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Abstract—The QWERTY keyboard layout that is commonly
used today was designed, over 100 years ago, for typewriters
rather than for modern keyboards. Over the decades, many
people have tried manually to come up with better layout designs.
Recently, researchers have also attempted to automatically find
a better keyboard layout by using advanced algorithms. In this
paper we propose the use of deep learning with a genetic algo-
rithm for finding improved keyboard layouts. We also show that
using an appropriate crossover routine, instead of the crossover
routine previously used in the literature, significantly improves
the performance of the genetic algorithm. Our method, which
we call MKLOGA, produces a keyboard layout that outperforms
previous layouts, including those found by other algorithms,
according to the realistic typing effort model of carpalx. We
provide an installation of our keyboard layout. MKLOGA might
also be useful for developing good layouts for languages other
than English, and possibly for other domains in which objects
must be placed in predefined locations.

Index Terms—Keyboard Layout, Genetic Algorithm, Neural
Network

I. INTRODUCTION

Despite recent advances in automatic speech recognition,
keyboard input remains the most common method of text
communication. While people use keyboards very often, most
people do not pay much attention to the keyboard layout. This
is unfortunate, since the keyboard layout has an impact not
only on the typing speed, but also on wrist pain and repetitive
strain injury (RSI) [1].

The modern QWERTY keyboard layout used today was
introduced in the 1870’s by Christopher Latham Sholes [2].
One common belief is that the QWERTY layout was designed
to minimize type-bar jams by placing common letters far away
from each-other [3]. Nevertheless, the QWERTY layout was
designed for typewriters rather than keyboards; therefore, it is
very likely that it is suboptimal for modern use.

In the early 1930’s, August Dvorak introduced the keyboard
layout known today as Dvorak [4], which he hoped would
be more ergonomic and lead to faster typing. Even though
the QWERTY layout is still the most common layout in use,
most major operating systems offer the option of switching
to the Dvorak layout. Nevertheless, Dvorak has not gained
much popularity, probably because QWERTY is already so
entrenched.

Since then, there have been other attempts at creating
better keyboard layouts. A popular alternative to QWERTY

and Dvorak is the Colemak layout [5], introduced by Shai
Coleman in 2006. It maintains the position of 17 keys of
QWERTY, including many keys commonly used for keyboard
shortcuts, with the hope of making it easier to learn for
people accustomed to the QWERTY layout. While Colemak
is not officially supported by Windows, creating and installing
a custom layout in Windows can be easily done with the
Microsoft Keyboard Layout Creator. Once a layout is installed,
the characters appearing on the physical keys will not match
the virtual characters, but this is a very minor issue; on the
contrary, it encourages early adoption of touch typing.

Subsequently there were several attempts to find better
keyboard layouts by automating the process [6], [7]. While
a brute-force search over all possible arrangements is not
feasible, due to the astronomically large number of different
arrangements, there are many optimization algorithms that
can be used instead. One example of a commonly used
and efficient class of optimization algorithms is the genetic
algorithm.

Genetic algorithms belong to the larger class of evolutionary
algorithms. They are a technique inspired by the process
of natural selection, which are commonly used to generate
high-quality solutions to optimization and search problems by
relying on the biologically inspired operations of mutation,
crossover and selection. In a genetic algorithm there is a
“population” of candidate solutions, each of which has a set
of characteristics that can be altered. There is an objective
function that assigns a “fitness” value to each solution. One
typically starts with an initial random population, which will
probably have very low fitness. The algorithm proceeds in
“generations”; each generation is obtained from the previous
one by selecting the most fit candidates and generating new
candidates by a process of crossover. In addition, random
mutations are performed on the selected candidates before
being added to the next generation. While most of the
crossovers and mutations are likely to reduce the fitness of
the candidates, a small fraction of them will yield more-
fit candidates, and the improved traits will gradually spread
throughout the population. Hence, as the generations progress,
the overall fitness of the population will increase.

In this paper we present a method for optimizing keyboard
layouts using a hybrid approach of deep learning and genetic
algorithms. Our method is fast and therefore allows the use



of large corpora for training, as well as the use of complex
fitness functions. One of the features of our method is the use
of the cycle crossover routine [8], which greatly enhances the
performance of the genetic part of the algorithm. We show that
our method outperforms the state-of-the-art methods from the
literature even when using their own metrics1.

As mentioned in [7], keyboard layout optimization tech-
niques might be useful for a wider class of problems in which
there are objects that must be placed in predefined locations,
the objects will be accessed one after the other in some order,
and the goal is to optimize the placement of the objects. Real-
life examples of this scenario include books in a library and
products in a vending machine.

To summarize, the contribution of this paper is two-fold.
1) We propose the use of deep learning to assist in a genetic

algorithm process for finding an improved keyboard
layout.

2) We show that the cycle crossover routine significantly
outperforms the crossover routine that was previously
used in the literature.

II. RELATED WORK

Genetic algorithms have been used for keyboard design
optimization. Yin and Su [6] considered several scenarios for
the general keyboard arrangement problem, such as single-
character and multi-character keyboards, single-finger and
multi-finger typing, and optimization according to different
criteria, such as typing ergonomics, word disambiguation,
and prediction effectiveness. They offered an evolutionary
approach using a cyber swarm method and showed that it pro-
duces keyboard layouts that are better than existing ones. Other
works that use genetic algorithms for keyboard optimization
are [7], [9]–[11].

In particular, in their recent work, Fadel et al. [7] developed
a genetic-based algorithm that is used to find better layouts
than QWERTY and Dvorak. Their algorithm works by itera-
tively performing the operations of Selection, Crossover and
Mutation, on a population of candidate layouts. They measure
the fitness of a layout using a simple objective function that
sums the Euclidean distances between every single character
in the training corpus and the nearest finger to it. Using their
method they find layouts that are better than QWERTY and
Dvorak according to their objective function. They call the
best keyboard layout they found “}.?BZQ”.

Krzywinski [12] introduced carpalx, which includes a more
realistic and complex objective function for evaluating layouts.
The carpalx typing effort model is based on triads, which
are three-character substrings formed from the training text.
The effort associated with typing a triad has two components:
effort to hit a key (independently of preceding and successive
strokes) and effort to hit the group of keys. Independent effort
is based on finger distance and includes hand, finger, and
row penalties associated with that key. The effort associated

1A link for installing the keyboard layout generated by our method on Win-
dows is available at: https://github.com/kerenivasch/MKLOGA

with the group of keys considers their stroke path, which
is evaluated by taking into account hand-alternation, row-
alternation, and finger-alternation.

The carpalx model is highly parameterized, as the formula
for the effort involves many weights whose value can be
adjusted. Hence, the user can decide what is important to her
layout, so the model can be made highly subjective. For more
details on the computation of the carpax effrt model see [12].
For this project we left all the carpalx parameters with their
default values and did not change them.

Due to its high complexity, the carpalx objective function
requires excessive computing power (approximately 0.6 sec-
onds on a computer with Intel Core i7 CPU).

The carpalx project also includes an implementation of a
simulated annealing based method for finding good keyboard
layouts. Carpalx has been used to construct layouts optimized
for the Filipino [13] and Latvian languages [14].

A problem related to the keyboard layout optimization
problem is the Quadratic Assignment Problem (QAP). In this
problem there are n facilities and n locations, and there is
a distance between each pair of facilities, as well as a flow
between each pair of locations. The objective is to assign
the facilities to different locations in order to minimize the
sum of the distances multiplied by the corresponding flows.
This problem is somewhat similar to the keyboard layout
optimization problem: If the function we wish to minimize is
the total movement of the fingers, then the keys and the finger
base positions correspond to the facilities. There are several
works that tackle the QAP problem with genetic algorithms
[15]–[17].

There are also several previous works that combine genetic
algorithms with deep learning. Sehgal et al. [18] use a genetic
algorithm to find the values of parameters used in a reinforce-
ment learning task related to robotic manipulation. Potapov
and Rodionov [19] implement a genetic algorithm with a
crossover operator that uses a deep neural network. Hu et al.
[20] combine a genetic algorithm and deep neural network
models to construct property diagrams for grain boundaries.

III. THE MKLOGA MODEL

In this paper, we present our Method for Keyboard Layout
Optimization using a deep Genetic Algorithm (MKLOGA). The
method improves the one described by Fadel et al. [7] in sev-
eral aspects. First, MKLOGA uses a better crossover routine
for generating a new layout from its parents, as explained in
section III-A below. In addition, MKLOGA uses the complex
and more realistic objective function of carpalx [12] for evalu-
ating layouts. Due to the excessive computing power required
by the carpalx objective function, MKLOGA includes several
improvements to the genetic algorithm process, one of which
is the use of deep learning. All MKLOGA software is available
at https://github.com/kerenivasch/MKLOGA.

A. The Cycle Crossover Routine

As mentioned above, MKLOGA uses the cycle crossover
routine of [8] for generating a new keyboard layout K3 out of

https://github.com/kerenivasch/MKLOGA
https://github.com/kerenivasch/MKLOGA


two given keyboard layouts K1,K2. The crucial property of
this routine (as opposed to the crossover routine of [7]) is that
each key placement in K3 is copied from either K1 or K2.
As we show in Section V, the cycle crossover routine alone
provides a significant improvement to the performance of the
algorithm of [7].

We proceed to explain the cycle crossover routine for the
sake of completeness. Let S be the set of symbols whose
placement is allowed to change, and let P be the set of keys
that can take symbols. We first pick a random parent K from
among K1,K2, we call the other parent K ′. Then we pick a
random key p1 ∈ P and copy its symbol s1 from K to K3.
Now we check in which key p2, the symbol s1 is located in
K ′. We copy the symbol s2 of the key p2 in K. Then we
check in which key p3, the symbol s2 is located in K ′. We
continue this way until we return to p1 and thus close a cycle.
Hence, all the symbols in this cycle were copied from K.

If additional keys are left, we make another random choice
for K,K ′ between K1,K2, and pick another random available
key and repeat the process. This way every placement in K3

has been copied from either K1 or K2.
Figure 1 shows an example of the cycle crossover routine.

Here, the routine first picked parent 1, picked from it the letter
n, and copied the letter n to the child. The routine checked the
location of the letter n in parent 2; in that location, parent 1 has
the letter l. The routine copied the letter l to the child, and
checked its location in parent 2. In that location, parent 1 has
the letter z. Continuing this way, the routine copied the letter
z and then the letter d to the child, and then came back to the
letter n, which was the initial letter copied from parent 1. This
finished one cycle of the crossover routine. The routine then
picked parent 2, and picked from it the letter b. Continuing
as described before, the routine copied from parent 2 to the
child the letters b, q, a, h, f, y, and v, and then came back
to b and closed another cycle. This process continued until
the child layout was complete.

B. Using The Carpalx Objective Function

As mentioned, in order to obtain an improved keyboard lay-
out, MKLOGA uses the complex and more realistic keyboard
effort model of carpalx [12] for evaluating layouts. Since the
keyboard effort model requires excessive computing power to
evaluate, MKLOGA also includes a neural network for fast
estimation of the effort. The neural network is initially trained
on randomly generated layouts. After the training, the model
is saved in order to be used as the initial model for the genetic
part of the algorithm. During the genetic algorithm process,
the neural network is fine-tuned by retraining it with some of
the best layouts found in the current generation using their
true effort value. The input layouts for the neural network are
represented using a one-hot representation, as a square 0/1-
matrix whose size corresponds to the number of key positions
that are allowed to change. The use of the neural network
allows us to evaluate the expensive effort function only on a
small number of layouts, leading to a significant speedup of
the running time.

The genetic algorithm of MKLOGA proceeds as a sequence
of generations. Each generation consists of a population of n
layouts. The first generation is generated randomly. In each
generation the layouts are evaluated and sorted according to
the neural network’s estimation. In order to construct the new
generation, r layouts are first generated randomly. The best m
layouts of the previous generation pass automatically to the
new generation, and they are also evaluated according to the
true effort function. The best m′ of these are used to generate
n − r − m new layouts using the cycle crossover routine.
Each new generated layouts also undergoes a random number
between 0 and t of random mutations. Each mutation consists
of selecting 2 random keys and swapping them. Figure 2 shows
a flowchart of the MKLOGA algorithm, and Figure 3 shows
how a generation is constructed from the previous one.

IV. EXPERIMENTS

We first evaluated the effect of using the cycle crossover
routine. For this, we took the code of [7], and replaced their
crossover routine with the one described in Section III-A. We
carried out the two types of experiments that were made by [7]:
changing only the positions of the letters of the standard layout
(called “Letters Only” in [7]), and changing also the positions
of the punctuation symbols (“Letters and Punctuation”).

We then proceeded to implement MKLOGA. The first step
of the implementation was to train a neural network on a
data-set of 4800 randomly generated layouts labeled with their
effort values. The neural network had a hidden layer of size
64 with ReLU activation. For the genetic part, we used a
population size of n = 5000, the number of random layouts
added in each generation was r = 1000, the parameter m was
250, and m′ was 100. The maximum number of mutations
was t = 5. We ran the genetic algorithm for 30 generations.

We allowed to change only the positions of the letters,
except for one difference: Following the lead of some previous
keyboard designs (carpalx [12], colemak [5]) we moved one
letter from the top row of letters to the middle row, so that
the top row contains 9 letters and the middle row contains 10
letters. The effort value was calculated using a corpus provided
by [12] of size 267KB.

V. RESULTS

A. The Cycle Crossover Routine

The cycle crossover routine led to a significant improvement
in the performance of the genetic algorithm. As depicted
in Figure 4, with the cycle crossover the objective function
decreased much faster. Furthermore, for the case of Letters
Only, with the old crossover routine, the genetic algorithm
reached the final objective function value at generation 88,
whereas with the cycle crossover routine this same value
was achieved at generation 16. For the case of Letters and
Punctuation, the cycle crossover yielded a lower final objective
function value and it was also achieved in a much earlier
generation. See Table I.
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Fig. 1. Example of the cycle crossover routine.
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Fig. 2. MKLOGA flowchart.

TABLE I
RESULTS WITH THE CYCLE CROSSOVER

Letters Only Letters & Punct.
effort gens effort gens

Fadel et al. 1394663.75 88 1312948.02 97
MKLOGA 1394663.75 16 1311932.84 27

B. MKLOGA

As mentioned above, MKLOGA fine-tunes the neural net-
work model during the course of the genetic algorithm. In
our experiment, the loss of the model decreased from 0.048
to 0.0028. This indicates that the model’s prediction accuracy
improved during the course of the execution.

When we ran MKLOGA, it found a layout with an effort
value of 1.625, and it did so already at generation 19. See
Figure 5 (left). For comparison, the layout found by Fadel
et al. [7] has an effort value of 2.508 (though, as mentioned
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Fig. 3. The construction of the new generation from the previous one. First, r
layouts are generated randomly. The best m layouts of the previous generation
(according to the model estimate) are directly copied to the new generation,
and the best m′ of them (according to the true effort value) are used to
generate new layouts through crossover and mutations.

TABLE II
THE CARPALX EFFORT VALUE OF DIFFERENT KEYBOARDS.

keyboard effort
Qwerty 2.962
Dvorak 2.046

Colemak 1.796
Carpalx Sim. Ann. 2.038

}.?BZQ (Fadel et al.) 2.508
MKLOGA 1.625

above, they optimized for a different objective function). We
also ran the simulated annealing code of [12] using its default
parameters. We did so 10 times and took the average effort
value of the produced layouts. See Table II, which also shows
the effort value of a few other well known layouts, for com-
parison. Moreover, the neural network model of MKLOGA
takes approximately only one millisecond to estimate the effort
value of a layout, which is much faster than calculating the
true effort.

VI. DISCUSSION

As mentioned above, the keyboard layout found by MK-
LOGA achieves an effort value of 1.625. In comparison, the
best layout offered by the carpalx project [12] (the one they
refer to as “qgmlwb”) achieves an effort value of 1.629 (in
their website they give a value of 1.668, the difference being
due to the use of a larger corpus). However, the layout that they
recommend (which they refer to as “qgmlwy”) leaves the keys
Z, X, C, V, in the classical QWERTY positions due to their
frequent use in keyboard shortcuts, and it achieves an effort
value of 1.635 (1.670 according to their website). Interestingly,
in one run, MKLOGA produced a keyboard with the keys Z,
X, C, V, in place, with an effort value of 1.633. See Figure
5 (right). Finally, it is worth noting that the above-mentioned
carpalx layouts were probably built with human assistance and
not purely with a computer algorithm.

MKLOGA may be useful in developing good keyboard
layouts for languages other than English. Also, as mentioned
in [7], there is a need for left-hand only and right-hand only
layouts for handicapped people. There is an increasing need
for good layouts for smartphone keyboards, in which people
type with only one finger.

VII. FUTURE WORK

In current form MKLOGA calculates the effort value with
a relatively small corpus; we plan to switch to a larger corpus
in order to get more accurate results. Furthermore, we plan
to give MKLOGA more freedom by allowing it to change
the positions of punctuation symbols as well. This will entail
reconstructing and retraining the neural network from scratch,
since its keyboard representation includes only the symbols
that can change positions.

In addition, we plan to implement an even more realistic
objective function that takes into account other relevant factors
in typing. Also, we suspect that the carpalx effort model is
not realistic enough, because it assigns a much better score to
the Dvorak keyboard than to QWERTY, despite the fact that
research shows that among experienced typewriters, it does not
make much of a difference whether they use the Dvorak or
the QWERTY layout. We would like a more realistic function
that will explain this counter-intuitive fact so we can construct
a keyboard layout that is truly better.

VIII. CONCLUSION

Over the years, people have tried to come up with better
keyboard layout designs, both manually and with computer
search programs. In this paper we proposed MKLOGA, which
combines deep learning with a genetic algorithm for finding
improved keyboard layouts. It also makes use of the cycle
crossover routine, that significantly outperforms the crossover
routine that was previously used in the literature. As we
showed, MKLOGA produced a better keyboard layout than
previous algorithms, according to the realistic typing effort
model of carpalx [12]. MKLOGA might be useful for devel-
oping good layouts for languages other than English, and for
other situations in which objects must be placed in predefined
locations.
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