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Abstract—In this paper we study distributed agent matching
in environments characterized by costly exploration, where
each agent’s utility from forming a partnership is influenced by
both the maximum and the minimum among the two agent’s
competence. This kind of utility function is somehow more
applicable, compared to the one used in related work that
takes the utility to be either the type of the agent partner
or ”standard” functions such as average or multiplication
of the two types. The use of the hybrid min-max utility
function is favorable whenever the performance of the agents
forming a partnership is principally affected by the most
(or least) competent among the two. This paper supplies a
cohesive analysis for the min-max case, proving the equilibrium
structure for the different min-max linear combination that
may be used. We show that, in equilibrium, in any case that
an agent sets its acceptance threshold below its own type it is
guaranteed that any agent with a type between this threshold
and its own will accept it (the agent) as a partner as well. This
result substantially facilitates the calculation of equilibrium for
such settings, e.g., when the set of types is finite.

I. INTRODUCTION

Two-sided search is an important technique for modeling
distributed matching processes in multi-agent systems. It is
used in settings where no central information source can
supply instant reliable information on the environment and
on partnering opportunities within. In such settings, standard
stable matching mechanisms [8], [1] cannot be applied.
Coalition formation mechanisms are also inapplicable, in
particular in settings where the number of agents is sub-
stantial as discussed in this study.

The goal of each agent participating in the distributed
matching process is to form a pairwise partnership that is
optimally beneficial [11], [2], [4].Each agent is associated
with a specific type that captures some property (e.g.,
competence, wealth). During each stage of the process,
agents randomly interact pairwise and learn each other’s
type. The process of initiating and maintaining an interaction
is associated with a cost (i.e., search cost) incurred by both
agents. In order for a partnership to be formed, it needs to be
accepted by both agents. The agents thus need to consider,
when deciding whether to commit to a given partnership,
the tradeoff between the benefits from continuing the explo-
ration, potentially forming a better partnership in the future,
and the costs associated with the future explorations.

During the past two decades, there has been a substantial
progress in the analysis of distributed matching models (see
[13] for a survey). Works in this area typically differ in

the assumption that they make about the utility that agents
obtain from a partnership. The choice of the utility function
affects the structure of the acceptance thresholds used by
the different agents. For example, if the utility depends
exclusively on the other agent’s type (or simply the average
of both agents forming a partnership) the equilibrium can be
characterized as a “perfect segregation”, i.e., the agents form
clusters, based on their type, in which every agent in a cluster
is always willing to form a partnership with any other agent
in the cluster [5], [6], [11]. For most common functions
where the utility depends on both agent types, the resulting
equilibrium can be characterized as “assortative matching”,
i.e., the acceptance thresholds used, increase in the agent’s
type [12], [10].

In this paper, we consider a different utility function for a
match, one that is based on the minimum and maximum
of the two types. This function is highly applicable to
situations where the performance of the partnership formed
depends mostly on its most or least competent member. For
example, consider a group of students that need to form
pairwise partnerships for the purpose of working on a course
project. In this case, the grade any team receives highly
depends on the capabilities of the more competent student
among the two. Alternatively, consider tennis players that
seek partners when playing doubles. Here the players are
rewarded exclusively based on the team’s (rather than the
individual’s) performance. The performance of the team in
this case will be mostly affected by the least competent
player, as the other team will try to gain game points mostly
by aiming the ball in his direction.

The paper presents an extensive analysis of the model with
the new min-max utility function. The analysis results in an
equilibrium characterization that for some cases is different
from the one found for two-sided search with traditional
utility functions. We show that for the case where the utility
function relies exclusively on the maximum type among the
two, the equilibrium is characterized by a single threshold,
where all agents of types greater than that threshold accept
any agent, and all agents of types smaller than the threshold
accept only agents of types greater than the threshold. For
the case where the utility function relies exclusively on the
minimum type, we show that the equilibrium is characterized
by assortative matching. When the utility function depends
on both types, we manage to distinguish between three
equilibrium patterns, where the first is assortative matching,



the second is perfect segregation and we refer to the third as
’bumpy steps’ where the acceptance threshold as a function
of the agent type increases and decreases alternately. These
results facilitate the calculation of the agents’ equilibrium
strategies in discrete settings, as they enable the use of
standard dynamic programming techniques for calculating
each type’s equilibrium strategy based on the strategies of
higher types.

II. RELATED WORK

The two-sided search for partnerships is a sub-domain
of coalition formation. While coalition formation models
usually consider general coalition-sizes [15], the partnership
formation model (often referred as matchmaking) consid-
ers environments where agents have a benefit only when
forming a partnership and this benefit cannot be improved
by extending the partnership to more than two agents [9],
[14] (e.g., in the case of buyers and sellers or peer-to-peer
applications). Various centralized matching mechanisms can
be found in the literature [7], [3], [8]. However, in many
MAS environments, in the absence of any reliable central
matching mechanism, the matching process is completely
distributed.

Two-sided search models are distinguished according to
several assumptions they make. The first is the payoff utility
each agent obtains from each partnership. While some of
these models assume that the utility is exclusively a function
of the other agent’s type [11], [5], others assume a function
defined over both types [2]. The second is the way according
to which the search friction (cost) is modeled. This can be
either the discounting of future flow of gains [5] or additive
explicit search costs [11], [6], [2]. Lastly, the models are
distinguished by the nature of the utility earned by each
of the agents (transferable [2] and “non-transferable” [5],
[6]). Our model assumes non-transferable utilities, explicit
search costs and a payoff that combines the minimum and
maximum type in a pre-defined manner. To the best of our
knowledge, such a model has not been investigated to date.

III. GENERAL MODEL

The model used in this paper is a standard two-sided
search model, and all assumptions given in this section are
common in distributed matching literature [6]. The only
differentiating element is the utility function used in this
paper, which is a function of the minimum and maximum
in this case.

We consider an environment populated with an infinite
number of self-interested fully rational agents. Each agent
is associated with a type x defined over the interval [0, 1].
The distribution of types in the environment is defined by a
p.d.f. f(x) (where 0 ≤ f(x) < ∞ for any x), and a c.d.f.
F (x) (where F (1) = 1). Each agent can form a partnership
with any other agent in the environment. The utility an agent
associated with a type x obtains from forming a partnership

with another agent associated with a type y is given by
u(x, y). This function is continuous and monotonic non-
decreasing in x and y and is shared by agents of all types.
In this work we focus on the case where the utility is of the
form:
u(x, y) = u(y, x) = αmin{x, y}+ (1− α) max{x, y}

for some α ∈ [0, 1].
The agents are assumed to be acquainted with the type

distribution function f(x), however they cannot tell a-priori
what is the type of any specific agent in their environment.
The only way by which an agent can learn the type of
another agent is by interacting with it. Since neither agent
in two-sided search models has prior information concerning
the type of specific other agents, it initiates interactions with
other agents randomly. The nature of the two-sided search
application suggests that the agents are satisfied with having
a single partner, thus once a partnership is formed the two
agents forming it terminate their search process and leave
the environment (and are replaced with two new agents of
the same types). In other words, the size and the composition
of the market are exogenously given.

After two agents interact and learn the type of the other
agents, each of them needs to decide whether to accept or
reject a partnership with the other agent. If a dual acceptance
is reached, the partnership is formed. Otherwise, both agents
resume their search.

The search activity (the interaction) is assumed to be
costly. Each search stage incurs a cost c to each of the
agents. We assume utilities and costs are additive and that
the agents try to maximize their overall utility, defined as the
utility from the partnership formed minus the search costs
accumulated along the search process.

A. Notation

We use φ(x) to denote the expected utility for an agent
of type x from the search when using an optimal strategy.

Define a(x) = min{x′|φ(x) ≤ u(x, x′)} i.e. the mini-
mum type for which the expected benefit from accepting
it is greater or equal to the expected benefit of the agent
if resuming the search. We later show that we can assume
each agent of type x accepts all and only agents with types
greater than or equal to a(x). Occasionally we will use a(x)
as a strategy for an agent of type x to indicate that the
agent accepts all and only agents in [a(x), 1]; this might
not be the optimal strategy for the agent (and therefore not
in equilibrium), however, never do we consider more than a
single agent deviating from equilibrium strategies. Similarly,
we will use Φ(x, t) to denote the expected utility for an
agent of type x when using a strategy according to which it
accepts other agents only if their type is above threshold t
(once again this threshold might not be optimal).

We use A(x) to denote the group of agents that accept
a match with an agent of type x and A(x) as the group of



agents of type greater than x that accept a partnership with
x: A(x) = {y|y ∈ A(x) ∧ y > x}.

We use M(x) to denote the matching group of an agent of
type x, that is, the group of types with which x might end up
forming a partnership: M(x) = {y|y ∈ A(x) ∧ x ∈ A(y)}.
M(x) will denote the group of all agents with a type above
x who are in the matching group of an agent of type x, i.e.
M(x) = {y|y ∈M(x) ∧ y > x}.

IV. INDIVIDUAL STRATEGIES AND EXPECTED BENEFIT

We begin with the analysis of individual expected-
utility-maximizing strategies. Proposition 1 suggests that the
expected-utility-maximizing strategies are reservation-value
(i.e., threshold) based and Proposition 2 shows that the
expected benefit of any individual agent when using such
a strategy equals the reservation-value used.

Proposition 1: An agent of type x accepting all and only
agents with types in [a(x), 1] will maximize its expected
utility.

Proof: Assume agent of type x uses an optimal strategy
P , which indicates which partners to accept/reject. On
iteration i of the search, if the partner rejects forming
a partnership, then no partnership will be formed, and
therefore the expected utility of the agent does not depend
on the agent’s strategy. Assuming the partner accepts the
partnership: if the agent interacts with a partner of type
x′ < a(x), the agent may reject it (regardless of P ) since
in the next iteration the agent may resume using strategy
P and therefore gain φ(x) which, due to the monotonicity
of u and definition of a(x), is greater than u(x, x′). If the
agent interacts with a partner of type x′ ≥ a(x), the agent
may accept it (regardless of P ); the agent does not lose out
by doing so, due to the monotonicity of u and definition of
a(x), u(x, x′) ≥ φ(x).

This is true for any iteration i, therefore the agent can
always reject agents with a type less than a(x) and accept
agents with a type greater than or equal to a(x).

The following is another known property which claims
that if an agent of type x does not accept everyone, then its
expected utility from the search is equal to its utility from
forming a partnership with its threshold.

Proposition 2: If a(x) > 0 then φ(x) = u(x, a(x)).
Proof: a(x) > 0 therefore φ(x) > u(x, 0). From the

monotonicity of u, φ(x) ≤ u(x, 1). Since u is continuous,
according to the intermediate value theorem there is a type
x′ where φ(x) = u(x, x′). From the definition of a(x) we
obtain that a(x) ≤ x′ and from the monotonicity of u we
obtain that φ(x) = u(x, a(x)).

Next, we prove a theorem that claims that in any case
where an agent’s equilibrium acceptance threshold is below
its own type, it is guaranteed that any agent with a type
between this threshold and its own type will accept it (the
agent) as a partner as well. Based on this theorem we will
later propose an algorithm that finds the acceptance threshold

for every agent. However, we first prove several lemmas
which not only simplify the proof of the theorem, but also
have significance on their own.

The following lemma claims that the higher the agent type
is, the more agents accept it as a partner:

Lemma 1: For any x and x′ < x, A(x′) ⊂ A(x).
Proof: Given x̃ ∈ A(x′) by Proposition 1 x′ ≥ a(x̃).

Therefore x ≥ a(x̃) and again by Proposition 1 x̃ ∈ A(x).

The following lemma claims that the higher the agent
type, the higher its equilibrium expected utility:

Lemma 2: For any x and x′ < x, φ(x′) ≤ φ(x).
Proof: From Lemma 1 A(x′) ⊂ A(x), therefore x can

guarantee M(x) = M(x′) by rejecting any agent not in
M(x′). Now, for every x̃ ∈ M(x′) by the monotonicity of
u, u(x′, x̃) ≤ u(x, x̃), therefore, φ(x′) ≤ φ(x).

Theorem 1: For any x and x′ < x, if a(x) ≤ x′ then
a(x′) ≤ x.

Proof: Assume by contradiction that x < a(x′). From
Proposition 2 and the definition of u we obtain that:

φ(x) = α · a(x) + (1− α) · x (1)

However, since x < a(x′) and a(x) ≤ x′,
α · a(x) + (1− α) · x < α · x′ + (1− α)a(x′) = φ(x′) (2)

which contradicts Lemma 2
Theorem 1 and Proposition 1 imply that if a(x) < x then the
matching group M(x) is A(x)∩[a(x), 1] = [a(x), x]∪A(x).

From Theorem 1 we conclude that agents can assume that
any partners of lower types will accept a partnership if they
accept it. Therefore, the acceptance threshold of each agent
does not depend on the acceptance threshold of agents of
lower types (than its own).

V. MINIMUM AS THE UTILITY FUNCTION

We begin by analyzing the equilibrium in settings where
α = 1 and therefore the utility from forming a partnership
between any two agents is the minimum value among the
two, i.e. u(x, y) = min{x, y}.

Intuitively, each agent accepts any other agent of a type
equal to or greater than its own, since its utility is bounded
by its own type. For similar reasons each agent of type x
accepts any other agent with a value which is greater than
x− c (since resuming the search incurs a cost c).

Based on Theorem 1, the expected payoff for an agent of
type x from the search, when using a threshold t, is given
by:

Φ(x, t) =− c+

∫ x

t

yf(y)dy +

∫
M (x|a(x)=t)

xf(y)dy+

Φ(x, t)
(
1−

∫
M(x|a(x)=t)

f(y)dy
)

(3)

Where the first integrand is for a case where the agent
forms a partnership with a partner of a lesser type (than



Figure 1. a(x) for u(x, y) = min{x, y}

its own), the second is for the case where the agent forms a
partnership with a partner with a greater type than its own
and the third is for the case when the agent does not form
a partnership and resumes the exploration. (Obviously, if
t ≥ x then

∫ x

a(x)
yf(y)dy = 0).

From Equation 3 we obtain:

Φ(x, t) =
−c+

∫ x

t
yf(y)dy +

∫
M (x|a(x)=t)

xf(y)dy∫
M(x|a(x)=t)

f(y)dy
(4)

The agent will use the threshold t that maximizes Φ(x, t)
according to 4.

Figure 1 demonstrates the strategies used in equilibrium
for the case where the utility function is the minimum, f(x)
is the uniform distribution and c = 0.005. All figures in this
paper were generated using a discrete evaluation process, as
described in section VIII.

In section VII we prove that in the minimum case (i.e.
when α = 1) the acceptance pattern is of the form of as-
sortative matching, i.e., each agent has a different threshold
(depending on its type) and the higher the agent’s type is
the higher its threshold.

VI. MAXIMUM AS THE UTILITY FUNCTION

We now consider the equilibrium in an environment where
α = 0 and therefore the utility from forming a partnership
between any two agents is the maximum value among the
two, i.e. u(x, y) = max{x, y}.

Similar to when the utility is the minimum, the expected
utility for each agent is given by:

Φ(x, t) =
−c+

∫ x

t
xf(y)dy +

∫
M (x|a(x)=t)

yf(y)dy∫
M(x|a(x)=t)

f(y)dy
(5)

Clearly, an agent of type 1 will receive a utility 1 from
any partnership, therefore it will accept any partner in its
first search round (a(1) = 0). Due to the search cost, agents
with types near 1 accept any partner as well. Let x∗ =
inf{x|a(x) = 0} (i.e., the agent with the lowest type which
accepts any other agent).

Lemma 3: Agents with types smaller than x∗ reject part-
ners of types smaller than or equal to their own.

Proof: Given an agent with a type x < x∗, it rejects
partnership with an agent with type 0, which would give
it a utility of x. Therefore, by definition of a(x), the
expected utility of the agent is greater than x. Therefore, by
Proposition 2, it rejects any other agent with a type smaller
than or equal to x (which would give it a utility of x as
well).

Lemma 4: No partnerships are formed between two
agents with types smaller than x∗.

Proof: Suppose by contradiction that a partnership is
formed by two agents with types x′ ≤ x < x∗. By Lemma
3, the agent with type x must reject an agent with type x′

as a partner.
Lemma 5: All agents with types smaller than x∗ set their

threshold at x∗.
Proof: We first show that all agents with types smaller

than x∗ use the same threshold. Agents with type above x∗

accept any other agent and by Theorem 1 an agent with
type x < x∗ must accept an agent of type x∗. Therefore,
combined with Lemma 4, all agents with type smaller than
x∗ have the same matching group. Therefore, they all have
the same expected utility and by Proposition 2 the same
threshold.

According to Theorem 1 an agent with type x < x∗ cannot
set its threshold above x∗. Assume by contradiction that all
the agents set their threshold at some point t < x∗. In this
case an agent with type t < x′ < x∗, must set its threshold
at t as well, contradicting Lemma 3.

Summarizing the equilibrium, we obtain the following
step function:

a(x) =

{
0 if x∗ ≤ x
x∗ otherwise

(6)

Note that this solution has very interesting properties.
First, any agent with a value greater than x∗ accepts any
partner. Second, partnerships are formed only if at least one
side has a value greater than x∗.

Based on Proposition 2 agents of types smaller than x∗

have an expected utility identical to the utility of forming a
partnership with an agent of type x∗ which equals x∗. Using
this equilibrium structure, Equation 5 obtains:

−c+
∫ 1

x∗
yf(y)dy∫ 1

x∗
f(y)dy

= x∗ (7)

and therefore:

c =

∫ 1

x∗
(y − x∗)f(y)dy (8)

Clearly, the higher the search cost is, the lower x∗ is and
limc→0 x

∗ = 1.
Figure 2 depicts the strategies used in equilibrium for the

case where the utility function is the maximum, f(x) is the
uniform distribution and c = 0.005.



Figure 2. a(x) for u(x, y) = max{x, y}

VII. MIXED MAXIMUM-MINIMUM AS THE UTILITY
FUNCTION

We now turn to analyze the equilibrium in environments
where the utility from the partnership is given by: u(x, y) =
αmin{x, y}+ (1− α) max{x, y} with 0 < α ≤ 1.

The maximization problem of agents of type x in this case
is:

arg max
t

(
−c+α

( ∫ x

t

yf(y)dy+(

∫
M (x|a(x)=t)

f(y)dy·x)
)

+ (1− α)
(
(

∫ x

t

f(y)dy) · x+

∫
M (x|a(x)=t)

yf(y)dy
))
·

1∫
M(x|a(x)=t)

f(y)dy
(9)

We now turn to prove a key theorem which, along with
its corollaries, allows us to determine the equilibrium in the
mixed case.

The following theorem states that when 0 < α < 0.5
(more weight is given to the maximum), if two agents are
accepted by the same group, then the agent of the lower
type will set its threshold above that of the higher type.
The opposite happens when α > 0.5 (more weight to the
minimum). When α = 0.5 the two agents will set the same
threshold.

Theorem 2: For any x, x′, such that x′ < x, A(x) =
A(x′) and 0 < a(x) ≤ x′:
• If 0 < α < 0.5 then a(x) < a(x′).
• If 0.5 < α ≤ 1 then a(x) > a(x′).
• If 0.5 = α then a(x) = a(x′).

Proof: Consider the case where 0 < α < 0.5.
Since 0 < a(x) then (from Proposition 2):

φ(x) = u(x, a(x)) (10)

Which, given a(x) < x, implies:

φ(x) = α·a(x)+(1−α)·x = α·a(x)+(1−α)·x′+(1−α)·(x−x′)
(11)

On the other hand, calculating φ(x) explicitly, obtains:

φ(x) =
(
− c+

∫ x′

a(x)
(αy + (1− α)x)f(y)dy+∫ x

x′
(αy+(1−α)x)f(y)dy+

∫
A(x)

(αx+(1−α)y)f(y)dy
)
·

1∫
M(x)

f(y)dy
(12)

Recall that A(x) = A(x′), therefore, if an agent with type
x′ will set its threshold at a(x), both agents will have the
same matching group, therefore:

Φ(x′, a(x)) =
(
− c+

∫ x′

a(x)
(αy + (1− α)x′)f(y)dy+∫ x

x′
(αx′+(1−α)y)f(y)dy+

∫
A(x)

(αx′+(1−α)y)f(y)dy
)
·

1∫
M(x)

f(y)dy
(13)

Subtracting Equation 13 from Equation 12 obtains:

φ(x)− Φ(x′, a(x)) =
(∫ x′

a(x)
f(y)dy · (1− α)(x− x′)

+

∫ x

x′
(αy+(1−α)x)f(y)dy−

∫ x

x′
(αx′+(1−α)y)f(y)dy+∫

A(x)

f(y)dyα(x− x′)
)
· ( 1∫

M(x)
f(y)dy

) (14)

Denote:

ζ =
(∫ x′

a(x)
f(y)dy · (1− α)(x− x′)+∫ x

x′
(((1− α)x− αx′)− (1− 2α)y)f(y)dy+∫

A(x)

f(y)dyα(x− x′)
)
· 1∫

M(x)
f(y)dy

From Equation 14 we obtain:
Φ(x′, a(x)) = φ(x)− ζ (15)

Replacing φ(x) with α·a(x)+(1−α)·x′+(1−α)·(x−x′)
(Equation 11) obtains:
Φ(x′, a(x)) = α·a(x)+(1−α)·x′+(1−α)·(x−x′)−ζ (16)

We now show that ζ is smaller than (1− α) · (x− x′).
α < 0.5 implies that 1− 2α > 0, therefore:∫ x

x′
(((1− α)x− αx′)− (1− 2α)y)f(y)dy <∫ x

x′
(((1− α)x− αx′)− (1− 2α)x′)f(y)dy =∫ x

x′
f(y)dy(1− α)(x− x′) (17)

Clearly:∫
A(x)

f(y)dyα(x− x′) <
∫
A(x)

f(y)dy(1− α)(x− x′)

(18)



Since M(x) = [a(x), x′] ∪ [x′, x] ∪A(x), therefore:
(1− α) · (x− x′) > ζ (19)

Putting together Equations 16 and 19 we obtain:
α · a(x) + (1− α) · x′ < Φ(x′, a(x)) (20)

However α · a(x) + (1 − α) · x′ = u(a(x), x′) and
Φ(x′, a(x)) ≤ φ(x′) (because φ(x′) is optimal), therefore
u(a(x), x′) < φ(x) and therefore (by definition of a and
monotonicity and continuousness of u) a(x) < a(x′). 1

Using the exact same proof (except for changes in the
inequality starting at Equation 17), we obtain that if α > 0.5
then a(x) > a(x′). We also obtain that when α = 0.5 then
a(x) = a(x′).

Inspired by Theorem 2, when examining the equilibrium
in the mixed case we split the α’s into three different cases:
• 0.5 < α ≤ 1: where the minimum type has a greater

impact (and when α = 1 solely determines the utility).
• α = 0.5: where both the minimum and the maximum

types have equal effect on the agents’ utility.
• 0 < α < 0.5: where the maximum type has a greater

impact.

A. 0.5 < α ≤ 1 (Greater Minimum Impact)

When the minimum type has a greater impact, we obtain
assortative matching, where the higher the agent’s type is
the higher its threshold is, and all agents set their threshold
beneath their own type. See Figure 3 for an example
where α = 0.8, uniform f(x) and c = 0.005. Assortative
matching is widely common in distributed matching, and
occurs with many utility functions, such as u(x, y) = xy
[12]. The following Lemmas prove assortative matching for
0.5 < α ≤ 1.

The following Lemma claims that the more agents accept
a certain type, the higher its threshold becomes (or the more
picky it can become).

Lemma 6: For any type x, if S′ ⊂ S then a(x|A(x) =
S′) ≤ a(x|A(x) = S).

Proof: An agent of type x can reject any agent which
is not in S′, therefore φ(x|A(x) = S′) ≤ φ(x|A(x) = S),
therefore, based on Proposition 2, u(x, a(x|A(x) = S′)) ≤
u(x, a(x|A(x) = S)). Now, due to the monotonicity of u,
a(x|A(x) = S′) ≤ a(x|A(x) = S).

The following Lemma claims that when α > 0.5, a(x) is
monotonously increasing in x.

1The same proof can also be used when x′ < a(x) < x (rather than
a(x) ≤ x′) by replacing the term∫ x′

a(x)
f(y)dy · (1− α)(x− x′) +

∫ x

x′
(αy + (1− α)x)f(y)dy−∫ x

x′
(αx′ + (1− α)y)f(y)dy

by ∫ x

a(x)
(αy + (1− α)x)f(y)dy −

∫ x

a(x)
(αx′ + (1− α)y)f(y)dy

in Equation 14 and its sequels.

Figure 3. Simulation results for α = 0.8

Figure 4. Simulation results for α = 0.5

Lemma 7: If α > 0.5, for every x′ < x, if 0 < a(x) < x
then a(x′) < a(x).

Proof: From Theorem 2 and Lemma 6.
The following Lemma claims that when α > 0.5, every

agent sets its threshold below its own type.
Lemma 8: If α > 0.5, then a(x) < x for every x.

Proof: Clearly, for every x,
∫
M(x)

f(x)dx > 0 (other-
wise the search will go on forever). Assume by contradiction
that there exists x̃ such that a(x̃) ≥ x̃ and let x′ be the
maximum type such that a(x′) ≥ x′. For every x > x′

0 < a(x) < x, which according to Lemma 7 implies
that a(x′) < a(x), implying x′ < a(x). Therefore, every
agent of type x > x′ rejects an agent of type x′, but x′

rejects any agent of types smaller than its own, implying
that

∫
M(x)

f(x)dx = 0, contradicting the above.

B. α = 0.5 (Equal Minimum and Maximum Impact)

In the case of α = 0.5, both the minimum and the
maximum types have equal effects on the agents’ utility,
therefore the utility is simply the average between the two
agents forming a partnership. This exact configuration is
described in [6] where the entire domain is partitioned
and partnerships are formed only within these partitions
(termed perfect segregation). These results are intensified by
Theorem 2. See Figure 4 for an example of the case where
α = 0.5, uniform f(x) and c = 0.005.



Figure 5. Simulation results for α = 0.2

C. 0 < α < 0.5 (Greater Maximum Impact)

The case in which 0 < α < 0.5 is both the most
challenging and interesting case. Figure 5 gives an example
for α = 0.2, uniform f(x) and c = 0.005. From the figure
we observe the following properties when following the
threshold as a function of the agent type from right to left
(starting at x = 1):
• The threshold increases until there is an agent who sets

its threshold at its own type (i.e. until the diagonal is
reached).

• In any case where an agent sets its threshold above its
own type (any point above the diagonal) the threshold
decreases (as the type decreases).

• In several cases there is a sudden drop in the threshold.
In our example this happens in {0.77, 0.54, 0.31, 0.1}.
After the sudden drop, the threshold resumes climbing
until once again there is an agent who sets its threshold
at its own type.

To the best of our knowledge, this is the only equilibrium
examined where, despite the utility function being mono-
tonic, there exist types which set their threshold above their
own type, and the threshold as a function of the agent type
has segments which increase as the type decreases.

The first property is an immediate corollary of Theorem
2, since the group of agents with the higher types who set
their threshold beneath their own type are all accepted by all
of the other agents (i.e. A(·) = [0, 1]). Therefore the smaller
the agents type is, the higher its threshold (Theorem 2).

The following lemmas prove the second property
The following Lemma claims that if an agent sets its

threshold above its own type, then any agent with a value
beneath its type will use the exact same threshold, if it is
accepted by the same group of agents.

Lemma 9: Given x and x′ < x if x ≤ a(x) and A(x) =
A(x′) then a(x′) = a(x).

Proof: Since x ≤ a(x):

φ(x) = α·x+(1−α)·a(x) = α·x′+α·(x−x′)+(1−α)a(x)
(21)On the other hand:

φ(x) = Φ(x′, a(x)) +

∫
M(x)

f(y)dyα(x− x′)∫
M(x)

f(y)dy
=

Φ(x′, a(x)) + α(x− x′) (22)

This implies:
Φ(x′, a(x)) = α · x′ + (1− α) · a(x) = u(x′, a(x)) (23)

and therefore a(x′) = a(x).
The following Lemma claims that if an agent sets its

threshold above its type, then any agent with a value beneath
its type will not set its threshold above the former agent.

Lemma 10: Given x and x′ < x, if x ≤ a(x) then
a(x′) ≤ a(x).

Proof: From Lemma 1, A(x′) ⊂ A(x), hence the proof
is immediate using Lemmas 9 and 6.

We now provide an intuitive explanation for the third
property. We do not provide a proof, since we believe this
property depends on the density function (f()). Taking the
example analyzed in Figure 5, consider for instance an agent
with a type of 0.77. Note that the threshold set by the agents
with a type of 1 is slightly above 0.77. Therefore, almost all
agents with types greater than 0.77 reject partnerships with
the agent. Therefore its expected utility drops drastically and
so does its threshold. Since almost no agents with types
above 0.77 accept it as a partner, all agents with types
slightly under 0.77 are accepted by nearly the same group of
agents (A(·) = [0, 0.77]). Therefore according to Theorem
2 the threshold resumes climbing until once again there is
an agent who sets its threshold at its own type.

VIII. DISCRETE CASE

The analysis presented in the former sections completely
unfolds the structure of the equilibrium in this important new
class of two-sided search settings. In addition, it facilitates
the calculation of the equilibrium through discretization
of types (or whenever the types are a priori inherently
discretized). In this section we show how, based on the above
analysis, the equilibrium thresholds of the different agents
types can be calculated through dynamic programing, using
Algorithm 1.

Define s as the discrete step size. Under the discrete case,
the expected outcome for agent x can be calculated using
the following equation (a discretization of Equation 9):

φ(x) =
(
− c+α

( x∑
y=a(x)

yf(y)s+ (
∑

y∈M (x)

f(y)s ·x)
)
+

(1−α)
(
(

x∑
y=a(x)

f(y)s)·x+
∑

y∈M (x)

yf(y)s
))
· 1∑

y∈M(x) f(y)s

(24)

The algorithm performs a single pass on all types from
type 1 and down. It finds the threshold for every type based
on the thresholds calculated for greater types. Note that the
order in which the threshold array (a) is filled is crucial and



Algorithm 1 Finding the threshold for all agents in the
discrete case
Input: Discrete step size (s), α, search cost (c) and a density

function (f(x)).
Output: An array which holds a(x), for every x.

Initialize array a of size [1/s] with 0’s
for each x, starting at x = 1 down by s do

Set A(x) = {y|a(y) < x}
Set a(x) = arg maxy{φ(x, y,A(x))} {calculate
φ(x, y,A(x)) for every y using Equation 24 and choose
the maximizer}
Tie break using a[x] = arg miny{u(x, y)− φ(x)}

end for
return a.

must be started with the agents of type 1 and downwards,
since every agent’s threshold depends on the thresholds of
all agents with greater types. However, based on Theorem
1, the agent’s threshold does not depend on agents of lower
types, which implies the correctness of the algorithm.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we study fully distributed matching with
search costs, where each agent autonomously searches for
a partner. We consider settings where the output function
for a pair forming a partnership is a linear combination of
the maximum and the minimum among the partners. This
utility combination is much more applicable in real life
(compared to traditional models), where usually either the
best or the worst among the partners have greater influence
on the resulting utility.

The analysis of the model introduces the unique properties
of the equilibrium in the setting considered. In particular
it includes a proof that in any case that an agent sets its
acceptance threshold below its own type, it is guaranteed
that any agent with a type between this threshold and
its own, will accept it (the agent) as a partner as well.
These properties substantially simplify the calculation of the
equilibrium strategies.

While the structure of the agents’ strategies in equilibrium
for the case of α ≥ 0.5 resembles those obtained for
traditional utility functions, the equilibrium proved for the
case of α < 0.5 is substantially different from related work.
The acceptance threshold as a function of the agent type
increases and decreases alternately and, although the utility
function is monotonic, some agents set their threshold above
their own type.

Naturally the attempt to integrate ”search theory” tech-
niques into day-to-day applications brings up the applicabil-
ity question. Justification and legitimacy considerations for
this integration were discussed in the wide literature we refer
to throughout the paper. The current paper is not focused on
re-arguing applicability, but rather on equilibrium analysis.

We see great importance in future research that will combine
bargaining as part of the interaction process. We believe such
research can result in many rich variants of our two-sided
search model.

In future work we intend to study methods in which a
system designer may increase the social welfare, defined as
the integral on the expected utility of all participants. Con-
sider for instance a University that can hand out scholarships
to stronger students which form a partnership with weaker
students. We will analyze the most efficient way to give out
these scholarships so as to raise the social welfare.
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