
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020 1

Model-based Reinforcement Learning for
Time-optimal Velocity Control

Gabriel Hartmann1,2, Zvi Shiller1, and Amos Azaria2

Abstract—Autonomous navigation has recently gained great
interest in the field of reinforcement learning. However, little
attention was given to the time-optimal velocity control problem,
i.e. controlling a vehicle such that it travels at the maximal speed
without becoming dynamically unstable (roll-over or sliding).

Time optimal velocity control can be solved numerically
using existing methods that are based on optimal control and
vehicle dynamics. In this paper, we develop a model-based deep
reinforcement learning to generate the time-optimal velocity
control. Moreover, we introduce a method that uses a numerical
solution that predicts whether the vehicle may become unstable
and intervenes if needed. We show that our combined model
outperforms several baselines as it achieves higher velocities (with
only one minute of training) and does not encounter any failures
during the training process.

Keywords-Autonomous Vehicle Navigation, Reinforcement
learning, Motion and path planning

I. INTRODUCTION

THE operation of autonomous vehicles requires the syn-
ergetic application of a few critical technologies, such

as sensing, localization, motion planning, and control. This
paper focuses on a subset of the motion planning problem,
that is moving at the time optimal speeds to minimize travel
time along a given path, while ensuring the vehicle’s dynamic
stability. By “dynamic stability” we refer to constraints on the
vehicle that are functions of its speed, such as not rolling-over
and not sliding [1], [2], [3]. Other constraints that may affect
the vehicle speeds, such as traffic laws and passenger comfort
[4], while important for driving autonomous vehicles, are not
considered in this paper as they are secondary to ensuring the
vehicle stability at high speeds.

Time optimal velocity profile is affected by the vehicle’s
dynamic capabilities, such as its maximum and minimum
acceleration, ground/wheels interaction, terrain topography,
and path geometry. Therefore, the actual underlying dynamic
model of the vehicle is very complex. Yet such a model is
required to ensure that the vehicle is dynamically stable during
motion at any point along the path [1].

Manuscript received: February, 24, 2020; Revised May, 31, 2020; Accepted
July, 6, 2020.

This paper was recommended for publication by Editor Dan Popa upon
evaluation of the Associate Editor and Reviewers’ comments. This research
was supported, in part, by the Ministry of Science & Technology, Israel.

1Gabriel Hartmann and Zvi Shiller are with the Department
of Mechanical Engineering and Mechatronics, Ariel Univer-
sity, Israel gabriel.hartmann@msmail.ariel.ac.il
shiller@ariel.ac.il

2Amos Azaria and Gabriel Hartmann are with the Department of Computer
Science, Ariel University, Israel amos.azaria@ariel.ac.il

Digital Object Identifier (DOI): see top of this page.

Model-based reinforcement learning is an effective way to
learn the complex dynamic model of the vehicle from its
actual responses, thus bridging the gap that separates the real
vehicle dynamics from its analytical model. Furthermore, the
automated learning process does not require exact information
of the vehicle’s physical properties. Therefore, we present
a model-based reinforcement learning method for driving a
vehicle at near time optimal speeds along any given path. The
dynamic model of the vehicle is learned and used for planning
the acceleration actions that maximize vehicle speeds along the
path, without compromising its dynamic stability.

Despite its obvious advantages, reinforcement learning has
its limitations due to the limited time available for any learning
process, which results in a limited exploration of the state-
space. This is particularly evident at the beginning of the
learning process, when the learned model may still be highly
inaccurate [5]. This is critical when attempting to reach the
vehicle’s performance limits during the learning process, as it
may result in a failure (i.e. vehicle instability).

To this end, we propose a dual-model approach that protects
the vehicle from reaching dynamically unstable states. A
simplified and conservative analytical model that accounts for
vehicle dynamic safety is used to predict if every vehicle
command is dynamically safe. If an unsafe maneuver is
attempted, an alternative safe local maneuver is executed. By
relying on both learned and analytical models, our method
gains the best of both worlds: the high performance of the
learned model and the safety of the analytical model.

The proposed methods were implemented in a simulation
for a ground vehicle, moving along arbitrary paths in the
plane. We show that the model-based RL agent learns to
drive the vehicle at high speeds after only one minute of real-
time driving. By intervening in potentially unsafe situations,
our method eliminates any failures during the entire learning
process and even achieves higher velocities as compared to the
velocities achieved by the model-based RL agent alone. We
also compare the results to a model-free RL method (DDPG)
and show that our proposed model-based RL agent converges
in a significantly faster time and achieves higher performance.

The main contributions of this paper are thus twofold: (i)
a model-based reinforcement learning method for driving a
vehicle at near time-optimal speeds along any given path in
less than one minute of real-time learning; (ii) A dual-model
approach, that combines model-based RL with an analytical
planner. This approach protects the vehicle from reaching
dynamically unstable states. Extensive experiments show that
our method outperforms other baselines.



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

II. RELATED WORK

Autonomous driving at high speeds that approach the ve-
hicle’s performance limits was demonstrated so far in simu-
lations [6], [2], on small-size vehicles [7], [8] and even on
full-size vehicles [9], [10]. In these applications, the vehicle
behavior is usually described by a mathematical dynamic
model. While these works demonstrate impressive vehicle
performance, they are model specific and require exact in-
formation of the vehicle’s physical properties.

The need to develop more general techniques lead to the use
of reinforcement learning (RL) to learn the required functions
for autonomous driving. There are two types of RL algorithms:
model-free RL and model-based RL; in model-free RL the
policy is learned based on a reward signal received during
the interaction with the environment. Contrary, model-based
RL first learns a model of the transition dynamics and a
policy is then composed based on this model. Both model-
free and model-based RL are successfully used in the field of
autonomous driving. Most works have focused on perception
and steering [11], [12], [13]. Other works have considered
human imitation for velocity control [14], [15], tracking a
given reference velocity [16], and achieving fuel efficiency
[17].

Some recent works use RL for aggressive driving: Jaritz
et al. [18] use model-free RL for simulated end-to-end rac-
ing. However, the millions of training steps are required to
converge, which is impractical for real applications, and the
safety of the learned driving policy is not guaranteed. Williams
et al. [19] develop an agent that drives a small-size vehicle by
learning its dynamic model. While they achieve good results
with respect to vehicle velocity, their work does not focus on
vehicle’s safety and their planning method is based on intense
sampling. Furthermore, the vehicle must be manually driven
in order to initialize the model.

Safe learning is an active field of research; some works learn
a safe policy, that avoids failure after convergence by defining
a safety-directed optimization criterion or guiding the learning
process by external knowledge [5]. Other works emphasize
safety during the learning process. One way is to update the
policy while preventing the policy to reach unsafe situations by
using a lyapunov function [20], [21]. However, we show that
it is challenging to construct a policy that will be safe with
high probability when driving near the performance limits.
That leads us to the dual-model approach, which enables the
driving policy to focus on performance without considering
safety with high probability. Existing works propose general
methods that are not domain specific that define a safety
backup policy by a formal specification language [22], [23],
others use action pruning in a discrete state space game [24].
A similar approach to our safety module uses model predictive
control to ensure the safety of a learned policy [25]. However,
they assume known system dynamics contrary to our dual
approach that learns the dynamic model and uses an analytical
model as a backup. All these work are not related to time-
optimal velocity control where the system is pushed to drive
near the performance limits. Because of the complex vehicle
dynamics, and the importance of human safety when driving

at high speeds we propose a domain-specific method that
allows us to speed up the learning process and minimize the
number of failures to zero, as was demonstrated in the paper.
Furthermore, we rely on the stabilization policy to drive the
vehicle closer to the performance limits and thus enabling
higher safe velocity.

III. PROBLEM STATEMENT

In our setting, an agent is faced with a vehicle and a
given path, and the agent must determine the acceleration
and deceleration in order to complete the path without failure
at minimal time. These commands are learned by the agent,
whereas the steering angle is controlled by an analytical path
following controller [26].

The path P is defined by N discrete points, P =
{p1, p2, · · · , pN}. The position of the vehicle’s center of mass
is denoted by q ∈ R2 and yaw angle θ. The vehicle’s speed
is vy ∈ R, vy ≥ 0 and the steering angle is denoted by
δ. The action is defined as a = {u, δd}, where u controls
the throttle and brake (which affects vehicle’s acceleration
(and deceleration)), and δd controls the steering. The steering
command δd of the vehicle is provided by a path following
controller (pure pursuit [26]) πδ , which receives as input the
vehicle’s state and the path relative to vehicle’s position.

The time optimal policy maximizes the speed along the path
during a fixed distance. That is, for every path P , the time
optimal policy π∗ outputs, at every time t, the action u =
π∗(st) that maximizes the vehicle speed (minimizing traveling
time), while ensuring that every state st is stable. The time
optimal velocity along path P is the velocity profile vy(t)
produced by the optimal policy π∗.

IV. DYNAMIC MODEL

The dual-model approach is based on a learned model that
is used to drive the vehicle at the maximal speeds, and on an
analytical model that is used to determine the dynamic stability
of the current vehicle state. We first describe the analytical
model that is based on a simple planar bicycle model, as
described next.

A. Bicycle Model

The bicycle model represents the vehicle by only two
wheels, by collapsing the two front and rear wheels into one,
as shown in Fig. 1. The bicycle is steered by the front wheel
at the steering angle δ and is assumed, for simplicity, to be
driven by the force Ft applied on the rear wheel. The radius
of curvature R, measured from the center of rotation to the
center of mass, is easily derived from the steering angle δ:

R =

√
l2r +

(
lr + lf
tan δ

)2

, (1)

where lf and lr are the distances of the front and rear wheels
from the center of mass, respectively. The angle between the
velocity v of the vehicle center mass and its y axis is the
slip angle α. The motion of the bicycle is influenced by two
parameters: the steering angle δ and the driving force Ft.



HARTMANN et al.: REINFORCEMENT LEARNING FOR TIME OPTIMAL CONTROL 3

δ

R vy

lr

y

x

v

α

Ft

θ

Center

lf

of rotation

Fig. 1: The bicycle model

The bicycle’s equations of motion are thus:
ẋ
ẏ

θ̇

δ̇
v̇y

 =


−v sinα
v cosα
v/R

k(δd − δ)
Ft/m

 (2)

where ẋ and ẏ are the projections of v on the vehicle’s local
coordinate frame, and

α = arcsin
lr
R

v =
vy

cosα
(3)

To account for the time response of the steering system, the
steering angle δ is driven by a proportional controller with a
desired angle δd.

B. Dynamic Stability

To account for the dynamic stability of a vehicle moving on
a flat surface, we consider sliding and roll-over. For the sake
of simplicity, we focus only on roll-over. Referring to Fig. 2,
showing the vehicle from its rear view, roll-over may occur
during a counter clockwise turn if the vehicle moves at a high
speed at which the left wheel separates from the ground. We

Fx

mg
h

w

z

x

NrNl

Fig. 2: Parameters for the simple roll model

use the absolute Lateral load Transfer Rate (LTR), to estimate
how close the vehicle is to a roll-over. The LTR describes the
different between the load on the left and the load on the right
wheels and is defined as:

LTR =
|Nr −Nl|
Nr +Nl

∈ [0, 1]. (4)

For our roll model, the LTR is computed by summing the
moments acting on the vehicle around the point of contact
with the ground:

LTR =
2v2h

Rwg
. (5)

The maximal velocity for a given state is when LTR = 1 i.e.
when the load on one of the wheels is zero. The LTR is later
used to determine the potential instability of a given action,
as is discussed later in section VI-B.

V. TIME OPTIMAL VELOCITY CONTROL USING
MODEL-FREE REINFORCEMENT LEARNING

We briefly describe a model-free RL algorithm to drive the
vehicle time optimally (we later present our model-based RL
algorithm).

This approach is a direct adaptation of “Deep Deterministic
Policy Gradient” (DDPG) [27] to the time optimal velocity
control problem. DDPG is an actor-critic, model-free algo-
rithm for a continuous action space, A, and a continuous state
space, S. DDPG learns the policy using policy gradient. The
exploration of the environment is done by adding exploration
noise to the actions.

The training process consists of episodes; at each episode
the vehicle moves along a randomly generated path. Each path,
P , is generated by smoothly connecting short path segments
of random length and curvature until reaching the desired
length. This ensures that the selected path respects the vehicles
steering capabilities.

The DDPG state, sDDPG, includes a down-sampled limited
horizon path segment, Ps ⊆ P , which is defined relative to
the vehicle’s position. In addition to this path segment, also
the current velocity of vehicle (vy) and steering (δ) is included
in the state. Therefore, the full state of the system is defined
as sDDPG = {vy, δ, Ps}.

The reward function is defined as follows: If the vehicle is
stable and has a positive velocity, the reward r is proportional
to the vehicle’s velocity (rt = kvt, k ∈ R+). If the vehicle
encounters an unstable state or exceeds the maximal allowed
LTR, it receives a negative reward. To encourage the agent
not to stand without moving at all, a small negative reward is
received if vt = 0. The episode terminates at time T or if the
vehicle becomes unstable. (see [28] for more details on the
adaptation of DDPG to the time optimal velocity problem).

The results in section VIII-D infer that DDPG is able to
achieve high velocities. However this approach has several
limitations; the training time is too long for being practical
in real vehicles and there are still an unacceptable probability
of becoming unstable. The nontransparent nature of model-
free approaches makes it even more difficult to trust the RL
policy. We use DDPG as a baseline to our model-based RL
methods.

VI. TIME OPTIMAL VELOCITY CONTROL USING
MODEL-BASED REINFORCEMENT LEARNING (LMVO)

We propose a Model-based RL algorithm (Learned Model
Velocity Optimization - LMVO). Model-based RL is consid-
ered to be more sample efficient than model-free RL [29], [30],
which may be important in real-world applications. The reason
for that efficiency is that the general behavior of the system is
learned, therefore, it is possible to choose the best actions
sequences without explicitly trying these sequences before.
Therefore, The agent can drive safely and near performance
limits along arbitrary paths after training on just a few different
paths.

Clearly, the performance of the model-based RL algorithm
depends on the accuracy of the learned model. However, not
in all environments it is simple to learn an accurate model.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

Vehicle dynamics are relatively predictable, therefore, model-
based RL, is expected to be useful for vehicle motion control.

Unlike DDPG, that learns the driving policy directly, LMVO
includes two parts: learning the dynamics of the vehicle, which
are not known (model learning), and using the learned model
to compute the actions (policy).

A. LMVO Model Learning
There are several approaches for learning the model, such

as parameter tuning of an expert-designed model [31], using
Gaussian processes [32], and neural networks [30], [33]. We
approximated the vehicle’s model by a deep neural network;
the advantage of deep neural networks is their power of
approximating general functions, including highly non-linear
functions.

The vehicle dynamic model are described by a global pre-
diction transition function fv that given the state svt and action
a, outputs the state svt+1 after one time step: svt+1 = fv(svt , at).

1) Vehicle’s State Definition: The vehicle’s state svt is
defined as: svt = {x, y, θ, vy, δ}, where x, y are the incremental
change in the vehicle position from position qt−1 to position
qt (in the frame attached to the vehicle at time t − 1), angle
θ = θt − θt−1, vy is the linear velocity of the vehicle, and δ
is the steering angle. The action a = {u, δd} consist of the
throttle command u and the steering command δd.

The next state svt+1 does not depend on the position x, y, θ
of the current state svt , therefore, the relative position is not
used as an input to the prediction transition function fv .

During training, the vehicle drives along randomly created
paths. At each time step t during the driving, the state svt
and the action at are saved to a state buffer D that stores the
data for training fv . The neural network that approximates
the model function fv is trained by gradient descent, mean-
squared error minimization on the collected samples stored
in D (excluding the final samples, which do not have any
following state).

2) Prediction Transition Function: Instead of directly pre-
dicting the next state svt+1, we use a neural network to predict
the difference between the current state svt and the next state
svt+1: ∆sv = svt+1 − svt , as described in [30]. The effect of
the action on state’s change is more significant compared to
the effect on the next state itself, therefore, the neural network
can represent the model more accurately.

The prediction transition function fv has the following
architecture: the features of the state sv (except the position)
are inserted to a fully connected layer (100 neurons) and the
outputs of that layer are inserted to 5 separated sections that
consist of two fully connected layers (20 neurons in each
layer). Each of these sections outputs one output feature. Fig.
3 summarizes this architecture.

3) Multi-step Roll-outs: If at time step t the n future actions
at, at+1, ...at+n are known, it is possible to predict the n next
states (roll-out). To make a multi-step roll-out, a sequential
single-step prediction is performed. The predicted single-step
relative positions are integrated during the n-step roll-out,
resulting in a geometric path relative to the position at time-
step t and the velocity and the steering in the feature states.
An example of such roll-out is illustrated in Fig. 8.

vyt

δt

∆vy

∆δ

y

x

θ

F
u

lly
co

n
n

ec
te

d
la

ye
r

2 f.c. layers

2 f.c. layers

2 f.c. layers

2 f.c. layers

2 f.c. layers

yt

xt

θt
vyt+1

δt+1

yt+1

xt+1

θt+1

+

+

svt fv() svt+1

δdt

τt

at

Fig. 3: The prediction transition function svt+1 = fv(svt , at)
architecture. The blue rectangles are the fully connected layers
of the neural network.

The next section explains the usage of this learned model
to choose optimal actions.

B. LMVO Policy

The action u considered by the LMVO policy is either the
maximal throttle, umax, or minimal acceleration (i.e. maximal
brake), umin. We note that in order to ensure that the vehicle
does not result in an unavoidable failure it is enough to test
whether the vehicle can decelerate to a full stop from a given
state, svt . Therefore, LMVO rolls-out future states when the
acceleration action is umin (maximal brake) and the steering
commands are computed by the path following controller πδ
on the predicted future states. For all rolled-out future states,
it is checked if the predicted LTR is lower than 1, which
indicates that the vehicle is expected to remain safe.

To decide whether the vehicle is allowed to accelerate (by
applying umax for a single time step) at state svt , LMVO
ensures that the vehicle can stop safely after this acceleration
step. If the vehicle cannot stop safely from svt+1, the vehicle
must decelerate, and therefore, umin is applied. Assuming a
perfectly accurate model, if for every time step during the
motion the vehicle accelerates only if possible, the vehicle
always stays within a safe velocity envelope. Algorithm 1
describes LMVO’s driving policy.

1) Margin of Safety: The model fv predicts the expected
values of the future states. However, the actual value may be
different due to model error or stochastic dynamics. We note
that when the vehicle drives on the limit of performance, an
under-estimated prediction of the future LTR is unacceptable
because it may lead to instability of the vehicle. Therefore,
a margin of safety is added to the expected LTR. Since the
multi-step predictions are computed iteratively based on the
previous step, the error between the predicted and actual values
is expected to grow with the number of steps. For simplicity,
we take a safety factor that is linear with the number of future
steps. More formally, for the rolled-out future LTR values
LTRt, LTRt+1, LTRt+2, ..., LTRt+n the vehicle is expected
to be stable up to time step t+ n if

∀LTRi, i ∈ {0, n}, LTRi + βi < 1 (6)

where β is the safety factor constant. Section VIII compares
between a variety of values of β.



HARTMANN et al.: REINFORCEMENT LEARNING FOR TIME OPTIMAL CONTROL 5

Input: sv0, P0

Output: u
δd ← πδ(s

v
0, P0);

sv1 ← fv(sv0, {umax, δd});
if sv1 is unstable then return umin;
else

t← 1;
while vehicle speed in svt > 0 do

Pt ← transformPath(Pt−1, s
v
t );

svt+1 ← fv(svt , {umin, πδ(svt , Pt)});
if svt+1 is unstable then return umin;
t← t+ 1;

end
return umax;

end
Algorithm 1: LMVO’s driving policy. The algorithm re-
ceives as input the current state sv0 and a short path segment
P0 relative to current vehicle’s position and returns the ac-
celeration action u. fv is the prediction transition function.
The function transformPath transforms Pt relative to
the new position of the vehicle.

2) Computing time: At every time step t, the action at must
be applied immediately. However, since the computing time is
not negligible, the command is applied with some delay. To
solve this problem, instead of computing action at at time t,
action at+1 is computed based on the predicted next state st+1

and at+1 is applied immediately when obtaining the actual
state st+1 at time t+ 1 (which may be slightly different than
the model’s prediction for that state).

VII. STABILIZATION BY USING A PRIOR DYNAMIC-MODEL

Since the significance of failure is very severe, even sit-
uations with a low failing probability should be avoided.
However, if taken to the extreme, the vehicle will not be able to
drive at high velocities at all, since there may be rare occasions
in which the vehicle might fail (see Fig. 9). To avoid the need
to consider the rare cases of high errors and therefore allowing
a smaller margin of safety, we propose the use of the Failure
Prediction and Intervention Module (FIM). The general idea
behind FIM is that if a failure is predicted, FIM overrides the
vehicle actions, so that the failure state is not reached. This
allows the use of a much lower safety factor.

A. Prediction and Intervention Module (FIM)

We define a prediction transition function fs(st, at), and
two policies π(st) and πs(st). SAFE(st, π

′) is a function
that predicts if following policy π′ from state st is safe
(e.g. the vehicle remains stable). The Failure prediction and
Intervention Module policy πFIM (s0) predicts using fs if it
will be safe to execute a0 = π(s0) and then following πs. If
all future states are safe, πFIM returns a0 otherwise it returns
a safe action as = πs(s0). Algorithm 2 describes πFIM . We
note that if SAFE(s0, π

s) = True then it is guaranteed that
also SAFE(s0, π

FIM ) = True. This is true regardless of the
specific policy π.

Input: state s0
Output: action a
a0 ← π(s0);
st+1 ← fs(s0, a0);
if SAFE(st+1, π

s) = False then return πs(s0);
return a0

Algorithm 2: The Failure prediction and Intervention
Module’s policy (πFIM ). fs(st, at) is a prediction tran-
sition function. π(st) and πs(st) are given policies and
SAFE(st, π

′) is a function that predicts if following
policy π′ from state st is safe.

We now introduce the use of the FIM module for our driving
agent, which will be termed as the LMVO+FIM method.
LMVO+FIM uses the LMVO driving policy (algorithm 1)
as its π. As mentioned, the safety of π does not impact the
safety of πFIM , therefore, πFIM is expected to be safe also
before the learned model fv converges. The safety policy
πFIM on the other hand, is not required to obtain high
performance (i.e high velocities) as it is only responsible of
overriding actions that may lead to instability according to
fs. For fs the bicycle model is used; the SAFE function
that is used by the FIM module, tests by performing a roll-
out using the bicycle model (fs) whether the vehicle can
safely reach a full stop. If so, it returns True, otherwise
it returns False. LMVO+FIM’s safety policy, πs, first tests
whether SAFE(fs(sv, {umin, δd}), πs) = True; if so it
returns a = {umin, δd} otherwise, the steering action straight-
ens the steering wheel and the acceleration action is umin
(i.e. maximal brake). That is, πs tries to brake while using
the regular controller for steering, but if it predicts that the
vehicle will still result in an unstable state, it also straightens
the steering wheel which will prevent the expected roll-over
by reducing the radius of curvature of the future state and
following that, reducing LTR. In addition to ensuring that the
vehicle will not roll-over, the FIM module ensures that this
safety maneuver does not cause the vehicle to deviate from
the road.

VIII. EXPERIMENTAL RESULTS

The performance of the proposed methods were tested in
several experiments as detailed henceforth.

A. Settings

A simulation of a four-wheel vehicle was developed using
“Unity” [34] software1, which simulates realistic vehicle dy-
namics. The vehicle properties are: mass= 3, 200Kg, a total
force produced by all wheels of 21KN , center of mass (COM)
height h = 1.0m, COM to rear wheel distance lr = 1.55m,
COM to front wheel distance lf = 1.55m and width= 2.1m.
The vehicle is driven by all wheels (4x4); steering is done
by the front wheels (Ackermann steering). For DDPG we use
hyper-parameters as described in [27]. For LMVO, we use
batch size of 64 with batch normalization and learning rate

1A video of the vehicle driving along a path at time optimal velocity is
available at: https://youtu.be/Ffo3SYonwPk



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

10−4. Each episode is limited to 100 time steps. The time
step is set to 0.2 seconds, i.e. 20 seconds per episode. An
episode is considered as a failure if the vehicle rolled-over or
deviated more then 2m from the nominal path.

During the training process, the vehicle drives along ran-
domly generated paths using the learned policy, 30 episodes in
each learning process (at every episode the vehicle drives along
a different path). The learning process is repeated 100 times
with different seed and paths. During the training of the DDPG
agent, exploration noise is added to the actions and the noise is
disabled during evaluation because the exploration noise will
cause the vehicle to fail when driving near the performance
limits. Different types and levels of noise don’t significantly
affect the learning process, therefore we used the same noise
as [27] (Ornstein–Uhlenbeck process). Because of the longer
convergence time for the DDPG agent, it is trained for 200
episodes.

Since the average velocity during the failed episodes was
usually higher than the average velocity during successful
episodes, we excluded failed episodes when presenting the
average velocity of each method. The baseline is a controller
that uses the same policy as LMVO but instead of learning
the model, the bicycle model is used (BiVO) with a safety
factor of β = 0.1 to ensure safe driving. The average velocity
at each time during the training is normalized with respect to
the baseline.

B. Learning processes with and without intervention

Fig. 4 compares three different methods: LMVO with a
safety factor of β = 0.1 ((LMVO-0.1), LMVO with a safety
factor β = 0.06 (LMVO-0.06) and LMVO+FIM with a safety
factor of β = 0.05. A comparison to DDPG is shown in section
VIII-D. As depicted by the figures, an important advantage of
LMVO+FIM over the other methods is that it maintains safety
also during the beginning of the training process, where the
learned model may be inaccurate. LMVO-0.1 achieves lower
velocity compared to LMVO-0.06 and LMVO+FIM but has
a lower failure rate compared to LMVO-0.06. LMVO+FIM
maximizes the velocity without failing and even achieves
a slightly higher velocity compared to LMVO-0.06. These
results validate our assumption that LMVO+FIM can learn
how to maximize the velocity without failing and can achieve
velocity that is not lower than a not as safe driving policy
(i.e. LMVO-0.06). Fig. 5 describes the intervention of the
stabilization policy during the training process. As expected,
the number of interventions decrease during training.

C. FIM analysis

Fig. 6 shows the influence of the safety factor on the
average velocity. An LMVO agent was trained for 5 minutes
(1500 samples) and was evaluated on different safety factors
(β) with and without the intervention policy (FIM). For
0.14 > β > 0.08 LMVO (blue) and LMVO+FIM (black)
achieve the same velocity because the intervention policy
did not require to intervene in the safe driving policy. For
β < 0.07, the velocity of LMVO+FIM is lower than LMVO
due to intervention policy that causes the vehicle to slow down

0 5 10 15 20 25 30
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d 
av

er
ag

e 
ve

lo
cit

y

LMVO-0.1
LMVO-0.06
LMVO+FIM
BiVO-0.1

(a) Normalized average velocity during 100 learning processes
(higher is better).

0 5 10 15 20 25 30
Episodes

0

5

10

Fa
ils

 [%
]

LMVO-0.1
LMVO-0.06
LMVO+FIM

(b) Failure rate during 100 learning processes (lower is better). Note
that by using the stabilization policy LMVO+FIM, there are no
failures during the entire training process.

Fig. 4

0 5 10 15 20 25
Episodes

2.5

5.0

7.5

In
te

rv
en

tio
n 

[%
]

Intervention

Fig. 5: Intervention of FIM module during training
LMVO+FIM.

and to deviate from the desired path. The continual decrease of
the LMVO+FIM velocity for β < 0.06 is expected, because
more interventions cause less optimal driving. As discussed
in section VIII-B, LMVO must use a safety factor of 0.1 or
higher in order to maintain a low failure rate (therefore LMVO
cannot safely reach the hypothetical velocities depict in Fig.
6 where the safety factor is less than 0.1).

D. Comparison to Model-free RL

Fig. 7a compares LMVO+FIM to DDPG. As expected,
LMVO+FIM converges to a good solution significantly faster
than DDPG. For DDPG, approximately 200 episodes are
required to achieve similar performance to what LMVO+FIM
achieves after only 2 episodes (less than a minute). Further-



HARTMANN et al.: REINFORCEMENT LEARNING FOR TIME OPTIMAL CONTROL 7

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Safety factor

0.50

0.75

1.00

1.25

1.50
No

rm
al

ize
d

 a
ve

ra
ge

 v
el

oc
ity

LMVO+FIM
LMVO

Fig. 6: Normalized average velocity as a function of linear
safety factor (β). The red area marks the range of safety factors
that may cause failure when used by LMVO without FIM.

more, the failure rate achieved by LMVO+FIM is constantly
zero, compared to a very high failure rate starting at over
90% and even after 200 episodes, the failure rate is still
approximately 5%.

0 25 50 75 100 125 150 175 200
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

No
rm

al
ize

d 
av

er
ag

e 
ve

lo
cit

y

LMVO+FIM
DDPG
BiVO-0.1

(a) Average velocity, (normalized with respect to the baseline).

0 25 50 75 100 125 150 175 200
Episodes

0

25

50

75

Fa
ils

 [%
]

LMVO+FIM
DDPG

(b) Failure rate

Fig. 7: LMVO+FIM compare to DDPG on 100 random
learning processes. LMVO+FIM achieves higher velocity, in
approximately 1% of the time that is required by DDPG, while
completely preventing failure.

E. Model Accuracy

For statistically analyzing the accuracy of the prediction
function fv , 100, 000 samples of data were collected from
driving the simulated vehicle by the LMVO policy. The model
was trained on five minutes (1500 samples) of the collected
samples and tested on the remaining samples. The results
below are on the test samples (i.e. they were not used in

the training process). To determine the action commands,
a multi-step roll-out is used as described in VI-B. Fig. 8
shows an example of one roll-out of 20 time steps. The
actual and the predicted future positions of the vehicle and the
features prediction are depicted. The learned model predict the
future states accurately even after 20 time steps (4 seconds).
It is important to evaluate the maximum error between the

(a) Prediction, Real (b) Prediction, Real

Fig. 8: An example of a 20 time-steps roll-out. (A) Prediction
of the state features as a function of time-steps and the actual
values, (B) Predicted and actual paths relative to the vehicle
located at the origin. Note that the prediction values merge
with the actual values.

predicted and the actual LTR, because the future LTR is used
for deciding if the vehicle will remain stable in the future
states. Fig. 9 shows the error between the predicted and the
actual LTR as a function of the roll-out depth. We note that
the maximum one step error of all samples is above 0.5, while
for the 99th percentile, the maximal error is only 0.03. This
result justifies the need described in section VII-A to disregard
the extremely rare occasions, as including them would result
in a much larger safety factor, which in-turn may extremely
reduce performance.

Fig. 9: Error between the predicted and the actual LTR as
a function of the roll-out depth. Note the difference between
the maximal error of the 99th percentile of samples and all
samples.

IX. CONCLUSIONS

In this paper, we addressed the issue of model-based deep
reinforcement learning of autonomous driving at high speeds
along paths, while accounting for the vehicle dynamics and



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

its dynamic constraints. We proposed a method (LMVO) that
learns to drive a vehicle by learning the dynamic model
of the vehicle. Additionally, we used an analytical dynamic
model (bicycle model) for predicting the stability of the future
states (FIM). We combined the analytical dynamic model with
the learned model to ensure vehicle safeness (LMVO+FIM).
LMVO+FIM achieved the best performance; i.e. the highest
velocity and no failures during the learning process. We
showed that in five minutes LMVO learned a significantly
more accurate dynamic model of the vehicle compared to
the bicycle model (BiVO). Because the learned model was
more accurate, both LMVO and LMVO+FIM achieved higher
velocities than BiVO. We also compared LMVO+FIM to a
model-free reinforcement method (DDPG). DDPG required
about one hour to achieve the same velocity that LMVO+FIM
achieved after less than one minute. furthermore, the failure
rate of DDPG was significantly higher compared to that of
LMVO+FIM.

REFERENCES

[1] M. Mann and Z. Shiller, “Dynamic stability of off-road vehicles: Quasi-
3d analysis,” in ICRA 2008. IEEE, 2008, pp. 2301–2306.

[2] F. Altché, P. Polack, and A. de La Fortelle, “A simple dynamic model
for aggressive, near-limits trajectory planning,” in IV, 2017 IEEE, 2017,
pp. 141–147.

[3] T. Petrinić, M. Brezak, and I. Petrović, “Time-optimal velocity planning
along predefined path for static formations of mobile robots,” Interna-
tional Journal of Control, Automation and Systems, 2017.

[4] M. Elbanhawi, M. Simic, and R. Jazar, “In the passenger seat: inves-
tigating ride comfort measures in autonomous cars,” IEEE Intelligent
Transportation Systems M., vol. 7, no. 3, pp. 4–17, 2015.

[5] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.

[6] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “An mpc algorithm
with combined speed and steering control for obstacle avoidance in
autonomous ground vehicles,” in ASME 2015 dynamic systems and
control conference, 2016.

[7] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[8] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in 2016
IEEE,ICRA, 2016, pp. 1433–1440.

[9] J. Funke, P. Theodosis, R. Hindiyeh, G. Stanek, K. Kritatakirana,
C. Gerdes, D. Langer, M. Hernandez, B. Müller-Bessler, and B. Huhnke,
“Up to the limits: Autonomous audi tts,” in 2012 IEEE Intelligent
Vehicles Symposium. IEEE, 2012, pp. 541–547.

[10] J. Kabzan, M. d. l. I. Valls, V. Reijgwart, H. F. C. Hendrikx, C. Ehmke,
M. Prajapat, A. Bühler, N. Gosala, M. Gupta, R. Sivanesan, et al.,
“Amz driverless: The full autonomous racing system,” arXiv preprint
arXiv:1905.05150, 2019.

[11] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[12] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[13] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg,
“Aggressive deep driving: Model predictive control with a cnn cost
model,” arXiv preprint arXiv:1707.05303, 2017.

[14] Y. Zhang, P. Sun, Y. Yin, L. Lin, and X. Wang, “Human-like autonomous
vehicle speed control by deep reinforcement learning with double q-
learning,” in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp.
1251–1256.

[15] S. Lefèvre, A. Carvalho, and F. Borrelli, “A learning-based framework
for velocity control in autonomous driving,” IEEE Transactions on
Automation Science and Engineering, 2016.

[16] Z. Huang, X. Xu, H. He, J. Tan, and Z. Sun, “Parameterized batch
reinforcement learning for longitudinal control of autonomous land ve-
hicles,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
no. 99, pp. 1–12, 2017.

[17] H. D. Gamage and J. B. Lee, “Reinforcement learning based driving
speed control for two vehicle scenario,” in Australasian Transport
Research Forum (ATRF), 39th, 2017, 2017.

[18] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in 2018
IEEE,ICRA, 2018, pp. 2070–2075.

[19] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 1714–1721.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” in Advances
in neural information processing systems, 2018, pp. 8092–8101.

[21] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Advances in
neural information processing systems, 2017, pp. 908–918.

[22] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[23] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach
to interpretable reinforcement learning for robotic planning,” Science
Robotics, vol. 4, no. 37, 2019.

[24] C. Gao, B. Kartal, P. Hernandez-Leal, and M. E. Taylor, “On hard
exploration for reinforcement learning: A case study in pommerman,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 15, no. 1, 2019, pp. 24–30.

[25] O. Bastani, “Safe reinforcement learning via online shielding,” arXiv
preprint arXiv:1905.10691, 2019.

[26] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep.,
2009.

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[28] G. Hartmann, Z. Shiller, and A. Azaria, “Deep reinforcement learning
for time optimal velocity control using prior knowledge,” ICTAI, 2019.

[29] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy
search for robotics,” Foundations and Trends R© in Robotics, vol. 2, no.
1–2, pp. 1–142, 2013.

[30] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE ICRA, 2018, pp. 7559–7566.

[31] U. Rosolia, A. Carvalho, and F. Borrelli, “Autonomous racing using
learning model predictive control,” in 2017 ACC, 2017, pp. 5115–5120.

[32] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[33] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel,
“Model-based reinforcement learning via meta-policy optimization,”
arXiv preprint arXiv:1809.05214, 2018.

[34] U. Technologies, “unity3d,” 2019, https://unity3d.com/.


