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Abstract—Thanks to recent technological advances Au-
tonomous Vehicles (AVs) are becoming available at some loca-
tions. Safety impacts of these devices have, however, been difficult
to assess. In this paper we utilize physiological metrics to improve
the performance of a reinforcement learning agent attempting
to drive an autonomous vehicle in simulation. We measure the
performance of our reinforcement learner in several aspects,
including the amount of stress imposed on potential passengers,
the number of training episodes required, and a score measuring
the vehicle’s speed as well as the distance successfully traveled
by the vehicle, without traveling off-track or hitting a different
vehicle. To that end, we compose a human model, which is
based on a dataset of physiological metrics of passengers in an
autonomous vehicle. We embed this model in a reinforcement
learning agent by providing negative reward to the agent for
actions that cause the human model an increase in heart rate.
We show that such a “passenger-aware” reinforcement learner
agent does not only reduce the stress imposed on hypothetical
passengers, but, quite surprisingly, also drives safer and its
learning process is more effective than an agent that does not
obtain rewards from a human model.

Index Terms—reinforcement learning, autonomous vehicles,
passengers, driving style, physiological sensing, comfort

I. INTRODUCTION

In a world where 90% of all motor vehicle accidents are
caused by some type of human error [1] the search for an
automated solution for driving a vehicle seems inevitable.
Still, there are safety issues that are wildly publicized, and
recent accidents have initiated concerns regarding the drivers’
understanding and capability of safely using AV technology
[2].

Therefore, it is plausible that individuals would be con-
cerned when they riding an AV. Passenger trust-related barriers
prevent universal acceptance of such technology, and recent
studies show that 65-75% of American drivers are afraid to
ride in a fully self-driving vehicle [3]. Another path to mitigate
people’s concerns is to influence the driving style of the
vehicle. Furthermore, a recent survey [4] suggests that people
are open to more sophisticated vehicle technology and ready
to embrace new technology, especially if it makes driving
safer. Therefore, to promote acceptance of such technology
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it is necessary to monitor users’ reactions to it to adjust the
driving style to their reactions. A review paper [5] proposed
autonomous passenger awareness factors and compared them
with traditional driving-comfort measures, which eventually
linked drivers’ preferred driving style to their comfort during
driving. The comfort feeling during driving can be represented
by the lack of stress, and several studies tried to decrease
the passenger’s stress during driving: [6] proposed a neural
network-driven based solution to learning driving-induced
stress patterns and correlating it with statistical, structural,
and time-frequency changes observed in recorded bio-signals.
They envisaged that such a driver-centric safety system would
help save precious lives by providing fast and credible real-
time alerts to drivers and their coupled cars. [7] presented
a system where a simple and low-complexity classification
algorithm is used to identify a person’s stress while driving
a car. We conducted this study to address the lack of an
integrated system that aims to drive both more safely and in
a calm, smooth, and less stressful experience.

In this paper we aim to link the autonomous driving style
expressed by kinetic-characteristics to the passengers’ stress-
related response and utilize this linkage in a vehicle control
system that takes the passenger stress-state into account. We
argue that physiological metrics may be utilized to improve
vehicle safety and reduce stress levels of potential autonomous
vehicles passengers. Indeed, physiological metrics provide
essential information related to vehicle safety. For example,
a sudden stop may cause physiological metrics to rise, indi-
cating that the vehicle performed a dangerous sequence of
actions—even if it eventually resulted in no harm. In this
paper, we attempt to harness these physiological metrics to
improve the performance of a reinforcement learning agent
for an autonomous vehicle. We study a dataset [8] of twenty
volunteers who participated in a field experiment in which the
AV driving style was adjusted to allow a variety of velocity
and acceleration values. We compose a human model based on
the relationship between the intensities of the AVs’ kinematic
events (braking, accelerating, and turning) characterized by
velocity, acceleration and jerk, as well as the distance from
other vehicles, and changes in heart rate, heart rate variability,
and skin conductance. This human model is embedded into a
reinforcement learning agent by providing negative rewards
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to actions that result in an increase of levels of stress for
hypothetical passengers. We show that such a reinforcement
learning based agent that receives input from the human
model does not only reduce the stress imposed on hypothetical
passengers, but, quite surprisingly, also drives safer and its
learning process is more effective than an agent that does not
obtain rewards from a human model.

II. RELATED WORK

This section reviews works related to physiological reac-
tions while riding a vehicle, how to mitigate such reactions,
and previous studies that consider the passengers’ experience
while controlling an AV.

A. Stress and Physiological Responses

State anxiety, defined by [9] as a complex emotional re-
sponse to a perceived threat, characterized by feelings of ten-
sion and heightened autonomic nervous system activity. [10]
measured participant’s heart rate (HR) and found that mean
pulse rate was moderately correlated with the anxiety level and
claimed that wearable sensors have the potential to be used
for assessing anxiety level objectively and unobtrusively to
facilitate mental-stress related studies. [11] explored measures
of HR and HR variability (HRV) with an imposed stressful sit-
uation and suggested that HR and HRV change with a mental
task, and that HR and HRV recordings may have the potential
to measure stress levels. [12] claimed that “Stress is triggered
by something called stressor. A stressor is a stimulus initiating
or sparking changes. In general, stressor is classified further
into internal stressor and external stressor.” they manged to
detect an individual’s level of stress by measuring heart rate,
blood pressure, and Galvanic Skin Response (GSR). [13] used
GSR to objectively evaluate stress and arousal levels, and
showed that GSR readings significantly increase when task’s
cognitive load level increases.

B. Manual driving as an External Stressor

In [14] the researchers present methods for collecting and
analyzing physiological data during real-world driving tasks to
determine a driver’s stress level (during manual driving). HR,
HRV, and skin conductance level (SCL) were recorded con-
tinuously alongside other stress-related measurements while
drivers followed a set route through open roads. Data from 24
drives of at least 50-min duration were collected for analysis.
The data were analyzed in two ways. Analysis I used features
from 5-min intervals of data during the rest, highway, and
city driving conditions to distinguish three levels of driver
stress with an accuracy of over 97% across multiple drivers
and driving days. Analysis II compared continuous features,
calculated at 1-s intervals throughout the entire drive, with a
metric of observable stressors created by independent coders
from videotapes. The results show that skin conductivity and
heart rate metrics are most closely correlated with driver
stress levels for most participants. These findings indicate that
physiological signals can provide a metric of driver stress
in future cars capable of physiological monitoring. Such a

metric could be used to help manage noncritical in-vehicle
information systems.

C. Autonomous driving as an External Stressor
Another work [8], measured physiological signals (HR,

eye-movement patterns, and SCL) and self-reported comfort
and anxiety levels from passengers in an autonomous vehicle
followed by correlation of passengers’ response with driving
style parameters, including acceleration, jerk (the third deriva-
tive of position), and dynamic object distance (proximity of
the AV to other objects, like other cars), as well as four
events: following a lead vehicle; stopping at a sign; passing a
vehicle; a tight turn. The study took place on a closed track
in an autonomous vehicle. The results managed to explain the
passengers’ responses to various driving style in a physical
autonomous vehicle, and how the kinetic characteristics of the
ride effects on those responses. the presence and proximity
of a lead vehicle not only raised the level of all measured
physiological responses but also exaggerated the existing effect
of the longitudinal acceleration and jerk parameters. SCL
response was also found to be a significant estimator of pas-
senger comfort and anxiety. Using multiple independent events
to isolate different driving style parameters demonstrates a
method to control and analyze such parameters in future
studies.

D. Stress due to kinetic indices during driving
Reference [15] used skin conductance responses (SCRs)

to measure learner, novice and experienced drivers’ psycho-
physiological responses to the development of driving hazards
and found that experienced drivers were twice as likely to
produce an SCR to developing hazards as novice drivers and
three times as likely when compared with learner drivers. [16]
explored whether slight differences in real-world driving task
demands could be discriminated by the electrodermal response
(EDR). The likelihood of EDR and, whenever present, its
duration was both correlated with workload as represented
by the deceleration demand. A higher base travel speed and
the unexpected demand of the emergency braking situation
impacted EDR, thus attesting higher workload level. EDR
explained why stopping the vehicle from 50 km/h and slowing
down from 80 to 50 km/h was of similar strain. The results
further demonstrate that EDR measures can be successfully
employed to discriminate multiple levels of workload. [17]
conducted a field experiment and manipulated braking de-
mands such as pre-braking speed and and the target speed
for braking (30 km/h, a complete stop, or responding to an
impending collision ) and found that all SCL, HR and HRV
were associated with deceleration intensity, and especially
when |g| > 0.5, and suggested that SCL, HR and HRV
can mirror the mental workload elicited by varying braking
intensities.

E. Vehicle control
AVs relay on accurate sensory data, utilizing multi-sensor

setups and sensors, such as LIDAR, accurate GPS anten-
nas, and high resolution cameras, to provide environment



perception. Control of early versions of AV’s was handled
via rule-based controllers, where the developers hand-tuned
the parameters after simulation and field testing [18], [19].
Recently, deep learning has gained attention due to the success
it had achieved in fields such as image classification and
speech recognition [20]–[22]. AV use deep learning for various
tasks such planning and decision making [23], [24]; perception
[25], [26]; as well as mapping and localisation [27]. In early
works towards vehicle control through deep learning, [28]
introduced an autonomous driving system based on Q-learning
combined with learning from the experience of a professional
driver. The reward value of the professional driver’s strategy
and the Q-value learned through the Q-learning method were
combined in the pre-training phase to improve convergence
speed during training. A filtered experience replay stores a
limited number of episodes and allows the elimination of poor
experimental rounds from memory, improving convergence on
a control strategy. The proposed Deep Q-learning with filtered
experiences (DQFE) approach was compared to a naive neural
fitted Q-iteration (NFQ) [29] algorithm without pre-training
by an experienced driver. During training, it was shown that
the DQFE approach reduced the training time by 71.2% for
the 300 training episodes. Moreover, during 50 tests on a
competition track, the proposed approach completed the track
49 times, compared to only 33 with NFQ. Additionally, DQFE
performed better in terms of the mean distance from the
center of the track. Therefore, adding filtered experience replay
improved the speed of convergence as well as the performance
of the algorithm.

F. Discretized vs continuous decision-making

Comparing two neural networks for lane-keeping systems,
[30] investigated the effects of discretized and continuous
actions. Two approaches, DQN and a Deep Deterministic
Actor-Critic (DDAC) algorithm were evaluated in a TORCS
simulator [31]. In the two networks developed by the authors,
the DQN could only output discretized values (steer, gear,
brake, and acceleration), while the DDAC supports continuous
action values. The DDAC consisted of two networks; an Actor-
Network, a neural network responsible for taking actions based
on perceived states, and the Critic Network, which criticizes
the value of the action taken. The experimental results showed
that the DQN algorithm suffered in performance since it
cannot support continuous actions or state spaces. The DQN
algorithm is suitable for continuous (input) states. However,
it still requires discrete actions since it finds the action that
maximizes the action-value function. In this study, we explored
different approach for using DQN, which discretely changes
continuous outputs to be able to output high range of discrete
values without increasing the dimensionality and complexity
of the network.

III. METHODOLOGY

This section describes the processes of this study and its
two primary outcomes:
A. Estimation of stress-related responses of AV passengers

based on kinematic indices.
B. The utilization of outcome 1 in a reinforcement learning
agent for an autonomous vehicle that receives a penalty
according to the expected stress level of the passengers.

A. Relation Between Kinetic Indices and Stress Reactions

The data used in this study was collected by Dillen et al.
[8]. We describe the data in brief: The study was conducted on
a closed and circular test track in Waterloo, Ontario, Canada,
and involved using an AV, a “normal” vehicle, and human
participants. The AV, a Lincoln MKZ hybrid research platform
developed at the University of Waterloo [32] to reach Level
3 autonomy. The AV was fitted with an array of sensors,
including a Novatel IMU, Novatel GPS, Velodyne LIDAR. The
usage of the GPS and IMU allowed the researchers to collect
the raw velocity, acceleration, and Jerk (the third derivative
of position) with respect to both longitudinal and lateral
directions during the entire experiment. The LIDAR allowed
the researchers to measure the distance to surrounding objects
such as “normal” vehicles deliberately parked alongside the
road. The motion planning algorithm [33] onboard the vehicle
used the sensor information to select a trajectory in accordance
with the intended driving style and the current environmen-
tal constraints. The participants’ GSR, ,HR, and HRV were
measured. A Shimmer3+ device was used to measure GSR
(500Hz sample rate) and obtain a PPG signal for HR and
HRV. Using this experiment’s data allowed us to investigate
the relation between the kinetic indices (including the distance
to surrounding vehicles) and the stress-related physiological
responses.
Preprocessing of kinetics and physiological data: To filter
out long-term drifts in acceleration values, we analyzed the
raw acceleration signal minus its moving median (30sec). Then
the acceleration data (lateral and longitudinal) was subjected
to outlier detection and removal according to the 1.5 IQR
method. That is, any sample above the third quartile plus 1.5
times the interquartile range or below the first quartile minus
1.5 times the interquartile range, was removed. Detection
of kinematic and physiological events: The kinetics of the
vehicle apply forces on the passenger. One way to estimate
the linkage between the forces applied to the passengers and
their physiological response is to look at time-series data.
Reference [8] report that the presence and proximity of a lead
vehicle not only raised the level of all measured physiological
responses but also exaggerated the existing effect of the lon-
gitudinal acceleration and jerk parameters. Skin response was
also found to be a significant predictor of passenger comfort
and anxiety. Our approach is different and does not assume
that the kinematic forces and physiological responses occur
simultaneously. To illustrate, Fig. 1 describes the longitudinal
acceleration and SCL versus measurement number (measured
in 500[Hz]). The figure presents three acceleration events:
Braking, with peak braking at 21.72K measurement, accel-
erating with peak acceleration at 21.77K measurement, and
braking with peak at 21.84k measurement. The letters S and E
signify the start and end of each kinematic (and physiological)



event identified in the data. A kinematic event (acceleration
state 1 or -1 for throttle and brake events, respectively) begins
when the acceleration is higher than 0.1[ m

sec2 ] or lower than -
1.1[ m

sec2 ]. There are also events (that we call Skin Conductance
Responses - SCR), with peaks at times: 21.69K measurement,
21.75K measurement, and 21.84K measurement.

Fig. 1: Acceleration, and SCL response during some trials
of the experiment. x axis represents measurement number
sampled in 10Hz, orange line represents actual acceleration
[ m
sec2 ], blue line represents SCL response, thresholds of -1.1,

+0.1 [ m
sec2 ] defines the acceleration/braking event type.

The time of the peaks of the kinematic events is not
perfectly synchronized with those of the physiological event,
suggesting that the psychological events can appear at the
beginning of the kinematic event (proactive response) at
the end of it (reactive). For example, in [15], SCRs began
before a hazardous event onset reflecting the driver’s (in their
case) ability to anticipate hazards. Here too, the peak in the
physiological event (at time 21.75k measurement) preceded
the peak of the acceleration event. The peak of the braking
events and their corresponding SCR are almost aligned.
While the analysis of the correlation between two time-series
(physiological and kinematic) requires an assumption about
the time lag between the kinematic time series and the
physiological time series, analysing data per event allows
more flexibility: the correlation uses the pairs of peaks in
the kinematic and the physiological data in the overlapping
events even if the peaks did not occur at the same time. Many
other acceleration thresholds were explored using grid search.
we tested different thresholds for both negative and positive
accelerations, in the longitudinal and lateral directions. For
each threshold, we calculated linear regression to relate
the kinetic characteristics of the driving, to the passenger’s
HR, HRV and SCL. Then we choose the threshold which
facilitated the highest R2 score between kinetic indices to
the passenger’s stress response. This procedure yielded 418
braking events, 486 acceleration events, 692 right turn. Due
to the circular structure of the driving track, this dataset
contains turns to the right side only.

B. Vehicle control

This section outlines how we use the stress estimation
model in an AV motion control planning algorithm called a
“passenger-aware” agent. The motion control of a vehicle can
be broadly divided into two tasks - lateral and longitudinal
motion; the steering of the vehicle controls the lateral motion
of the vehicle, while longitudinal motion is controlled by
manipulating the gas and brake pedals of the vehicle. Lateral
control systems aim to control the vehicle’s position on the
lane and carry out other lateral actions such as lane changes
or collision avoidance maneuvers. In the deep learning do-
main, this is typically achieved by capturing the environment
using the images from onboard cameras as the input to the
neural network. Longitudinal control manages the vehicle’s
acceleration such that it maintains the desirable velocity on
the road, keeps a safe distance from the preceding vehicle,
and avoids rear-end collisions. While lateral control is typically
achieved through vision, longitudinal control relies on relative
velocity and distance measurements to the preceding/following
vehicles. The data set [8] was used to develop several SCL and
HR estimators, and their performance in terms of accuracy
will be described in the results section. Due to its relatively
high Rsquared, HR response was chosen as the estimated
human stress indicator in the further work described in this
section. Due to its relatively small number of sub-estimators
and parameters, the BaggingRegressor model [34] is used
as the primary estimator used in this section. To estimate the
passenger’s HR as a response to the vehicle kinetics state, the
following variables were used as the estimator’s input:

TABLE I: Variables which used as an input to our HR
estimator model

Variable Description Units
V Vehicle velocity [ m

sec
]

Ax Forward acceleration [ m
sec2

]

Jx Forward jerk [ m
sec3

]

Ay Lateral acceleration [ m
sec2

]

Jy Lateral jerk [ m
sec3

]

Dx Forward distance from surrounding objects [m]

Dy Lateral distance from surrounding objects [m]

Nsteps Episodic step count [#]

T 1 if a turning event occurs, and 0 otherwise [Binary]

B 1 if braking event occur, and 0 otherwise [Binary]

A 1 if acceleration event occur, and 0 otherwise [Binary]

NT Turning events episodic-count [#]

NB Braking events episodic-count [#]

NA Acceleration events episodic-count [#]

To design a vehicle control mechanism, we used an API
of LGSVL-SIM [35] simulator as a training environment,
which facilitated the same conditions as conducted on Dillen
et al. [8], such as maximum acceleration and velocity and
nearby NPC’s (non-player characters). The simulated vehicle
(hereafter Ego-vehicle) uses several sensors to feed the
observation space, control space, reward function, and our
HR estimator.
Segmentation camera sensor: An image obtained from



a front camera on the Ego-vehicle’s roof as input and
transformed using a segmentation algorithm. Objects in the
image are colored corresponding to their tag: Ego-vehicle
(Black), NPC (Blue), Road (Purple), Horizon (White).
Controller Area Network (CAN bus) sensor: Sends
data about the Ego-vehicle chassis. The data includes
Velocity[m/s], Angular velocity[rad/sec], Longitudinal
Acceleration [m/sec2], Angular Acceleration[rad/sec2],
Lateral Acceleration [m/sec2], Longitudinal Jerk[m/sec3],
Lateral Jerk[m/sec3].
Observation space: Contains data retrieved from the
Simulator’s sensors. Include the current image and the last
three images obtained from the segmentation camera sensor.
The observation space also includes data from CAN bus
sensor.
Control State: Represents the Ego-vehicle’s current throttle
[%], Brake [%], Steering [+- %] states.
Action space: Contains the following nine combinations of
using the gas/brake pedals and the steering wheel:
no action, throttle, brake, throttle+right, throttle+left,
brake+right, brake+left, right, left. Before every step, the
agent chooses an action from the action space. every chosen
action is increasing/decreasing/resets the current Control state
in the following form:
The throttle pedal increases its previous state by 5% if the
actions throttle, throttle + right, throttle + left is chosen and
drops back to 0% for any other action chosen. The brake
pedal is increasing its previous state by 5% if the actions
brake, brake + right, brake + left is chosen, and drops back
to 0% for any other action chosen.
The steering wheel increases (decreases) by 5% if the actions
right, throttle + right, brake + right (left, throttle + left, brake
+ left) action is chosen and keeps the same for any other
action chosen.
Reward Function: After each step, the agent receives a
reward according to the results of its action. The reward
function uses information about the vehicle location, and
while the vehicle’s position is inside the road, the reward
function calculates the following variables:
Distance traveled Dt: The euclidean distance from the current
to the last step’s position.
Passenger factor P : The extent at which the passenger’s stress
exceeds some threshold:

P =

{
(
Hp

Ht
)2, if Hp ≥ Ht

0, otherwise
(1)

While Hp represents the HR estimated by the
BaggingRegressor model using the current step’s kinetic
information, and Ht represents the threshold which, if passed,
indicates that the passenger feels some level of stress. In our
case, Ht is set to 90[BPM].

Delay penalty Dp: a value which increases itself in
every step. We used the delay penalty to “punish” the agent
for standing still and encourage the agent to move along the

road. The delay penalty calculates as follows:

Dp = 0.05
Sn − 1

1000
(2)

While Sn is the current session’s step count. As a result, the
reward is computed using the following formula:

R = Dt −Dp − P. (3)

If the vehicle location is outside of the road or it collides
with another vehicle or any obstacle, the reward function resets
the current driving session and the environment is initialized
with the vehicle at the starting position. We compare the
passenger-aware agent’s driving performance to a ”standard
agent”, which is identical to the passenger-aware agent in all
aspects except that it does not account for the human stress
value P . That is, the reward for the standard agent is computed
by:

R = Dt −Dp. (4)

Architecture: We integrated the heart rate estimation model
alongside with kinetic and visual features into a DQN architec-
ture [36] which after trained, called ”passenger aware agent”.
The DQN uses the observation space as an input and, as an
output, returns one element from the action space as an action.
Fig. 2 describes the entire DQN network structure.

As an agent takes actions and moves through an environ-
ment, it learns to map the observed state of the environment to
an action. An agent will choose an action in a given state based
on a “Q-value” - a weighted reward based on the expected
highest long-term reward. A Q-Learning Agent learns to per-
form its task such that the recommended action maximizes the
potential future rewards. This method is considered an “Off-
Policy” method, meaning its Q values are updated assuming
that the best action was chosen, even if the best action was not
chosen. This network learns an approximation of the Q-table
- a mapping between the states and actions that an agent will
take. For every state, we will have nine actions that can be
taken. The environment provides the state, and the action is
chosen by selecting the larger of the nine Q-values estimated
in the output layer. Our network is built as a combination of
two different neural networks merged to decide one action as
an output. The upper part (Fig. 2) is a network that can process
images data (4 stacked images in our case) and use convolution
layers to understand features in the image, such as the road
and NPCs. The upper network receives 4 84x84 gray images
and then performs a transformation on two convolution layers
while using max pulling in between. As an output, the upper
network outputs a dense layer of 512 units. This output will
merge with the lower network’s output.
The lower network receives the kinetic information of the
vehicle from the CAN bus sensor and uses it as an input.
The input is then processed through two dense layers of 256
units. The last layer of 256 units are merged with the upper
network’s last layer of 512 units to a 768 dense layer, which
then outputs 9 Q-values. Later on, the agent chooses the action
in which its representative Q-values have the highest values.



Fig. 2: Visualization of the DQN architecture we used. the network receives 4 images and kinetic features as and input and
outputs one action from the action space for controlling the vehicle’s wheel and brake/throttle pedals.

IV. RESULTS

This chapter describes in detail the results of two primary
outcomes:
A. Estimation of stress-related reactions to kinetic indices on
AV passengers.
B. The utilization of outcome 1 in a motion control planning
algorithm that considers the passenger’s responses in its ac-
tions.

A. Estimation of stress-related reactions to kinetic indices on
AV passengers

We used non-linear regressors to produce a function that
receives several vehicle kinetics as inputs and estimates the
passenger’s HR as output. the regressors were trained on
the entire dataset published by [8], measured with a 500Hz
sample rate (after performing the pre-processing described
in Section III-A. Thus, we trained several regressors for
estimating the passenger’s HR, HRV and SCL. Furthermore,
the accuracy of each model is described below:

TABLE II: R2 and RMSE of different models for estimating
passengers’ HR, HRV and SCL during riding AV.

HR SCL HRV

Model R2 RMSE R2 RMSE R2 RMSE

RandomForestRegressor 0.8 0.07 0.73 0.09 0.17 0.23

ExtraTreesRegressor 0.8 0.07 0.77 0.08 0.14 0.24

BaggingRegressor 0.77 0.07 0.7 0.1 0.21 0.22

Table II shows that the ability to estimate passengers’ stress
levels during AV riding exists and the average error of such
estimations is less than 1 BPM for HR estimations. However,
there is high importance to consider that those estimations will
estimate accurately only on the passengers who participated in
[8]’s experiments. For the generalization of such estimators,

there is a need for data from a larger population. However, in
our work, the provided dataset was sufficient for implementing
the BaggingResgressor in an AV motion planning and control
algorithm, as described in the next section.

B. Motion control planning algorithm which considers the
passenger’s responses in its actions

After training both passenger-aware and standard agents
five times each, we compared the distance travelled by each
during an episode. The episode represents a driving session,
and while training our algorithms, the agents made thousands
of episodes. In total, out of 2,300,000 sampled steps, the
passenger-aware agent raised the estimated passenger’s stress
level 1.9% of time, while the standard agent, (which wasn’t
designed to address the passenger’s stress) made it 39% of
time. In Fig. 3, we plotted the distance travelled by the agents
during each episode to compare their performance.

Fig. 3: Distance travelled vs. the number of episodes by agent
type (colors). each agent made five different learning sessions

In Fig. 3, if each agent is examined separately, we can
see a significant difference between the agent’s performance
from one learning session to another. This phenomenon can be



explained by the fact that before each step, the agent chooses
its actions in some level of randomness. The use of epsilon
greedy [37] to deal with the exploration-exploitation dilemma
[38] during the training process can explain this randomness
and possibly explain the temporary high distance travelled
on one of the passenger-aware agent’s trials (around 1500-
2000 episodes). Fig. 3’s significant outcome is the existence
of a mechanism that can learn how to avoid increasing the
passenger’s stress reactions and control and plan the motion of
a vehicle - all at the same time. Furthermore, while comparing
the performance of our passenger-aware agent to a standard
agent (which is the same algorithm with just one difference
- the passenger’s factor calculated in the algorithm’s reward
function, as described in Section III-B), we can see that
the learning process of passenger-aware agent converges to a
higher distance of driving without resets the episodes. Those
results can even tell that it is recommended to implement
the passenger factor in other algorithm’s reward functions
to gain higher performance. We then analysed how each
agent interacts with other vehicles during the ride, and mainly
focused on the proximity to other vehicles during an episode.
We collected all the events where the agent’s vehicle passed
near a surrounding vehicle, and for each event, we took
the minimum Euclidean distance between those two vehicles.
Fig. 4 presents the results.

Fig. 4: The distance between the agent’s vehicle and the closest
vehicle next to it for each type of agent averaged across 500
episodes.

By Fig. 4, we can learn that as time passed, the passenger-
aware agent learned to keep its distance from surrounding
vehicles, significantly compared to the standard agent. Once
reaches 1000 episodes, the passenger aware agent learns to
keep greater distance from the other vehicles. Furthermore, we
assume the agent acts in such way to avoid triggering stress
reactions in passengers, like [8], which found that the presence
and proximity of a lead vehicle raised the level of all measured
physiological responses. As a result, such behavior can be
interpreted as a bit safer. The primary outcome of these results
is that eventually, and as expected, driving with passenger
awareness can also contribute to a safer driving strategy,
especially when comparing the two above control agents’
distance-keeping abilities. We then inspected how driving
episodes where ended during training. In our environment,

an episode ends if one of the following occurs: the vehicle
went off the road, the vehicle collides with another vehicle,
and the session reaches the maximum steps defined for each
episode (in our case is 1000 steps). Fig. 5 shows distribution
of averaged episode-ending cause around episodes 2000-2500
for all training sessions. We did so to observe how each agent
was able to sense the surroundings and avoid collisions.

Fig. 5: for each learning session, we averaged the
collisions/off-road/completed successfully episode-ending
cause percentage of episodes 2000-2500, where the agents’
driving ability was mature, and learning curve converged.

Fig. 5 shows that the passenger-aware agent eventually
managed to collide with other vehicles less than the standard
agent. It can be explained by Fig. 4 outcomes which is, as
expected, the idea that driving with higher distance keeping
can contribute to collision avoidance. Furthermore, and in gen-
eral speaking, the passenger-aware agent was able successfully
complete its episodes with higher probability than the standard
agent.

V. DISCUSSION

The results presented in Section IV-A connect AV passen-
gers’ stress to the ride’s kinetic characteristics. Some key
points to remember while considering those results are that
estimations were trained on a significantly small sample size
(20 participants). Furthermore, the data set that this study used
to develop the HR estimations upon, contains driving sessions
of limited speed range (of 0-34 [kmh ]) and, therefore, may
not be accurate when driving at higher speeds. To address
those limitations, we intend to run another study that will
include a larger sample size and a higher range of speeds. Data
collected from our future study can increase generalization of
the current study’s results. Furthermore, the results presented
in Section IV-B support the usage of the passenger stress due
to the potential safety benefits – our passenger aware AV had
fewer collisions rate during training. However, to proceed with
on-road testing, there should be a usage of control agents
with a much lower collision rate (around zero), which is
measured by much more simulations compared to only five as
we did. A key point to remember while considering this study’s
results is that even though the passenger factor was reliable by
presenting high accuracy of HR estimation, it was calculated
by a significantly small population size and thus, cannot be



generalized to a higher or external population other than its
population. Therefore, those results need to be addressed only
as proof of the feasibility of such an AV control strategy.
Another way to handle the disadvantages of those results is
to examine how such a passenger-aware agent can learn its
HR estimation upon individual users, and by then, to learn
how to provide personal driving experiences custom-made to
individuals instead of to some population.
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