
LIA: A Virtual Assistant That can be Taught New
Commands by Speech

Merav Chkroun and Amos Azaria
Department of Computer Science, Ariel University, Israel

meravgu@gmail.com, amos.azaria@ariel.ac.il

Abstract

In the imminent future, people are likely to engage with smart devices by in-
structing them in natural language. A fundamental question to ask is how might
intelligent agents interpret such instructions and learn new tasks. In this paper we
present the first speech based virtual assistant that can be taught new commands
by speech. A user study on our agent has shown that people can teach it new
commands. We also show that people see great advantage in using an instructable
agent, and determine what users believe are the most important use cases of such
an agent.

1 Introduction
Most machine learning based methods base their learning on large data-sets labeled
manually, usually involving tremendous amounts of human labor. Labeling large data-
sets may not be practical for a user wanting to teach her agent how to perform a specific
task. Humans, on the other hand, usually learn by obtaining instructions in natural
language. For example, a manager can teach her human assistant how to perform a
very specialized task, just by explaining in natural language how one should perform
the task, possibly accompanied by showing a single example. The human assistant will
learn not only how to perform the new task, but also to perform any similar task.

Virtual assistants which have always been considered the future of AI, have shown
great growth in the past several years, with the appearance of Apple’s Siri, Google Now
and Microsoft’s Cortana. More recently we witness the emergence of home assistants
such as Amazon’s Echo and Google Home. These assistants are operated solely by
voice commands, and can be operated from a distance. Voice is also used as a principal
user interface in smart devices such as smart-watches and smart-glasses.

From the above we may infer that the ability to teach virtual assistants new com-
mands by speech, should be an integral part of the future of AI. In this paper we present
the first speech based virtual assistant that can be taught new commands by speech.
Our Learning by Instruction Agent (LIA) is composed of many AI components, such
as a learning and generalization mechanism, text summarization, and other components
common in dialog systems such as voice activity detection, speech recognition, natural
language understanding, natural language generation and a text to speech mechanism

1



[26, 6]. LIA uses our recently developed method for command execution and for learn-
ing new commands, as described in [3]. However, the agent described in [3] (which
we will refer to as AKM), was text based, was not deployed on a mobile phone, and
was extremely limited in the tasks it could perform (and thus was not useful for actual
users).

LIA supports sending and receiving emails (by connecting to actual email ac-
counts), as well as fetching news about a specific category or according to given key-
words. LIA also supports many common virtual assistants’ commands such as playing
music, answering factoid questions, saying something, spelling out words, and setting
a timer, an alarm or a reminder. If LIA does not understand a user utterance (e.g. “for-
ward to Bob”), the user is asked whether she would like to teach LIA how to perform
that task. The user can then explain in natural language, step after step, how to perform
the task, and LIA collects all these steps and associates them with the given command.
LIA also identifies what words might serve as parameters (e.g. the word “Bob” ) and
generalizes the taught command to other similar commands (e.g. “forward to Tom”).

To summarize, our main contribution in this paper is the development of an open
sourced virtual assistant, that can be taught new commands by natural language speech.
Our agent can be fully operated from a distance. We also ran a user study evaluating
the performance of our agent as well as user reception towards an agent that can be
taught new commands and determine what users believe are the most important use
cases of such an agent.

2 Related Work
The idea of a virtual assistant that can be operated by natural language speech has long-
lived in science fiction literature, such as HAL 9000 from “2001: A Space Odyssey”
(1968), the Ship’s computer in Star-Trek (1967), and The Brain from Escape! (1945).
However, the first commercial virtual assistant did not emerge until 2011, when Apple
came up with Siri [4] that could perform some tasks by speech commands. Siri, was an
offshoot from the CALO project starting in 2003 [18] and is based on many years of
research in the dialog system community [26]. Soon later, additional virtual assistants
have appeared, including Google Now and Google Assistant, Microsoft’s Cortana and
Amazon’s Echo. While some of these virtual assistants support APIs allowing develop-
ers to extend these virtual assistants capabilities, for the lame users these assistants are
rigid and cannot be extended to supporting new tasks that they may require. This prob-
lem becomes more pronounced for commands that are very specific to a user, which
developers may never support (due to the minimal demand).

In natural language programming [5], a programmer can use natural language to
develop software. In Inform 7 [22], for example, a programmer can create an interac-
tive fiction program using English sentences. For example, the programmer can say
“The kitchen is a room,” “The kitchen has a stove,” and “The description of the stove
is: ‘very dirty’ ”. However, despite being in natural language, statements in Inform 7,
are required to be in a specific form. Needless to say, that neither of these program-
ming languages support teaching an agent new commands based on speech. In [9] we
allowed users to teach a chatbot new responses in natural language (by using a specific

2



form). Quirk et al. [21] have converted “recipes” written in natural language to if-then
statements, in which the “if” part is a condition on a sensor (e.g. phone camera, mic.
etc) or a cyber-sensor (e.g. weather, Twitter etc.), and the “then” part is bounded to a
command (e.g. opening the camera app, or making a sound) [20]. Huang et al. [13]
have developed a system that uses the crowd to compose if-then recipes for mobile
phones.

Learning by demonstration, also known as, Programming by demonstration or Im-
itation learning, is commonly used by robots interacting with users. The common case
study is with a person showing a robot how to lift or select a certain object, move an
object or perform some other tasks [1]. In most studies the human teacher actually
moves the robot’s arms to perform the taught task [7], or controls the robot using a
control peg, while in some other studies, the human teacher performs the task in front
of the robot’s cameras [19], or wears data gloves [15]. In many cases the robot can also
generalize beyond the specific training scenario, to perform the task also in different
conditions. For example, Calinon et al., [7], teach a robot by demonstration how to
move a chess piece on a board of chess by moving the robot’s arms. The robot can
then generalize and move the same piece also when it is located in a different loca-
tion. In recent work [17], we have combined speech commands with programming by
demonstration to execute different commands on a mobile app. Thorne et al. [25] use
a system based upon programming by demonstration as an alternative to spreadsheet
programming. They run an experiment with human subjects, and describe the benefits
and limitations of this system.

Some virtual assistants include embodied agents [8, 27]. However, embodied vir-
tual agents require heavy resources both communication and computation wise. Her-
rmann [12] compares different machine learning based methods for virtual assistants.

In previous work [3], we have presented an agent (we will term AKM) that can
learn how to execute new commands by interacting with a user in natural language.
We have shown that users who were not required to teach the agent new commands,
do so voluntarily, and save time by executing these taught commands. However, AKM
was limited to interaction by text using a web-interface, and was only able to execute
commands in the domain of mock emails.

3 LIA
LIA is composed of a client side running on Android, and a Java based server side.
Figure 3 shows screen-shots of a user interacting with the Android app. LIA listens
for a wake-up phrase (‘Jessica’), and then lights up, waiting for the user to give a
voice command. The recording of the command is sent to the server side which, using
an ASR service, is converted to text. The command is then processed and the client
receives the response, which can either be text that is spoken back to the user, or some-
thing more complex such as opening an app. The user may also communicate with
LIA using text (rather than speech). See https://tinyurl.com/LiaDemo for
a demonstration of a user interacting with LIA. In this demonstration, LIA answers
a factoid question, plays a song, sets a reminder, and learns a new command. See
https://tinyurl.com/LiaDemo1 for a demonstration of LIA learning a com-

3

https://tinyurl.com/LiaDemo
https://tinyurl.com/LiaDemo1


plex new command in the email domain, and based upon its generalization method,
executing this learned command with a different argument.

LIA uses the Combinatory Categorial Grammar (CCG) [24] parser to map user
commands to logical forms, which can be handled and executed by the server. Using
CCG is useful due to its tight coupling of syntax and semantics [28]. A CCG semantic
parser is composed of a lexicon, a set of grammar rules, and a trained parameter vec-
tor. The lexicon maps words to syntactic categories, and species how each word can
be combined with adjacent words and phrases during parsing to become both a new
syntactic category and a logical form. The logical form represents the semantics of
the sentence which later can be executed. For example, the word “set” is mapped to
the syntactic category - ((S\PP StringV)/MutableField), the argument type appears on
the right of the slash (“MutableField” in the example) followed by another argument
to the left of the slash (“PP StringV” in the example) and the return type on the left
(“S” in the example above). In addition, the word “set” is mapped to a logical form
(lambda x y (setFieldFromFieldVal x y)), which defines the function that should be
operated when parsing the word using the parameters from the previous map. The set
of grammar rules correspond to standard function operations, such as application and
composition. Our grammar also includes a small number of unary rules that represent
common implicit conversions between types. The trained parameter vector (which was
trained using machine learning) is used by the CCG parser to disambiguate multiple
possible parses and decide which parse is the most relevant at a given context.

In order to support the learning of new commands, the semantic parser can parse
any command into an “unknown command” (however, during the training process the
parser learns not to parse commands into “unknown commands” if these commands
can be parsed into any other logical form). When this happens, LIA asks the user
whether she would like to teach LIA how to execute this new command. If the user
acknowledges, LIA transfers to a learning state, and records all following commands
provided by the user. When the user finishes the teaching process, LIA compiles all
these commands into a logical form that is associated with the original command being
taught. This logical form is added to the CCG lexicon. LIA includes a generalization
method which allows the semantic parser to generalize the instruction to interpret other,
similar commands, by identifying parts of the command which may be arguments. The
algorithm learns which words in the taught command correspond to each part of the
complete logical form. For example, if the user teaches LIA a command “Reply got
it”, LIA will understand that “got it” is an argument and later can execute the com-
mand “Reply see you then” correctly. The detailed logical form execution method and
the lexicon induction algorithm (for learning new commands and generalize the com-
mands) is described in [3]. In order to support all the new features, we have extended
the original lexicon to 410 entries and the set of examples to 193 examples.

LIA supports the “undo” command. This was implemented using the Command
design pattern and Java lambda expressions. Every time a command is executed, the
inverse command is pushed into a stack (if applicable). If the user requests to undo the
previous command, the inverse of the most recent command is popped out of the undo-
stack and is executed. This allows the user to undo as many commands as she wishes.
Tables 1 and 2 summarize the basic and complex commands currently supported by
LIA, along with examples on how these commands may be used. Table 3 describes the

4



Feature Example command

Playing YouTube songs
• “Play the piano man”
• “Play the beatles”

Read news
• “Science news”
• “Read news”

Set timer
• “Set a timer for 5 minutes with message go home”
• “Tell me to go home in 5 minutes”
• “Remind me to take the cake out of the oven in an hour”

Set alarm • “Set an alarm for tomorrow at 7am”

Read timer/ alarm
• “Read timers”
• “Read alarm”

Cancel timer/ alarm
• “Cancel timers”
• “Cancel alarms”
• “Cancel 6 am alarm”

Current time/date
• “What’s the time?”
• “What’s the date?”

Factoid questions
• “Who is the president of the united states?”
• “How many kilometers in a mile?”

Spell words • “Spell elephant”

Undo previous command(s) • “Undo”

Forget all learned • “Forget everything”

Table 1: The basic commands currently supported in LIA.

ability to teach LIA new commands.
The detection of a wake-up phrase is based upon CmuSphinx [16]. It is important

to note that LIA can listen to the wake-up phrase even when LIA is not the app in focus.
Furthermore, LIA even listens for the wake-up phrase when the screen is off; the screen
turns on as soon as LIA detects the wake-up phrase. This allows LIA to be operated
from a distance. In addition, an external microphone was added to the phone running
LIA, as well as an external speaker. Using both an external microphone and speaker
required a mic-audio splitter (See Figure 1 for an image of LIA connected to both an
external conference microphone and an external speaker, by the mic-audio splitter).
These steps along with future development of basic commands such as the control of
smart devices may allow LIA to serve as home assistant; LIA would be able to support
smart home operation commands such as turning on and off the lights, controlling air
conditions, electrical boiler etc. Furthermore, based upon these basic operations LIA

5



Feature Example command

Read email • “Read email”

Compose and send email

• “Compose a new email”
• “Set the recipient to Dan’s email”
• “Set the body to Charlie is on his way”
• “Send the email”

Say something Useful when teaching new commands, for example:
• “Thank you”, “Say you are welcome”
• “Bye”, “Say goodbye, see you soon”

Defining new concepts, in-
stances and fields

Users can define new concepts, create new fields, cre-
ate new instances, get concept information. For example:
• “Define concept person”
• “Person has a favorite song”
• “Becky is a person”
• “Beckys favorite song is rolling in the deep”
• “Play Beckys favorite song”

Table 2: Complex commands currently supported in LIA.

can learn to compose complex commands such as turning on the oven while increasing
the air conditioning fan strength.

While, LIA allows the user to change the wake-up phrase to any phrase including
a word (or several words) out of the CmuSphinx dictionary (approx. 133K words),
finding the default wake-up phrase, turned out to be a complex task. We had to find
a phrase that could be detected when called by users with different accents, not be in-
voked when not being called and sound like a female name (in order to match the text
to speech component). Out of tens of wake-up phrases we have considered, ‘Jessica’
turned out to work best when tested against an initial group of four subjects with dif-
ferent accents (not included in the user study). When LIA asks the user a question (i.e.
a sentence ending with a question mark), the user does not need to say the wake-up
phrase again, but can naturally respond.

Unfortunately, Android allows only a single app to access the microphone. Since
we want to have full access to the actual voice signal, our only option was to send a
recording to our server and access an ASR service from our server (rather than access-
ing an ASR server directly from the phone). Another issue that came up due to this
same exact limitation of Android, is, that while LIA is listening for a wake-up phrase,
the user cannot use Skype or WhatsApp voice communication, or use Google Now.
Fortunately, LIA listening for the wake-up phrase does not affect regular phone con-
versations. For this reason, we added a button on the GUI which causes LIA to release
the microphone and not listen for the wake-up phrase. Even when LIA is not listening
for the wake-up phrase, the user can still click on the talk button and give LIA a voice
command.

While listening for a command, LIA needs to decide when the user finished giving

6



There are two options for teaching LIA new commands:

1. Say something LIA doesn’t know how to execute and
then say yes when she asks if you would like to teach
her.

2. Say, for example “I want to teach a new command”, and
then give the command.

• In the following example a user teaches LIA to greet
a person followed by playing his or her favorite song
(assuming the person has a favorite song defined):

- User: “Greet Caroline”
- LIA: “Would you like to teach me?”
- User: “Yes”
- LIA: “What should I do when you say for example

‘Greet Caroline’?”
- User: “Say hello Caroline, here is your favorite

song”
- LIA: “What should I do next?”
- User: “Play Carolines favorite song”
- LIA: “What should I do next?”
- User: “That’s it”
- ...
- User: “Greet John”
- LIA: “Hello John, here is your favorite song”
- LIA: [Playing John’s favorite song]

Table 3: Learning by natural language.

a command. In order for LIA to decide that the user has said a complete utterance,
we have determined several threshold which turned out to work well in practice. LIA
requires at least 200 milliseconds of speech, and an ending silence of at least 320
milliseconds. If LIA detects additional speech before it gets the response from the
ASR, it will revoke the ASR request and continue to listen to the user until it detects
another 320 milliseconds of silence. This allows LIA to have a fast response if the
user has actually completed her utterance, while still listening for the full utterance.
While detecting whether the user is talking or not is a classical voice activity detection
(VAD) problem [23], in practice, all VAD methods we have tested require at least
several seconds of a baseline signal. Unfortunately, the whole command is only a few
seconds long, and therefore VAD methods we have tested did not seem to perform
well. Instead we apply a low-pass-filter (with a window of 500) on the signal, and treat
any sound that has an amplitude less than 1.4 times the lowest sound amplitude in the
last 0.5 seconds plus some constant, as silence. We use a slightly higher threshold for
determining speech.

LIA uses the Google ASR (Automatic Speech Recognition) API to convert the

7



Figure 1: A photograph of LIA connected to the microphone and speaker.

users speech into text. Once the user has finished to speak, the ASR processes the sen-
tence and returns text which it believes is a best fit to what has been said. The ASR also
returns a list of candidates (alternatives), that were given a lower score, but might still
match the user’s speech. For example, given a user speech command, the ASR returned
the following response structure: ”get the weather”, confidence:0.96787101. alterna-
tives: ”check the weather”, ”what the weather”, ”the weather”, ”I get the weather”.
LIA’s server side first tries to parse the initial response obtained from the ASR. If this
parse returns a command, it is executed, however, if this parse returns the “unknown
command”, LIA tries to parse the following results in the order of their appearance in
the returned ASR candidate list. If LIA can parse any of these candidates to a command
(other than the “unknown command”) this command is executed. However, if all parses
result in an “unknown command”, the command is considered to be unknown, and the
user is asked whether she would like to teach LIA how to execute the command, using
the initial response obtained from the ASR.

LIA uses several APIs to provide content. LIA uses the YouTube API to find a
requested video or song, the guardian API to provide news, the Aylien API to sum-
marize this news and the Worlfram Alpha API to answer factoid questions. LIA also
support composing and reading real emails. Email capabilities in LIA can be invoked
on-demand, that is, the first time the user tries to compose an email or read an email,
LIA replies that this action requires obtaining the user’s email and password, and the
user is prompted to provide their user email and password. The password is securely
saved on the server using the AES algorithm [10], based upon the user’s phone iden-
tifier and a random number (known as salt). The next time the user requires email

8



Figure 2: A diagram of the whole process LIA go through.

capabilities the user is not required to provide her password again, but the server uses
the user’s phone identifier in order to obtain the user’s email address and password.

Our initial efforts of using Olympus [6] as a dialog framework were not very suc-
cessful, as we had to replace many of the components in Olympus, and eventually,
found it simpler to write the whole system ourselves. LIA is open source and all code
of both the client and the server is available on GitHub. LIA is deployed as a beta
application on Google Play. Figure 2 presents an overview of LIA.

4 Experimental Evaluation
In order to evaluate LIA we recruited 15 subjects, of which 6 were male and 9 where
female. The subjects’ ages ranged from 18 to 49, with a mean of 35.8 and median
of 36. All subjects live in Israel and have a good level of English. We hypothesized
that the subjects would be able to interact with LIA by natural language speech and,
more importantly, teach LIA new commands. Another purpose of experimenting with
human subjects was to evaluate whether human subjects appreciate the importance of
generalization of taught commands.

Each subject received a brief description of LIA (in a few sentences), and got a
short read-me file describing the abilities of LIA. The subject then received a mobile
phone with LIA installed on it and was asked to complete 18 tasks. The first task was
to ask LIA to forget everything she has learned from previous subjects (to allow the
subject to operate on a fresh version of LIA). The following is the list of tasks that the
subjects were required to execute with LIA:

1. Ask LIA to forget everything.

9



2. Ask LIA to Play “strawberry fields forever”.
3. Think of something you want to hear or watch and ask LIA to Play it.
4. Ask LIA: “who is the president of the united states?”
5. Ask LIA another factual question.
6. Ask LIA for the time or date.
7. Ask LIA to remind you something in 30 seconds.
8. Ask LIA to remind you something else.
9. Ask LIA to read your email.

10. Define a new concept “contact” with fields “phone” and “email”:

(a) “define concept contact”.
(b) “a contact has an email”.
(c) “a contact has a phone number”.

11. Define a new instance of the concept contact, for example:

(a) “Kate is a contact”
(b) “Kate’s email is kate@kate2.com”
(c) “Kate’s phone number is 123456789”

12. Ask LIA what is the email of the instance you created.
13. Send an email using LIA.
14. Teach LIA that when you say “good morning”, she should say “have a wonderful

morning”.
15. Tell LIA “good evening”.
16. Tell LIA “good girl”.
17. Teach LIA something you want her to do / say.
18. Check if LIA succeeded to generalize the command you taught her.

The tasks presented to the subjects were composed such that they gradually build
up task complexity, to allow the subjects a gradual learning curve. For each of LIA’s
abilities the tasks start out very specific, with later tasks being more general, with some
tasks including examples which make redundant the need to use specific tasks. All
examples were already a part of LIA’s instructions (readme file). For example, task 2,
“Ask LIA to Play ‘strawberry fields forever’ ”, was specific, therefore, the following
task, “Think of something you want to hear or watch and ask LIA to Play it”, was
general. Table 4 summarize the different types of tasks the subjects were requested to
complete. Note that the subjects were introduced to LIA’s ability to learn new com-
mands and generalize them in tasks 14 through 18 (5 tasks in total), therefore, they had
a good level of understanding the concept of generalization when performing task 18.

Upon completion of all the tasks, the subjects were asked to complete a four parts
questionnaire regarding their experience with LIA. On the first part they were asked
to rate each and every feature they tried (playing music on YouTube, asking factual
questions, setting an alarm or a timer, defining new concepts and instances, reading

10



(a) (b)

(c) (d)

Figure 3: A screen-shot of LIA during a conversation with a user: (a) The user asks
a factoid question and gets an answer; asks to play a YouTube video; and gives a
command that LIA is not familiar with. (b) The user teaches LIA the new command.
(c) The user uses the generalized newly taught command, and asks to set a reminder.
(d) The user defines a new concept with the field ’email’; defines a new instance (John);
and asks to retrieve John’s email.

11



Task type Tasks numbers
Specific tasks 1, 2, 4, 7, 14, 15, 16
General tasks 3, 5, 6, 8, 9, 12, 13, 17, 18

Tasks with examples 10, 11

Table 4: Different types of tasks the subjects were requested to complete.

and sending emails and teaching LIA new commands). The rating score ranged from
1 to 5 on a Likert scale (1- Very disappointed, 2-Disappointed , 3-Neither disappointed
nor satisfied , 4-satisfied ,5-very satisfied).

The second part of the questionnaire focused on the ability of LIA to learn new
commands. The subjects were asked to determine what their motives for teaching LIA
new commands were .They were asked to choose the most appropriate statement from
the list below:

1. I don’t think I would be teaching LIA any new commands.
2. I would teach LIA new commands just to check if and how it works.
3. I would teach LIA some fun commands.
4. I would teach LIA new commands in order to give short aliases to longer com-

mands.
5. I would teach LIA new commands in order to automate longer tasks (composed

of several commands).
6. I would teach LIA new command in order to giving aliases to commands that

can only be typed in (e.g. commands in a foreign language).

The subjects also had to indicate whether LIA succeeded to generalize the com-
mands they have taught. Two more questions in this part checked the subjects level of
willingness to share new commands they had taught the agent with others, as well as
their willingness to use commands that LIA learned from others.

On the third part of the questionnaire, subjects were asked to assign their level of
agreement with each of the following statements on a 7-point Likert scale (strongly
disagree, disagree, slightly disagree, neither agree nor disagree,slightly agree, agree,
strongly agree):

1. LIA is smart

2. LIA understood me

3. I would like having LIA on my phone

4. An agent that can be taught new commands is useful.

The first 3 statements (LIA is smart, LIA understood me and I would like having LIA
on my phone) are identical to the statements that appear in [3], which were evaluated
on a 7-point Likert scale as well. In order to fully understand the attitude the users had
towards generalization of commands, we asked them to rate two additional statements:

12



Criterion LIA AKM
Completion rate 80% 41%
Parse failure 28% 15.4%
Execution error 5.4% 5.4%
“LIA is smart” 5.0 5.0
“LIA understood me” 4.33 5.5
“I would like to have LIA on my phone” 4.73 4.6

Table 5: A comparison between LIA (this paper) and the text based agent from [3]
(AKM).

(1) Generalizing commands to other similar commands is an important feature (2) I
only care about the execution of the command I taught the agent (and don’t care about
other similar commands).

In the last part of the questionnaire the subjects were asked about their acquain-
tance with programming. The subjects could choose one of the following: None or
very little; Some background from high-school or equivalent; Some background from
college/university or equivalent; Bachelor (or other degree) with a major or minor
in software, electrical or computer engineering or significant knowledge from other
sources. We assigned numbers to each of the options, resulting in a numeric measure
of acquaintance with programming from 1 to 4.

5 Results
Most of the subjects (80%) completed the full list of tasks described above (in com-
parison to 41% with AKM). Two subjects encountered difficulty in the tasks related to
concepts: defining a concept and creating an instance of a concept. Another subject
failed the last two tasks of the experiment, and did not teach LIA a new command. The
average completion time was slightly under 33 minutes (32.6). The fastest subject has
completed the experiment in only 20 minutes while the longest experiment lasted 62
minutes. Table 5 presents a comparison on different criteria between LIA and AKM.

As for the success rate of the parsing and execution, out of 798 commands, 28%
(228 commands) were parsed to an unknown command, which in most cases is a parse
failure (in comparison to 15.4% in AKM). An additional 5.4% (43 commands) resulted
in an execution error. For example, when defining a concept that already exists or
setting an email to a non-email value (in comparison to 5.4% in AKM)

We evaluate the performance of LIA on the following five categories:

1. General features (common in current virtual assistants): Playing music on YouTube,
asking factual questions and setting an alarm or a timer.

2. Concepts: Defining new concepts, defining fields and creating new instances.

3. Complex features: Reading and sending emails (these features may require ad-
ditional definitions such as defining a concept named contact, and creating an
instance of this contact).

13



4. New commands: Teaching LIA new commands including the method used to
generalize these commands, and sharing commands with other users.

5. Overall user satisfaction: The user rating as obtained from the third part of the
questionnaire.

Feature Result
Play music on YouTube 4.6

Ask LIA factual questions 4.13
Set alarm or timer 4.13

Define new concept 2.93
Read and Send emails 3.07

Teach LIA new commands 3.67

Table 6: User scores of different features of LIA.

Table 6 presents the average scores given by the subjects to the different features
of LIA. LIA was very successful in terms of General features, with playing music
on YouTube getting 4.6 points on average , asking LIA factual questions getting 4.13
points on average, and setting an alarm or a timer achieved 4.13 points on average.
Furthermore, 80% of the subjects found the feature of playing music on YouTube one
of the most useful feature. 60% of the subjects found the feature of setting an alarm
one of the most useful feature. 47% of the subjects found the feature of asking fac-
tual questions one of the most useful feature (each subject could chose more then one
feature as the most useful feature).

In the category of Concepts and that of complex features, LIA did not perform
as well. Defining new concepts, defining fields and creating new instances obtaining
only 2.93 points on average. This was the only feature with an average suggesting that
the subjects were somewhat disappointed. Reading and sending email receiving only
3.07 points on average. In addition, not even a single subject mentioned defining new
concepts as one of the most useful features of LIA, and only 26% of the subjects noted
reading and sending emails as one of the most useful features.

LIA has shown moderate success in the most important category of teaching LIA
new commands, with an average user score of 3.67 points. We note that only 13%
of subjects said that if they would use LIA on daily basis they don’t think they would
be teaching LIA any new commands; with the rest of the subjects, 87%, saying that
they would teach LIA new commands for some purposes: 27% said that they would
use LIA to automate longer tasks, 20% would teach LIA some fun commands, another
20% would teach new commands in order to give aliases to commands that can only be
typed (for example, commands in a foreign language), and the rest, 20%, would only
to check if and how teaching new commands works.

Another important feature (not currently supported by LIA) is sharing new com-
mands between different users of LIA. The subjects have shown great interest in shar-
ing commands they taught LIA with other users, giving such a feature a score of 4.4
points. In addition, the subjects were interested in using commands that others have
taught LIA and gave such a feature a score of 4.53 points.

14



Figure 4: Users’ different motives for teaching LIA new commands.

As for the overall user satisfaction questions (which used a 1 − 7 Likert scale) the
subjects seemed to slightly agree that LIA was smart, giving it 5.0 on average (interest-
ingly, this same question got an average score of 5.0 with AKM as well); the subjects
gave LIA 4.33 with respect to whether they thought that LIA understood them (in
comparison to 5.5 with AKM). The subjects gave LIA a score of 4.73 with regards to
whether they would like to have LIA on their phone (in comparison to 4.6 with AKM).
The subjects seemed to agree that an agent that can be taught new commands is useful,
giving this question a very high score of 6.13 on average. The subjects also expressed
the importance of generalization by agreeing with the statement on generalization and
giving it a score of 5.8 while disagreeing with the counter statement (which claims
that they only care about the command that they taught and not about other similar
commands) and giving that statement only 2.87.

Average time Standard % of all Normalized
per single task deviation tasks % of all tasks

Specific Tasks 1.33 0.80 28.0% 19.1%
General Tasks 1.80 1.46 48.7% 25.7%

Tasks with examples 3.87 0.28 23.3% 55.3%

Table 7: Average completion time per single task, standard deviation of the average
completion time of the tasks in a given type, the time each task type took in proportion
to the total time of the experiment, and this proportion when accounting for the number
of tasks in each type.

15



Average time Standard deviation % of all tasks
Task 1 2.57 1.80 7.7%
Task 2 1.03 0.89 3.1%
Task 3 0.80 0.63 2.4%
Task 4 0.90 0.46 2.7%
Task 5 0.88 0.87 2.6%
Task 6 0.84 0.49 2.5%
Task 7 0.98 0.92 2.9%
Task 8 1.04 1.38 3.1%
Task 9 2.01 1.29 6.1%

Task 10 4.07 2.89 12.2%
Task 11 3.67 2.92 11.0%
Task 12 0.98 0.84 2.9%
Task 13 4.80 2.60 14.5%
Task 14 2.33 0.98 7.0%
Task 15 0.43 0.42 1.3%
Task 16 1.04 0.79 3.1%
Task 17 3.67 3.54 11.0%
Task 18 1.16 0.71 3.5%

Table 8: Average completion time per task, standard deviation of completion time of
each of the subjects, and the time each task took in proportion to the total time of the
experiment.

Table 7 summarizes the average time it took the subjects to complete the tasks of
each of the three types (that is, specific tasks, general tasks, and tasks with examples).
Table 8 provides additional details on each of the tasks. As expected, the general tasks
took longer, on average, than the specific tasks. However, the tasks with examples
took even longer to complete. This is because the tasks with examples were harder
in the first place and therefore were accompanied with examples in order to slightly
simplify them. The high standard deviation of the general task type, suggests that
some of the general tasks took much less than others. For example, while task 3 (Think
of something you want to hear or watch and ask LIA to play it) took less than one
minute on average, task 13 (composing and sending an email) which is of type general
task as well, took nearly 5 minutes on average. The first task, despite being a very
specific task (ask LIA to forget everything), took much longer than average. This is
expected, as being the first task the subjects had to perform, this task required them
to become acquainted with LIA as well as activating her by the wake-up phrase. We
would also like to note the very large standard deviation of task 17, which was teaching
LIA new commands, as two subjects took over 10 minutes to complete this task, while
five subjects took only slightly over one minute.

Table 9 compares measures of subjects who have completed the entire experiment
successfully with those of subjects that have failed at least one of the tasks. All dif-
ferences between the two groups are small and not statistically significant. As can be
seen in the table the average completion time for subjects who have successfully com-
pleted all tasks is slightly lower than those who did not complete all tasks. However,

16



these differences are not statistically significant, as there were 4 types of subjects. The
first type included subjects that when they encountered any communication difficulties,
gave up and moved on to the next task. The second type of subjects, did not give up
that soon and spent time trying to accomplish the tasks (some of these subjects have
eventually succeeded). The third type of subjects communicated fluently with LIA and
tried to complete the experiment as fast as possible. The last type, which is in fact the
most interesting, includes subjects that did not encountered any difficulties in commu-
nicating with LIA, but still took longer to complete the experiment. These subjects
were very enthusiastic with the experiment and enjoyed trying more commands, and
therefore took longer.

We found a weak correlation (−0.24) between the average rating of the three over-
all user satisfaction questions (”LIA is smart”, ”LIA understood me”, ”I would like
having LIA on my phone”) and the subject completion time. This weakly suggests
that subjects that took less time to complete the experiment, rated LIA higher. We be-
lieve that, as mentioned above, this correlation is not very large because some subjects
who enjoyed interacting with LIA did so for a longer period of time. We found nearly
no correlation (−0.05) between the subject completion time and the average feature
scores. However, when comparing the scores that the subjects gave each feature with
the time it took each subject to complete tasks related to that specific feature, we found
a moderate correlation of −0.37. This suggests that, in general, subjects that were
faster at completing tasks of a specific feature, gave that features a higher score.

Succeeded (80%) Failed (20%)
Average total time (Standard deviation) 31.67 (8.72) 36.33 (22.52)

Average rating tasks types 3.83 3.72
Average rating LIA 4.64 4.89

Table 9: A comparison between subjects who had failed at least one of the tasks of the
experiment with subjects who had completed the entire experiment successfully.

Recall that we had two hypotheses:

1. The subjects would be able to interact with LIA by natural language speech and,
more importantly, teach LIA new commands.

2. Human subjects appreciate the importance of generalization of taught commands.

The results presented above confirm our hypotheses. All subjects have interacted with
LIA by natural language speech, 80% of the subjects have completed the full task list
and 93.3% of the subjects have successfully taught LIA new commands (which they
have came up with themselves). The subjects also highly agreed that learning new
commands is useful. The results also indicate that subjects realize that generalization
of new commands is important and useful.

We would like to mention a subject that was very enthusiastic about the experiment.
This subject taught LIA a complex new command. She taught LIA that when she
says ’goof’ LIA should do all the following: (1) Play a song from YouTube ; (2) Set
a reminder to take a break in 30 seconds; (3) Read an email; and (4) Say ’have a

17



wonderful day’. After defining this command, the subject tried it out and was excited to
see it all works. Teaching this command took her much longer than the average subject
(8 minutes). This duration is reasonable considering the level of the complexity of the
command she had taught. While all subjects have taught LIA new commands, most
other subjects did not combine several abilities of LIA in their new command.

6 Discussion
Since no other system supports teaching new commands by natural language speech,
there was no system that could have been directly compared to LIA. Therefore, we
compare the results in this paper with the results from [3] (AKM), in which users could
teach the system new commands by text. This comparison has its limitations, as the
communication with LIA is by speech, while communication with AKM is by text.
Another major difference between the two systems is that the AKM supported only
email related commands (and thus the experiment focused solely on email communi-
cation), while LIA also supports common virtual assistants’ commands such as playing
music, answering factoid questions, saying something, spelling out words, and setting a
timer, an alarm or a reminder (and thus the experiment focused on each of these tasks).
Nevertheless, the groups of subjects in the two experiments appear similar in terms of
gender (46.7% males and 53.3% females in LIA; 51.2% males and 48.8% females in
AKM), and age (with an average of 35.58 in LIA and 35.1 in AKM; p = 0.8 in a T-Test
comparison).

As can be seen in Table 5 LIA outperformed AKM in both the completion rate and
the user rating for the statement of “I would like to have LIA/the agent on my phone”.
This shows that LIA is more user-friendly than AKM. Interestingly, LIA and AKM
had the exact same execution error. We believe that keeping the same rate of execution
error in LIA as in AKM, despite the additional complexity level added by dealing with
actual speech and additional domains presents the robustness of the system. However,
AKM outperformed LIA in the parse failure rate and in the user rating for the statement
“LIA/the agent understood me”. We believe that this is a result of the additional com-
plexity level added by dealing with actual speech, rather than only text in AKM, for
example, there were many cases in which the ASR has failed, mixing ’as’ with ’has’ or
’John’s email’ with ’Jones email’ etc. There were also failures caused by a false wake-
up phrase detection, or the users saying the wake-up phrase more than once. These
results may also be attributed to the significantly broader set of tasks LIA can handle,
in comparison to AKM which was limited to the email domain, making it much easier
for AKM’s parser to understand the user, and for the user to learn how to effectively
communicate with AKM.

Interestingly, there was no correlation (−0.098) between the level of acquaintance
with programming and the time it took each subject to complete all tasks. In [3],
where a weak correlation was found, we hypothesized that such a correlation may be
attributed to typing speed. Not finding this correlation in current work (in which inter-
action was done by speech), strengthens this hypothesis. There was, however, a weak
negative correlation (−0.28) between the level of acquaintance with programming and
the ratings that the subjects gave LIA. We believe that this is because subjects with a

18



higher level of acquaintance with programming may be less tolerant towards bugs and
may expect a flawless system.

As stated in the results section, creating concepts, fields and instances received
a relatively low rating. We believe that this is because this feature appeared to be
more complex for the subjects to master. This could be because that understanding the
idea of concepts, fields and instances is non-trivial. We believe that had the subjects
received additional examples and explanation on how to use these concepts and fields,
they would have rated this feature higher. Note that teaching new commands obtained
a much higher ranking, likely because it seems more intuitive to the subjects.

One might be concerned by the fact that in the experiment, the experimenter used
specific words and phrases when instructing the subjects to communicate with LIA.
We would like to note that many of the virtual assistants like Siri, Google Now, Mi-
crosoft’s Cortana and Amazon’s Echo show the users example commands and suggest
new commands. For example, users of amazon echo get a newsletter including a list of
commands the user can teach (about 20 examples commands). Nevertheless, LIA can
understand a variety of expressions and word order of commands given by users. For
example, all the following expressions “Set subject to hello”, “Put hello in the subject”
, “The subject is hello”, “Fill the subject with hello” result in the same execution, that
is, setting the subject of an email to the value “hello”. Furthermore, if the user phrases
a command differently (in a way that LIA does not understand), the user can teach LIA
that this is a paraphrase of a command LIA already knows, and next time the user will
be able to use her own phrasing of the command.

Currently it seems that the main limitation of LIA is that it requires acquaintance
with the agent to become useful, and for the user to feel that LIA actually understands
her. One of the subjects explicitly commented, that the experiment should have been
much longer in order to allow her to fully understand LIAs capabilities and take ad-
vantage of them. In an attempt to mitigate this issue and reduce the required learning
curve we intend to implement a conversational interface [14]. Conversational interface
is a combined UI that allows users to interact with the system by speech integrated with
graphical UI elements such as buttons, images, menus, videos, etc. This combination
allows users to obtain a more holistic experience of the system. We therefore intend
to add a text interface that allows users to complete blanks in pre-written commands,
for example, “play ”, “set to ”, “set a minutes timer”, add
“yes” and “undo” buttons etc. This way, the users will see some of the commands cur-
rently supported by LIA, and should be able to execute them easily by text. Hopefully,
they will slowly migrate to using voice commands.

It is hard to overestimate the importance of this work. If LIA gains control of
many additional actions, LIA would allow anyone to contribute to a global repository
of commands taught all through the world. People could use LIA assuming that it can
execute any command, but in a case that LIA fails, the user may simply teach it how to
execute that command.

19



7 Conclusions
In this paper we present the first speech based virtual assistant that can learn new com-
mands by instruction. We build on an earlier version of our text based agent from [3],
and have added support to a speech interface, as well as many different features, some
of which are common to virtual assistants (such as setting a timer and playing music).
A user study that we have ran shows that people are excited about a personal agent
that can learn new commands, and about the idea of sharing these taught commands
with others. We also determine what users believe are the most important use cases of
such an agent. We have deployed LIA to a beta community on Google Play, and have
10 active users. We intend to release LIA to production in the near future. We intend
to add support to sharing commands and learn what type of commands users actually
teach LIA and share with each-other.

8 Future Work
LIA deployment opens up many significant opportunities for future work.

Conditional execution: We are considering adding to LIA the ability to learn con-
ditional execution. For example, a user may want to teach LIA the command ”safe
send”, with an expectation from LIA to first read the email and then ask if it should
send the email (sending the email only if the user has replies “yes”). This requires LIA
to support different execution threads while learning, depending on the user response.
For example, after teaching LIA to read aloud the email, LIA may ask what should be
done next. The user may then say “ask me if I’m sure”, LIA would then ask ”what
should I do if you say yes?”, and the user will give the final command. In run-time,
LIA will execute the final command only if the user replies “yes”. LIA would sup-
port not only yes/no conditions, but also requests like “ask whom should I forward this
email to”, LIA would then reply “suppose you answer John, what should I do next?”
and then use “John” as an argument. Adding support for conditional execution in LIA
would turn LIA into a platform for creating dialog systems in natural language.

LIA-light: Our experiments indicate that some of our users find the most value
in teaching LIA fun commands. For example teaching it that when asking who is the
smartest girl in the world, it should answer ”Alison”. Therefore, we are working on
a light version that only deals with responses that aren’t tied to execution commands.
We want to allow users to teach such simple interaction commands by saying a simple
sentence, instead of the current teaching process. For example, if the user would like to
teach the command above, she could simply say: “when I say who is the smartest girl
in the world, then answer Alison”. We believe that LIA-light can be useful not only as
an app on a mobile phone, but also be placed at the core of a toy, such as a robot toy
or an artificial parrot etc. that can be taught new responses by using natural language
(without a need for a graphical user interface). Sharing taught commands will be a core
feature of LIA-light (and would be much simpler to implement than in LIA). Sharing
and deletion of specific commands should be simpler in LIA-light.

Concept learning by dialog: We are exploring a method for learning concepts
(such as spam mail) by dialog. After the user gives some explanation on the concept,

20



if the agent cannot fully understand the whole explanation, it may identify some parts
of the sentence that it does not understand and ask follow-up questions only on that
part. Once it gets an answer to this follow-up question it may either decide to further
drill-down into a part of the follow-up answer, or move back up to the higher level.
We would like to show that by using a dialog, the agent can learn better from human
teachers.

Implicit feedback: We would like to improve LIA’s performance without requir-
ing the user to explicitly mark whether an execution is correct or not. We consider two
different methods of detecting a user-feedback and two different mediums. The first
method is by analyzing the current command, and the second method is by compar-
ing the current command to previous command. Each of these options can be done
on verbal (actual words) or voice (acoustics). Namely, we consider the following four
options: 1. Verbal, current sentence: for examples commands like: ”No, set the subject
to hello”. 2. Verbal, sentence comparison: for example, if the first sentence is ”set the
recipient to mom”, and then the second sentence is ”set the recipient to mom’s email”,
the distance between these two sentences should be small. The distance between sen-
tences can be measured using different word embedding methods (e.g. word2Vec). 3.
Voice, current sentence: we believe that when one is not satisfied with LIA’s response,
she will react with a different tone of voice. 4. Voice, sentence comparison: we will
use different methods to compare the current signal with the previous signal. This can
be especially useful in cases where the wrong command was executed due to a fault in
the ASR. (e.g., ”set subject to Johnny”, ”set subject to join me”). We can use dynamic
time warping for detecting this distance. Some work on obtaining implicit feedback
from speech was performed in [11].

9 Acknowlegments
This work was a part of the InMind project for the creation of a smart personal assistant
[2].

Authors’ Biographies
Merav Chkroun holds a degree in computer science engineering from JCT - Lev Aca-

demic Center, Israel. She is a PhD student in the computer science department in
Ariel University, Israel and works there as a lecturer. Her main research interest
is human agent interaction such as chatbots and virtual assistants.

Amos Azaria is a senior lecturer at CS, Ariel University, Israel. He received his PhD
from Bar Ilan University, Israel in 2015 and was a post-doctoral fellow at CMU,
Pittsburgh PA. Azaria has co-authored over 40 papers and won the Victor Lesser
distinguished dissertation award for 2015.

21



References
[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot

learning from demonstration. Robotics and autonomous systems, 57(5):469–483,
2009.

[2] A. Azaria and J. Hong. Recommender systems with personality. In Proceedings
of the 10th ACM Conference on Recommender Systems, pages 207–210. ACM,
2016.

[3] A. Azaria, J. Krishnamurthy, and T. M. Mitchell. Instructable intelligent personal
agent. In AAAI, volume 4, 2016.

[4] J. R. Bellegarda. Spoken language understanding for natural interaction: The
siri experience. In Natural Interaction with Robots, Knowbots and Smartphones,
pages 3–14. Springer, 2014.

[5] A. W. Biermann. Natural language programming. Springer, 1983.

[6] D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. I. Rudnicky. Olympus: an
open-source framework for conversational spoken language interface research. In
Academic and industrial research in dialog technologies, pages 32–39, 2007.

[7] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing
a task in a humanoid robot. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 37(2):286–298, 2007.

[8] J. Cassell. Embodied conversational interface agents. Communications of the
ACM, 43(4):70–78, 2000.

[9] M. Chkroun and A. Azaria. “Did I say something wrong?”: Towards a safe
collaborative chatbot. 2018.

[10] J. Daemen and V. Rijmen. The design of Rijndael: AES-the advanced encryption
standard. Springer Science & Business Media, 2013.

[11] M. Gilbert, I. Arizmendi, E. Bocchieri, D. Caseiro, V. Goffin, A. Ljolje,
M. Phillips, C. Wang, and J. G. Wilpon. Your mobile virtual assistant just got
smarter! In INTERSPEECH, pages 1101–1104, 2011.

[12] J. Herrmann. Different ways to support intelligent assistant systems by use of ma-
chine learning methods. International Journal of Human-Computer Interaction,
8(3):287–308, 1996.

[13] T.-H. K. Huang, A. Azaria, and J. P. Bigham. Instructablecrowd: Creating if-then
rules via conversations with the crowd. In 2016 CHI, pages 1555–1562. ACM,
2016.

[14] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo. The rise of bots:
A survey of conversational interfaces, patterns, and paradigms. In Proceedings
of the 2017 Conference on Designing Interactive Systems, pages 555–565. ACM,
2017.

22



[15] K. Kuklinski, K. Fischer, I. Marhenke, F. Kirstein, D. Solvason, N. Kruger, T. R.
Savarimuthu, et al. Teleoperation for learning by demonstration: Data glove ver-
sus object manipulation for intuitive robot control. In Ultra Modern Telecommu-
nications and Control Systems and Workshops (ICUMT), 2014 6th International
Congress on, pages 346–351. IEEE, 2014.

[16] P. Lamere, P. Kwok, W. Walker, E. B. Gouvêa, R. Singh, B. Raj, and P. Wolf.
Design of the cmu sphinx-4 decoder. In INTERSPEECH, 2003.

[17] T. J.-J. Li, A. Azaria, and B. A. Myers. Sugilite: creating multimodal smartphone
automation by demonstration. In CHI’17, pages 6038–6049. ACM, 2017.

[18] W. Mark and R. Perrault. Calo: a cognitive agent that learns and organizes, 2004.

[19] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa,
and K. Ikeuchi. Learning from observation paradigm: Leg task models for en-
abling a biped humanoid robot to imitate human dances. The International Jour-
nal of Robotics Research, 26(8):829–844, 2007.

[20] C. Quirk, R. Mooney, and M. Galley. Language to code: Learning semantic
parsers for if-this-then-that recipes. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics (ACL-15), pages 878–888, Beijing,
China, July 2015.

[21] C. Quirk, R. J. Mooney, and M. Galley. Language to code: Learning semantic
parsers for if-this-then-that recipes. In ACL (1), pages 878–888, 2015.

[22] A. Reed. Creating Interactive Fiction with Inform 7. Cengage Learning, 2010.

[23] J. Sohn, N. S. Kim, and W. Sung. A statistical model-based voice activity detec-
tion. IEEE signal processing letters, 6(1):1–3, 1999.

[24] M. Steedman and J. Baldridge. Combinatory categorial grammar, 2011.

[25] S. Thorne, D. Ball, and Z. Lawson. Reducing error in spreadsheets: Exam-
ple driven modeling versus traditional programming. International Journal of
Human-Computer Interaction, 29(1):40–53, 2013.

[26] W. Wahlster and A. Kobsa. User models in dialog systems. In User models in
dialog systems, pages 4–34. Springer, 1989.

[27] T. Watanabe, M. Okubo, M. Nakashige, and R. Danbara. Interactor: Speech-
driven embodied interactive actor. International Journal of Human-Computer
Interaction, 17(1):43–60, 2004.

[28] L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form:
structured classification with probabilistic categorial grammars. In UAI ’05, Pro-
ceedings of the 21st Conference in Uncertainty in Artificial Intelligence, 2005.

23


	Introduction
	Related Work
	LIA
	Experimental Evaluation
	Results
	Discussion
	Conclusions
	Future Work
	Acknowlegments

