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Abstract—Since the keyboard is the most common method
for text input on computers today, the design of the keyboard
layout is very significant. Despite the fact that the QWERTY
keyboard layout was designed more than 100 years ago, it is
still the predominant layout in use today. There have been
several attempts to design better layouts, both manually and
automatically. In this paper we improve on previous works on
automatic keyboard layout optimization, by using a deep neural
network to assist in a genetic search algorithm, which enables the
use of a sophisticated keyboard evaluation function that would
otherwise take a prohibitive amount of time. We also show that
a better choice of crossover routine greatly improves the genetic
search. Finally, in order to test how users with different levels
of experience adapt to new keyboard layouts, we conduct some
layout adaptation experiments with 300 participants to examine
how users adapt to new keyboard layouts.

Index Terms—Keyboard Layout, Genetic Algorithm, Neural
Network

I. INTRODUCTION

The modern QWERTY keyboard layout was introduced in
the 1870’s by Christopher Latham Sholes [1]. It has been
suggested that the rationale behind the QWERTY design was
to minimize type-bar jams by placing common letters far away
from each other [2].

In the early 1930’s, August Dvorak introduced the keyboard
layout known today as Dvorak [3|], which he hoped would
be more ergonomic and lead to faster typing. Even though
the QWERTY layout is still the most common layout in use,
most major operating systems offer the option of switching
to the Dvorak layout. Nevertheless, Dvorak has not gained
much popularity, probably because QWERTY is already so
entrenched.

Despite recent advances in automatic speech recognition,
keyboard input still remains the most common method of text
communication used today. While people do not pay much
attention to the keyboard layout, it has a tremendous impact
not only on the typing speed, but also on wrist pain and
repetitive strain injury (RSI) [4]. Unfortunately, the QWERTY
layout so popular today was designed for typewriters rather
than keyboards; therefore, it is very likely that it is sub-optimal
for modern use.

There have been several other attempts at creating better
keyboard layouts. A popular alternative to QWERTY and
Dvorak is the Colemak layout [5], introduced by Shai Coleman
in 2006. It maintains the position of 17 keys of QWERTY,
including many keys commonly used for keyboard shortcuts,
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with the hope of making it easier to learn for people accus-
tomed to the QWERTY layout. While Colemak is not officially
supported by Windows, creating and installing a custom layout
in Windows can be easily done with the Microsoft Keyboard
Layout Creator. Once a layout is installed, the characters
appearing on the physical keys will not match the virtual
characters, but this is a very minor issue; on the contrary,
it encourages early adoption of touch typing.

Subsequently there were several attempts to find better
keyboard layouts by automating the process [6], [7]. While
a brute-force search over all possible arrangements is not
feasible, due to the astronomically large number of different
arrangements, there are many optimization algorithms that
can be used instead. One example of a commonly used
and efficient class of optimization algorithms is the genetic
algorithm.

Genetic algorithms belong to the larger class of evolutionary
algorithms. They are a technique inspired by the process
of natural selection, which are commonly used to generate
high-quality solutions to optimization and search problems by
relying on the biologically inspired operations of mutation,
crossover and selection. In a genetic algorithm there is a
“population” of candidate solutions, each of which has a set
of characteristics that can be altered. There is an objective
function that assigns a “fitness” value to each solution. One
typically starts with an initial random population, which will
probably have very low fitness. The algorithm proceeds in
“generations”’; each generation is obtained from the previous
one by selecting the most fit candidates and generating new
candidates by a process of crossover. In addition, random
mutations are performed on the selected candidates before
being added to the next generation. While most of the
crossovers and mutations are likely to reduce the fitness of
the candidates, a small fraction of them will yield more-
fit candidates, and the improved traits will gradually spread
throughout the population. Hence, as the generations progress,
the overall fitness of the population will increase.

In this paper we present a method for optimizing keyboard
layouts using a hybrid approach of deep learning and genetic
algorithms. Our method is fast and therefore allows the use
of large corpora for training, as well as the use of complex
fitness functions. One of the features of our method is the use
of the cycle crossover routine [§|], which greatly enhances the
performance of the genetic part of the algorithm. We show that
our method outperforms the state-of-the-art methods from the



literature even when using their own metricq}

As mentioned in [7]], keyboard layout optimization tech-
niques might be useful for a wider class of problems in which
there are objects that must be placed in predefined locations,
the objects will be accessed one after the other in some order,
and the goal is to optimize the placement of the objects. Real-
life examples of this scenario include books in a library and
products in a vending machine.

Finally, we tackle the issue of keyboard adaptation. We
examine whether experienced QWERTY typists adapt better
to new layouts than inexperienced typists, whether, once
experimenting with a new layout, users find it easier to adapt
to another new layout, and whether it is easier or harder to
adapt to common letter combinations compared to rare letter
combinations. For that end, we run an experiment with 300
participants and three different keyboard layouts, namely, the
standard QWERTY layout and two new layouts for three
different keys.

To summarize, our contribution in the area of automatic
layout optimization is three-fold.

1) We propose the use of deep learning to assist in a genetic
algorithm process for finding an improved keyboard
layout.

2) We show that the cycle crossover routine significantly
outperforms the crossover routine that was previously
used in the literature.

3) We conduct a user study with 300 participants to exam-
ine how users adapt to new keyboard layouts.

II. RELATED WORK

Genetic algorithms have been used for keyboard design
optimization. Yin and Su [6] considered several scenarios for
the general keyboard arrangement problem, such as single-
character and multi-character keyboards, single-finger and
multi-finger typing, and optimization according to different
criteria, such as typing ergonomics, word disambiguation,
and prediction effectiveness. They offered an evolutionary
approach using a cyber swarm method and showed that it pro-
duces keyboard layouts that are better than existing ones. Other
works that use genetic algorithms for keyboard optimization
are [7]], [91-[11].

In particular, in their recent work, Fadel et al. [7[] developed
a genetic-based algorithm that is used to find better layouts
than QWERTY and Dvorak. Their algorithm works by itera-
tively performing the operations of Selection, Crossover and
Mutation, on a population of candidate layouts. They measure
the fitness of a layout using a simple objective function that
sums the Euclidean distances between every single character
in the training corpus and the nearest finger to it. Using their
method they find layouts that are better than QWERTY and
Dvorak according to their objective function. They call the
best keyboard layout they found “} . ?BZQ”.

I A link for installing the keyboard layout generated by our method on Win-
dows is available at: https://github.com/kerenivasch/MKLOGA

Krzywinski [[12] introduced carpalx, which includes a more
realistic and complex objective function for evaluating layouts.
The carpalx typing effort model is based on triads, which
are three-character substrings formed from the training text.
The effort associated with typing a triad has two components:
effort to hit a key (independently of preceding and successive
strokes) and effort to hit the group of keys. Independent effort
is based on finger distance and includes hand, finger, and
row penalties associated with that key. The effort associated
with the group of keys considers their stroke path, which
is evaluated by taking into account hand-alternation, row-
alternation, and finger-alternation.

The carpalx model is highly parameterized, as the formula
for the effort involves many weights whose value can be
adjusted. Hence, the user can decide what is important to her
layout, so the model can be made highly subjective. For more
details on the computation of the carpalx effort model see [[12].
For this project we left all the carpalx parameters with their
default values and did not change them.

Due to its high complexity, the carpalx objective function
requires excessive computing power (approximately 0.6 sec-
onds on a computer with Intel Core i7 CPU).

The carpalx project also includes an implementation of a
simulated annealing based method for finding good keyboard
layouts. Carpalx has been used to construct layouts optimized
for the Filipino [13] and Latvian languages [14].

A problem related to the keyboard layout optimization
problem is the Quadratic Assignment Problem (QAP). In this
problem there are n facilities and n locations, and there is
a distance between each pair of facilities, as well as a flow
between each pair of locations. The objective is to assign
the facilities to different locations in order to minimize the
sum of the distances multiplied by the corresponding flows.
This problem is somewhat similar to the keyboard layout
optimization problem: If the function we wish to minimize is
the total movement of the fingers, then the keys and the finger
base positions correspond to the facilities. There are several
works that tackle the QAP problem with genetic algorithms
[L5[-[17]).

There are also several previous works that combine genetic
algorithms with deep learning. Sehgal et al. [[18] use a genetic
algorithm to find the values of parameters used in a reinforce-
ment learning task related to robotic manipulation. Potapov
and Rodionov [19] implement a genetic algorithm with a
crossover operator that uses a deep neural network. Hu et al.
[20] combine a genetic algorithm and deep neural network
models to construct property diagrams for grain boundaries.

Recently, Klein [21] developed a multi-step approach for
generating keyboard layouts, with which he designed a new
layout called Engram.

III. THE MKLOGA MODEL

In this paper, we present our Method for Keyboard Layout
Optimization using a deep Genetic Algorithm (MKLOGA). The
method improves the one described by Fadel et al. [[7] in sev-
eral aspects. First, MKLOGA uses a better crossover routine
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Fig. 1: Example of the cycle crossover routine.
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Fig. 2: MKLOGA flowchart.

for generating a new layout from its parents, as explained in
section below. In addition, MKLOGA uses the complex
and more realistic objective function of carpalx [12] for evalu-
ating layouts. Due to the excessive computing power required
by the carpalx objective function, MKLOGA includes several
improvements to the genetic algorithm process, one of which
is the use of deep learning. All MKLOGA software is available
at https://github.com/kerenivasch/MKLOGA.

A. The Cycle Crossover Routine

As mentioned above, MKLOGA uses the cycle crossover
routine of [8]] for generating a new keyboard layout K3 out of
two given keyboard layouts K, K». The crucial property of
this routine (as opposed to the crossover routine of [7]) is that
each key placement in K3 is copied from either K; or Ko.
As we show in Section [V] the cycle crossover routine alone
provides a significant improvement to the performance of the
algorithm of [7].

We proceed to explain the cycle crossover routine for the
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Fig. 3: The construction of the new generation from the
previous one. First,  layouts are generated randomly. The best
m layouts of the previous generation (according to the model
estimate) are directly copied to the new generation, and the
best m’ of them (according to the true effort value) are used
to generate new layouts through crossover and mutations.

sake of completeness. Let S be the set of symbols whose
placement is allowed to change, and let P be the set of keys
that can take symbols. We first pick a random parent K from
among K1, Ko, we call the other parent K'. Then we pick a
random key p; € P and copy its symbol s; from K to Ks.
Now we check in which key po, the symbol s; is located in
K'. We copy the symbol s, of the key ps in K. Then we
check in which key ps, the symbol sy is located in K’. We
continue this way until we return to p; and thus close a cycle.
Hence, all the symbols in this cycle were copied from K.

If additional keys are left, we make another random choice
for K, K’ between K, K5, and pick another random available
key and repeat the process. This way every placement in K
has been copied from either K; or Ko.

Figure [I] shows an example of the cycle crossover routine.
Here, the routine first picked parent 1, picked from it the letter
n, and copied the letter n to the child. The routine checked the
location of the letter n in parent 2; in that location, parent 1 has
the letter 1. The routine copied the letter 1 to the child, and
checked its location in parent 2. In that location, parent 1 has
the letter z. Continuing this way, the routine copied the letter
z and then the letter d to the child, and then came back to the
letter n, which was the initial letter copied from parent 1. This
finished one cycle of the crossover routine. The routine then
picked parent 2, and picked from it the letter b. Continuing
as described before, the routine copied from parent 2 to the
child the letters b, g, a, h, f, y, and v, and then came back
to b and closed another cycle. This process continued until
the child layout was complete.

B. Using The Carpalx Objective Function

As mentioned, in order to obtain an improved keyboard lay-
out, MKLOGA uses the complex and more realistic keyboard
effort model of carpalx [[12] for evaluating layouts. Since the
keyboard effort model requires excessive computing power to
evaluate, MKLOGA also includes a neural network for fast
estimation of the effort. The neural network is initially trained
on randomly generated layouts. After the training, the model
is saved in order to be used as the initial model for the genetic
part of the algorithm. During the genetic algorithm process,

the neural network is fine-tuned by retraining it with some of
the best layouts found in the current generation using their
true effort value. The input layouts for the neural network are
represented using a one-hot representation, as a square 0/1-
matrix whose size corresponds to the number of key positions
that are allowed to change. The use of the neural network
allows us to evaluate the expensive effort function only on a
small number of layouts, leading to a significant speedup of
the running time.

The genetic algorithm of MKLOGA proceeds as a sequence
of generations. Each generation consists of a population of n
layouts. The first generation is generated randomly. In each
generation the layouts are evaluated and sorted according to
the neural network’s estimation. In order to construct the new
generation, r layouts are first generated randomly. The best m
layouts of the previous generation pass automatically to the
new generation, and they are also evaluated according to the
true effort function. The best m’ of these are used to generate
n —r —m new layouts using the cycle crossover routine.
Each new generated layouts also undergoes a random number
between 0 and ¢ of random mutations. Each mutation consists
of selecting 2 random keys and swapping them. Figure 2] shows
a flowchart of the MKLOGA algorithm, and Figure [3] shows
how a generation is constructed from the previous one.

IV. EXPERIMENTS

We first evaluated the effect of using the cycle crossover
routine. For this, we took the code of [7]], and replaced their
crossover routine with the one described in Section We
carried out the two types of experiments that were made by [7]:
changing only the positions of the letters of the standard layout
(called “Letters Only” in [7]]), and changing also the positions
of the punctuation symbols (“Letters and Punctuation”).

We then proceeded to implement MKLOGA. The first step
of the implementation was to train a neural network on a
data-set of 4800 randomly generated layouts labeled with their
effort values. The neural network had a hidden layer of size
64 with ReLU activation. For the genetic part, we used a
population size of n = 5000, the number of random layouts
added in each generation was r = 1000, the parameter m was
250, and m’ was 100. The maximum number of mutations
was t = 5. We ran the genetic algorithm for 30 generations.

As a first step, we allowed to change only the positions of
the letters, except for one difference: Following the lead of
some previous keyboard designs (carpalx [12], colemak [5])
we moved one letter from the top row of letters to the middle
row, so that the top row contains 9 letters and the middle
row contains 10 letters. As a second step, we also allowed to
change the positions of the punctuation symbols as in [[7].

The effort value was calculated using a corpus provided by
[12] of size 267KB.

V. RESULTS
A. The Cycle Crossover Routine

The cycle crossover routine led to a significant improvement
in the performance of the genetic algorithm. As depicted
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Fig. 4: A comparison between the performance of the genetic algorithm using the crossover method proposed by and the
cycle crossover method. The performance is measured according to the objective function defined in (lower is better).
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Fig. 5: (a) Best keyboard layout found by MKLOGA when moving only letter positions. (b) Best keyboard layout found by
MKLOGA when moving also punctuation symbols. (¢) Another keyboard layout found by MKLOGA, with ZXCV in place.
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Let's start with a test on the QWERTY layout. Please type the following:

oym gano ca qip ljnvymjtsrbwl p nezrlawrztwwxk h rrqgr
uge
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Now, use the layout shown above. Let's start with a warm up:

€eaae arrrrr raareraaaraar aaeearae rrareerra ee aeee a ee
are
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Great! Now type the following using this layout:

are are era era are are ear are are are era are ear are a
re are ear are era era
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Now, use the new layout shown above. Let's start with a warm up:

q9zq9jzqzq z qq zjqq9qjzqq zj z qzjqqzqqjzz j z z qq9zzjqjj
Jja
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Great! Now type the following using this layout:

jaz zaj jaz zjq zaj zjq zjq 2 zaj zja zaj z3a jaz zaj J
9z z3jq z3Jq zJq J9z zq]

Fig. 6: The typing experiments




TABLE I: Results with the cycle crossover

Letters & Punct.
effort gens

1312948.02 97

1311932.84 27

Letters Only
effort gens
1394663.75 88 ‘

Fadel et al.

cycle crossover | 1394663.75 16

TABLE II: The carpalx effort value of different keyboards.

keyboard effort

Qwerty  2.962

Dvorak  2.046

Colemak  1.796

Carpalx Sim. Ann.  2.038

}.2BzQ (Fadel et al.)  2.508
MKLOGA Letters Only  1.625
MKLOGA Letters & Punct.  1.612

in Figure 4] with the cycle crossover the objective function
decreased much faster. Furthermore, for the case of Letters
Only, with the old crossover routine, the genetic algorithm
reached the final objective function value at generation 88,
whereas with the cycle crossover routine this same value
was achieved at generation 16. For the case of Letters and
Punctuation, the cycle crossover yielded a lower final objective
function value and it was also achieved in a much earlier
generation. See Table

B. MKLOGA

As mentioned above, MKLOGA fine-tunes the neural net-
work model during the course of the genetic algorithm. In our
experiments, the loss of the model decreased from 0.048 to
0.0028 when moving only the letter positions, and from 0.076
to 0.00098 when moving also the punctuation symbols. Hence,
the neural network model’s prediction accuracy improved
during the course of the execution.

When we ran MKLOGA moving only the letter positions,
MKLOGA found a layout with an effort value of 1.625,
and it did so already at generation 19. See Figure | (a).
When we let MKLOGA move also the punctuation symbols,
it found a layout with an effort value of 1.612, at generation
42. See Figure [5] (b). For comparison, the layout found by
Fadel et al. [7] has an effort value of 2.508 (though, as
mentioned above, they optimized for a different objective
function). We also ran the simulated annealing code of [[12]]
using its default parameters. We did so 10 times and took the
average effort value of the produced layouts. See Table
which also shows the effort value of a few other well known
layouts, for comparison. Moreover, the neural network model
of MKLOGA takes approximately only one millisecond to
estimate the effort value of a layout, which is much faster
than calculating the true effort.

VI. NEW LAYOUT ADAPTATION EXPERIMENTS

In this section we study the ability of humans to adapt
to new layouts. For that end we carry out an experiment
conducted with humans using multiple keyboard layouts.

A. Working Hypotheses

Our primary goal of the new layout adaptation experiments
is to test the following hypotheses:

1) Do experienced QWERTY typists adapt better to new
layouts than inexperienced typists?

2) Once experimenting with a new layout, would the users
find it easier to adapt to another new layout?

3) Do users find it easier to adapt to common letter combi-
nations than to rare letter combinations, when presented
with a new layout? On the one hand, the user might
recognize more quickly common letter combinations,
and will also learn more quickly to type them. On the
other hand, perhaps the old ingrained habits might cause
the user to get confused.

B. Experimental Design

We conduct an experiment in which users are requested
to type certain letter combinations using different keyboard
layouts. In the first phase of the experiment, the users are
presented a random text of length 60 that is composed of
letters and spaces. The users are requested to type this text
using the standard QWERTY layout. The experiment then
continues with two additional phases (phases fwo and three),
each focusing on a different partial keyboard layout.

One partial layout consists of the letters A, F, R located in
the positions of D, K, S of the QWERTY layout. The second
partial layout consists of the letters J, Z, @) located in these
same positions. For each partial layout, the users are given
two typing assignments. The first assignment is only used as
a warm-up and contains a random collection of the three letters
and spaces, of length 60. The second assignment, for which
we record results, consists of 20 triplets, separated by spaces.
For the AER partial layout, the triplets are ear, are, and era,
which are actual English words. For the JZQ partial layout,
the triplets are zjq, jqz, and zqj, which use the same keys in the
same order. One of the partial layouts is used for phase two
and the other for phase three, but the order between them is
chosen at random for each user. Figure [6] depicts the different
phases and assignments of the experiment. In all the phases,
the user cannot proceed to type the next letter until she typed
correctly the current letter.

Each user is asked a few questions about themselves (age,
gender, education, and previous experience with touch typing).

We use the Mechanical Turk to run this experiment with
300 different people. A software bug caused four of the users’
data records to become invalid. Therefore, 296 data records
are used in our analysis.

C. Experimental Results

As expected, users made significantly fewer mistakes with
the QWERTY layout (average 6.4) than with the two new
layouts (average 54.5) (p < 0.0001).

Quite surprisingly, we found a very small correlation be-
tween the number of errors in QWERTY and the number
of errors in the two new layouts (correlation coefficients of
0.08 and 0.11 for AER and JZQ respectively). In other words,



users that were good at QWERTY were not necessarily good
in other new layouts. On the other hand, we found a very
strong correlation between the number of errors in the two
new layouts (correlation coefficient of 0.89). Hence, users that
were good at one new layout were also good at the other
one. We also note that learning the second new layout seems
faster than learning the first new layout (regardless of which
layout is being learned). Indeed, users completed the second
phase significantly faster than the first (80.3s for the first and
63.2s for the second). This difference is statistically significant
(p < 0.05 using one-tail t-test). Interestingly however, there
was no statistically significant difference between the number
of mistakes in the first and second phases (53.2 and 55.7
respectively).

We were expecting a more significant difference between
the AER and JZQ experiments, since in the former the triplets
consisted of common characters forming actual English words,
but not in the latter. However, the difference in the number
of mistakes was not statistically significant (average 56.2 for
AER, 52.7 for JZQ), nor was the difference in the total typing
times (average 74.7s for AER, 68.8s for JZQ). A more in-depth
study is required here.

Interestingly, we found no significant correlation between
the users’ performance (number of errors or typing time) and
their age, gender, education or experience with touch typing.

Observations on specific keys: We took a look at the number
of mistakes users made on typing each letter while using
the different layouts. See Table In the QWERTY phase,
users made most mistakes in keys V and J (134 and 131
respectively), and they made the fewer mistakes in keys M
and I (20 for each). Interestingly, in the two other phases,
users made the most mistakes in the letter located in the K
position (letters £ and Z of the new layouts), and the fewest
mistakes in the letter located in the D position (letters A and
J of the new layouts).

Since users made many mistakes when typing J in the
QWERTY layout but they made few mistakes when typing
this letter using the JZQ layout, this seems to indicate that the
location of the letter is more significant than the letter itself.

Finally, we looked at the average time taken to type each
letter during the QWERTY phase. See Table [[V] For compar-
ison, the table also shows the Euclidean distances used by [7]]
for evaluating layout fitness. There is a correlation of —0.147,
which seems to indicate that the Euclidean distance is a poor
measure of keyboard layout fitness.

VII. DI1SCUSSION & FUTURE WORK

As mentioned above, the best keyboard layout found by
MKLOGA achieves an effort value of 1.612. In comparison,
the best layout offered by the carpalx project [12] (the one
they refer to as “qgmlwb”) achieves an effort value of 1.629
(in their website they give a value of 1.668, the difference
being due to the use of a larger corpus). However, the layout
that they recommend (which they refer to as “qgmlwy”) leaves
the keys Z, X, C, V, in the classical QWERTY positions due
to their frequent use in keyboard shortcuts, and it achieves

an effort value of 1.635 (1.670 according to their website).
Interestingly, in one run, MKLOGA produced a keyboard with
the keys Z, X, C, V, in place, with an effort value of 1.633.
See Figure [3] (c). Finally, it is worth noting that the above-
mentioned carpalx layouts were probably built with human
assistance and not purely with a computer algorithm.

MKLOGA may be useful in developing good keyboard
layouts for languages other than English. Also, as mentioned
in [[7], there is a need for left-hand only and right-hand only
layouts for handicapped people. There is an increasing need
for good layouts for smartphone keyboards, in which people
type with only one finger.

In current form, MKLOGA calculates the effort value with
a relatively small corpus; we plan to switch to a larger corpus
in order to get more accurate results.

In addition, we plan to implement an even more realistic
objective function that takes into account other relevant factors
in typing. Also, we suspect that the carpalx effort model is
not realistic enough, because it assigns a much better score to
the Dvorak keyboard than to QWERTY, despite the fact that
research shows that among experienced typewriters, it does not
make much of a difference whether they use the Dvorak or
the QWERTY layout. We would like a more realistic function
that will explain this counter-intuitive fact so we can construct
a keyboard layout that is truly better.

In the adaption experiments, we tested three different
keyboard layouts. The results obtained seem to point that
experienced QWERTY typists do not adapt better to new
layouts, that once experimenting with a new layout users
find it easier to adapt to another layout, and that the use of
common letter combinations does not have a major impact on
the difficulty to adapt to a new layout. However, the two new
keyboard layouts were limited to three keys, since we did not
want to require the participants to commit to a long-term study,
and asking the participants to learn a full keyboard layout in a
short time-frame seems infeasible. In future work, we intend
to perform a longitudinal study and hope to extend the results
obtained in this paper to an entire keyboard layout.

VIII. CONCLUSION

Despite the fact that the QWERTY keyboard layout was
designed more than 100 years ago, it is still the predominant
layout in use today. There have been several attempts to design
better layouts, both manually and automatically. In this paper
we proposed MKLOGA, which improves on previous works
on automatic keyboard layout optimization, by using a deep
neural network to assist in a genetic search algorithm. As
we showed, MKLOGA enables the use of a sophisticated
keyboard evaluation function that would otherwise take a
prohibitive amount of time. We also showed that the cycle
crossover routine greatly improves the genetic search. MK-
LOGA produced a better keyboard layout than previous algo-
rithms, according to the realistic typing effort model of carpalx
[12]. MKLOGA might be useful for developing good layouts
for languages other than English, and for other situations in
which objects must be placed in predefined locations.



TABLE III: Number of mistakes made by users in each letter. (a) QWERTY layout, (b) AER layout, (c) JZQ layout.
(a)

a bcd e f g h i j k I m n o p q r s t u v W X Yy 2z space
48 66 8 22 78 32 103 49 20 131 94 71 20 46 83 71 31 31 25 41 31 134 79 49 60 88 336

(b) ©

a e r space j z q  space
3297 3751 3695 5908 2966 3966 3291 5401

TABLE IV: Average typing time (seconds) of each letter in the QWERTY phase (first row) compared to the Euclidean distance
used by [7]] (second row).
a b ¢ d e f g h i ] k I m n o p q r S t u v w X y z

1.43 0.89 091 0.82 1.53 098 1.1 13 0.64 1.16 1.09 0.98 0.65 0.72 0.77 1.01 1.02 0.76 0.75 0.88 0.74 1.59 0.91 0.97 0.98 0.98
1.08 2.37 1.1 1.08 2.65 1.08 1.34 2.76 2.65 1.08 1.08 1.08 1.1 1.98 2.65 2.65 2.88 2.65 1.08 2.65 2.88 1.1 2.65 1.1 3.58 1.1

Finally, we conducted some layout adaptation experiments [12] M. Krzywinski, “Carpalx keyboard layout optimizer,” 2005, http://

with 300 participants in order to examine how users adapt to mkweb.bcgsc.ca/carpalx/, .

. . [13] J. M. R. Salvo, C. J. B. Raagas, M. T. C. M. Medina, and A. J. A.
new keyboard layOU'tS' We found that experience in QWERTY Portus, “Ergonomic keyboard layout designed for the filipino language,”
typing does not seem to make a difference in adapting better in Advances in Physical Ergonomics and Human Factors. —Springer,
to new layouts, that once experimenting with a new layout 2016, pp. 407-416. ‘ , . ,

. . [14] V. Vitolins, “Modernized latvian ergonomic keyboard,” arXiv preprint
users find it easier to adapt to another layout, and that the use arXiv:1707.03753, 2017.

of common letter combinations does not have a major impact [15] H. Azarbonyad and R. Babazadeh, “A genetic algorithm for solving
on the difﬁculty to adapt to a new layout. quadratic assignment problem (qap),” in Proceeding of 5th International
Conference of Iranian Operations Research Society (ICIORS), Tabriz,

Iran, 2012. [Online]. Available: https://arxiv.org/abs/1405.5050
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