in user history

Fig. 2. Precision at 10 for each of the methods, when predicting
whether the user would like a movie, with movies in user history
(training set) between 5 to 30

0.6

0.5
o4 =T e
: 9°° . o
© .- P el _'_ ----- o .
'E . BoE
2 .
: Y X oo -

++ @ PPR

) ==@=RERA

5 10 20 30

Number of movies in user history

Fig. 3. Precision at 10 for each of the methods, when predicting
whether the user has rated a movie

little as 5 movies. We believe that had the user explic-
itly provided and selected these 5 movies, RERA’s pre-
cision might have been even better, as the user would
have provided movies that better indicate her prefer-
ences than movies selected by random.

Another interesting result that can be observed from
Figures 2 and 3 is that BoW had only a very slight
advantage over BoE. This is very encouraging, as this
might hint that the entities in the document do indeed
capture the essence of it, and therefore, recommending
content based on the entities alone is as good as using
all the words in the document.

We conclude this section with an example set of
recommendation given by RERA to one of the users
(in the data-set). RERA received an indication that the

user has liked the following movies: L.A. Confiden-
tial, Bringing Up Baby, Psycho, My Fair Lady and
Butch Cassidy and the Sundance Kid. The top movies
in RERA’s set of recommendations include the movies,
Mary Poppins and Picnic, and Ran. RERA believes
that the user would like Mary Poppins as the entities
“children”, “family”, and “English”, which appear in
the description of Mary Poppins, have received high
RERA scores. For the movie Picnic, the entity “chil-
dren”, as well as the entities “college” and “envy”,
which appear in Picnic, all received high RERA scores.
For Ran, the most important entities found by RERA
included “king” “power” and “madness”.

5.3. Discussion

Our results indicate that a recommender system can
more than double its precision, by using a knowl-
edge graph, which includes millions of entities along
with the relationships between them. Our method, is
a privacy-aware recommender system, and as such re-
quires information only from the user it is currently
serving. Our results may indicate that companies can
benefit from recommender systems without saving
sensitive information on their users. Instead of using
privacy invasive methods to recommend items to one
user based upon the behavior of another user, these
companies may base their recommendations solely on
information that the user voluntarily reveals by feed-
ing this information into a knowledge-graph such as
NELL. Such a privacy-aware recommender system
may increase the trust it receives from its users, which
in-turn may reveal additional information in order to
obtain more relevant recommendations without feeling
that their privacy is being computerized. Our method
can also be applied for solving the cold-start problem.
A collaborative-based recommender system, that did
not collect enough information about different users
to provide meaningful recommendations, can provide
recommendations based upon RERA, until it gathers
enough information to use a collaborative-based ap-
proach.

While we have shown that RERA more than dou-
bles the precision in comparison to our baselines, there
may seem to be a lot of room from improvement, since
RERA achieves a precision rate between 30% to 50%.
We argue that RERA’s performance should only be
compared to the performance of a baseline method,
since these methods are used to predict whether a user
has liked (or rated) a movie. This is a difficult task,
since there is a lot of randomness considering which

movies the user has chosen to rank. For example, if
RERA predicts that a user would like a movie, but the
user did not rank that movie at all, we consider it as a
failure (even though in real-life the user may have ac-
tually liked the movie, but simply did not rate it). (This
is because the data-set is too sparse to be used for eval-
uating only movies rated by the users.)

Surprisingly, the PageRank method, which does not
depend at all on the user interests, performed relatively
well. This implies that movies that contain entities that
are “important” (receive high PageRank scores) in the
knowledge graph, are often, in practice, ranked higher.
This is very surprising, since movies are only a small
fraction of the information that NELL is trained on,
and therefore, we did not expect well connected enti-
ties in NELL’s graph to be such a good indicator as to
whether users will like different movies. Since PR is a
“one-size-fits-all” approach, its performance is limited,
however, it may be used for in case no information on
the user’s preferences or history is present at all.

Although the trends of all methods were preserved
between the two experiments (Figures 2 and 3), the
precision values were almost double when predicting
whether the user only rated a movie (rather than liked
it). While movies liked by each user are a sub-set of
the movies rated by that user, which results in a higher
precision (but a lower recall), this accounts only for a
rise of 60% (since users are more likely to rate movies
with 4 or 5 stars than 1 or 2 stars). We therefore, can
conclude that it is easier to predict whether the user has
rated, or in fact watched a movie. This is not surpris-
ing, since the user is likely to watch and rate movies
that she is interested in (and therefore the entities that
appear in them are closely related to the user’s inter-
ests). This may hint that it might be beneficial for a
recommender system to split the problem of recom-
mending content that the user likes to two. In the first
step it could try to predict whether the user had rated
(or would watch) a movie, i.e., whether a movie lies in
the user’s field of interest, and then, in the second step,
predict whether the user would like it.

6. Conclusion and Future Work

In this paper we introduce RERA, a recommender
system that uses an enhanced NELL knowledge graph
consisting of entities and relations between them to
recommend content to users. RERA finds the NELL
entities that are of interest to the user and the NELL
entities that are mentioned in the proposed content.

RERA uses a novel enhanced version of the personal-
ized page rank algorithm, to determine how well con-
nected these sets of entities are in order to rank the rel-
evance of the proposed content. We show that RERA
outperforms other baseline methods.

Although our experiments were conducted in the
movie domain, this is merely because this was our
source of data. Our approach is general and can work in
any domain. Our method could be used also for search.
If a search-engine is aware of the user’s general inter-
est, RERA can help by providing an additional input
for the ranking algorithm. We are currently working
on deploying RERA in a news recommendation appli-
cation for mobile devices (building upon Yahoo! news
feed). RERA will allow the user to provide a short
paragraph explicitly stating what she is interested in.
RERA will then extract NELL entities from this para-
graph, and using our normalized version of personal-
ized PageRank, RERA will identify which news arti-
cles should be shown to the user once a new stream
of news articles is available. If approved by the user,
RERA will track articles that are read or skipped by
the user. RERA will rely on the amount of time the
user spends on each article, as well as indications to
whether the user has clicked on any articles in order to
receive further information on that news article. Fur-
thermore, when combined with LIA [5], these user in-
terests can also be used for playing music, games, or
anything else the user may want to teach LIA.

7. Acknowledgment

This research was supported by Yahoo! as part of the
InMind project [4], and by Samsung.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions. Knowledge and Data Engineering, IEEE
Transactions on, 17(6):734-749, June 2005.
E. Aimeur, G. Brassard, J. M. Fernandez, and F. S. M. Onana.
Alambic: a privacy-preserving recommender system for elec-
tronic commerce. International Journal of Information Secu-
rity, 7(5):307-334, 2008.
A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub,
and I. Netanely. Movie recommender system for profit maxi-
mization. In Proceedings of the 7th ACM conference on Rec-
ommender systems, pages 121-128. ACM, 2013.
[4] A. Azaria and J. Hong. Recommender system with personality.
In Proceedings of the 10th ACM conference on Recommender
systems. ACM, 2016.

[2

—

[3

[5] A. Azaria, J. Krishnamurthy, and T. M. Mitchell. Instructable
intelligent personal agent. In AAAI, pages 2681-2689, 2016.

[6] R. M. Bell and Y. Koren. Lessons from the netflix prize chal-

lenge. SIGKDD Explor. Newsl., 9(2):75-79, Dec. 2007.

J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Rec-

ommender systems survey. Know.-Based Syst., 46:109-132,

July 2013.

J. Callan, M. Hoy, C. Yoo, and L. Zhao. Clueweb09 data set,

2009.

L. Candillier, F. Meyer, and M. Boullé. Comparing state-of-

the-art collaborative filtering systems. In Proceedings of the

5th International Conference on Machine Learning and Data

Mining in Pattern Recognition, MLDM 07, pages 548-562,

Berlin, Heidelberg, 2007. Springer-Verlag.

[10] S. Chakrabarti. Dynamic personalized pagerank in entity-
relation graphs. In Proceedings of the 16th international con-
ference on World Wide Web, pages 571-580. ACM, 2007.

[11] M. Eirinaki, M. Vazirgiannis, and I. Varlamis. Sewep: using
site semantics and a taxonomy to enhance the web personaliza-
tion process. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,
pages 99-108. ACM, 2003.

[12] Z. Huang, W. Chung, T.-H. Ong, and H. Chen. A graph-based
recommender system for digital library. In Proceedings of the
2nd ACM/IEEE-CS joint conference on Digital libraries, pages
65-73. ACM, 2002.

[13] K. Lee and K. Lee. Escaping your comfort zone: A graph-
based recommender system for finding novel recommenda-
tions among relevant items. Expert Systems with Applications,
42(10):4851-4858, 2015.

[14] X. Li and H. Chen. Recommendation as link prediction in bi-
partite graphs. Decis. Support Syst., 54(2):880-890, Jan. 2013.

[15] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. Facing the
cold start problem in recommender systems. Expert Systems
with Applications, 41(4):2065-2073, 2014.

[16] R.Liuand Z. Jin. An improved graph-based recommender sys-
tem for finding novel recommendations among relevant items.
2015.

[17] P. Lops, M. de Gemmis, and G. Semeraro. Content-based rec-
ommender systems: State of the art and trends. In F. Ricci,
L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender
Systems Handbook, pages 73—105. Springer, 2011.

[18] H. Ma, I. King, and M. R. Lyu. Mining web graphs for
recommendations. [EEE Trans. on Knowl. and Data Eng.,
24(6):1051-1064, June 2012.

[19] R. V. Meteren and M. V. Someren. Using content-based filter-
ing for recommendation.

[20] T. M. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi Mishra, M. Gardner, B. Kisiel,
J. Krishnamurthy, et al. Never-ending learning. In AAAI'lS,
2015.

[21] R. J. Mooney and L. Roy. Content-based book recommend-
ing using learning for text categorization. In Proceedings of
the fifth ACM conference on Digital libraries, pages 195-204.
ACM, 2000.

[22] C. Musto, P. Basile, M. de Gemmis, P. Lops, G. Semeraro, and
S. Rutigliano. Automatic selection of linked open data features
in graph-based recommender systems. CBRecSys, 15:10-13,
2015.

[7

—

[8

=

[9

—

[23] V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi. Top-
n recommendations from implicit feedback leveraging linked
open data. In Proceedings of the 7th ACM conference on Rec-
ommender systems, pages 85-92. ACM, 2013.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

[25

A. Passant. dbrec-music recommendations using DBpedia.
In International Semantic Web Conference, pages 209-224.
Springer, 2010.

[26] J. Riedl and J. Konstan. Movielens dataset, 1998.

[27] A.D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pager-
ank on graph streams. Journal of the ACM (JACM), 58(3):13,
2011.

[28] J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems
in e-commerce. In Proceedings of the 1st ACM Conference on
Electronic Commerce, EC *99, pages 158-166, New York, NY,
USA, 1999. ACM.

[29] A. 1. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In Pro-
ceedings of the 25th annual international ACM SIGIR confer-
ence on Research and development in information retrieval,
pages 253-260. ACM, 2002.

[30] A. Segal, Z. Katzir, Y. Gal, G. Shani, and B. Shapira. Edu-
rank: A collaborative filtering approach to personalization in e-
learning. In Proceedings of the 7th conference on Educational
Data Mining, 2014.

[31] A. Stefani and C. Strappavara. Personalizing access to web
sites: The siteif project. In Proceedings of the 2nd Workshop on
Adaptive Hypertext and Hypermedia HYPERTEXT, volume 98,
pages 2024, 1998.

[32] X. Suand T. M. Khoshgoftaar. A survey of collaborative filter-
ing techniques. Adv. in Artif. Intell., 2009:4:2—4:2, Jan. 2009.

[33] G. Tian and L. Jing. Recommending scientific articles using bi-

relational graph-based iterative rwr. In Proceedings of the 7th

ACM conference on Recommender systems, pages 399-402.

ACM, 2013.

Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words

model: a statistical framework. International Journal of Ma-

chine Learning and Cybernetics, 1(1-4):43-52, 2010.

[34

