
An Agent for Deception Detection in Discussion Based
Environments

Amos Azaria
Dept. of Machine Learning
Carnegie Mellon University,

Pittsburgh, PA

Ariella Richardson
Dept. of Industrial

Engineering
Lev Academic Center, Israel

Sarit Kraus
Dept. of Computer Science
Bar Ilan University, Israel

ABSTRACT
Extensive use of computerized forums and chat-rooms pro-
vides a modern venue for deception. We propose introducing
an agent to assist in detecting and incriminating a deceptive
participant. We designed a game, where deception in a text
based discussion environment occurs. In this game several
participants attempt to collectively detect a deceptive mem-
ber. We compose an automated agent which participates in
this game as a regular player. The goal of the agent is to de-
tect the deceptive participant and alert other members, with-
out raising suspicion itself. We use machine learning on the
data collected from human players to design this agent. Ex-
tensive evaluation of our agent shows that it succeeds in rais-
ing the players collective success rate in catching the decep-
tive player.

Author Keywords
Deception Detection; Human Agent Interaction; Suspicion
Evasion; Machine Learning

ACM Classification Keywords
I.2.m Computing Methodologies: ARTIFICIAL INTELLI-
GENCE—Miscellaneous

INTRODUCTION
Many activities in our everyday lives involve sharing opinions
with peers through computer-mediated communication. Peo-
ple participate in forum discussions on important topics such
as: how to raise their children, what medication they should
use and how to improve their business. It would be nice to as-
sume that all of the people participating in these discussions
have a common, honest goal and that malicious participants
are spotted by moderators. However, this is often not true.
Pedophiles manage to infiltrate kids’ chat rooms, commercial
products are pushed in forums by dealers posing as regular
users, and business forums are probably full of advice that
actually assists their competitors. Computer-mediated com-
munication has provided a modern venue for deception [30],
and encouraged research on the extent of deception online
[21]. For example, consider a salesperson that participates in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CSCW ’15, March 14 - 18 2015, Vancouver, BC, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2922-4/15/03$15.00
http://dx.doi.org/10.1145/2675133.2675137

a chat discussion on buying a specific car. The salesperson
may try to promote the car, and may be confronted by other
participants as being dishonest. The salesperson would likely
deny being a salesperson, and may accuse other participants
of being a salesperson trying to promote another car. It can
be difficult to determine which of the participants is present-
ing an honest opinion, and which is motivated by an ulterior
motive. Many chat environments are not monitored by an ad-
ministrator, or loosely monitored. Sometimes the moderator
does not wish to intervene (this could be for various reasons,
for example if the administrator is only responsible for the
infrastructure and not for the content). Furthermore, even in
monitored environments a user (or a group of users) may have
personal preferences to the type of moderation they require.
We suggest introducing an agent to the chat environment, that
participates in the chat as a regular user. We expect this agent
to have three capabilities. First, the agent must be able to find
the salesman. Second, the agent should convince other users
that this participant is a salesman. Third, we expect our agent
not to raise suspicion as being a salesman himself. Such an
agent could decrease deception in this environment.

In his book “Telling Lies” [12], Ekman states that “it is not
a simple matter to catch lies” (pg. 80). Ekman explains (pg.
82) that when people are dishonest, they choose their words
with care, however they tend to give away the lie through
body language and tone. This knowledge from Psychology
has motivated studies on the automatic detection of lies based
on video and audio data [8, 25, 15, 4]. However, in many
web-based environments, in which a group forms a discus-
sion, such as chat rooms and forums, there is no audio or
visual information. Such environments are based solely on
short text messages.

Inspired by this, we investigate scenarios where several par-
ticipants attempt to collectively detect a deceptive member.
We also study how and if they may be assisted by an au-
tonomous agent. As a first step towards reducing deception
by human subjects, in discussion based environments, we de-
signed an agent. This agent participates in a discussion based
game that involves discussion and deception. The agent joins
a group of human players as a regular member, and has no
enforcement capabilities on other players. The agent must
detect the deceptive participant and alert other members of
suspicious behavior while not raising suspicion itself.

We designed a game to deploy and evaluate our agent in a
text-based discussion environment. In this game there are
several credible participants and one dishonest participant (a
pirate). In the first phase of the game the participants con-

Figure 1. A screen-shot of the pirate game in progress.

duct a textual discussion in an attempt to uncover the liar, and
later they cast their votes as to whom they think the liar is.
The game is played either with a human set of participants,
or with a mixture of human participants and an autonomous
agent that plays as a regular participant. We evaluate the con-
tribution of the agent to the credible participants in the fol-
lowing two different game versions: the first version of our
game allows the pirate to be as active or inactive as he chooses
and the second version encourages the pirate to be more ac-
tive. The second version is similar to one where a salesman
is pushing a commercial product. The credible participants
performed no better than chance at spotting the pirate in both
versions of the game. However, once one of the credible par-
ticipants was replaced by the agent that we built, the group
had significantly greater success in finding the pirate.

We use machine learning on the data collected from human
participants to determine whether a player is honest or not.
The agent uses this information to catch the pirate. We also
apply machine learning methods in order to learn when play-
ers fall under suspicion. This information is also used by our
agent in order to minimize the suspicion that it raises. We
focus on the discussion dynamics such as tendencies towards
accusation, denial or agreement.

In this paper we provide a platform for studying deception
detection within a text based game that supports group dis-
cussion. In this game we deploy an agent that is required not
only to detect deception and lead other participants to recog-
nize the deceiver, but also to refrain from raising suspicion it-
self. Previous approaches use corpora to perform off-line de-
ception detection, whereas we have perform on-line detection
during multi-player interaction. To the best of our knowledge
we are the first to deploy an autonomous agent in any such

environment. We provide extensive evaluation of our agent
in both game settings.

THE PIRATE GAME
In order to simulate the environment which we are interested
in studying (deception in chat-rooms and forums), we need a
game which will provide us with the following properties:

1. The game is played by a group of people.

2. The game uses text-based communication.

3. The game is based on a discussion, using short messages
and in which players refer to one another.

4. The deceiver has some motivation to deceive.

5. The other players have some motivation to catch the de-
ceiver.

To satisfy these properties we introduce the Pirate Game; a
game, with four players and two roles. Three players are the
honest players, the “credible villagers”, and the fourth player
plays the deceptive participant, the “pirate”. All players are
informed of their own role but not of anyone else’s. The par-
ticipants are told that they are a group of villagers who went
on a journey to find a treasure. They have found a treasure
of coins and can split it. However, one of the participants is a
pirate and can steal the coins unless he is detected. In order to
detect the pirate a discussion phase is held. After the discus-
sion, all credible villagers cast votes as to whom they think
is the pirate (or an empty vote if they wish). In our game we
do not allow the pirate to vote, as allowing the pirate to vote
would make the game harder and less fun for the players and
demotivate them. The votes are concealed until all players

cast their votes. If there is a majority of votes for the pirate he
is “caught” and the money is split between the credible play-
ers. Otherwise the pirate receives all the money. At the begin-
ning of the game each player is told his role and the discus-
sion phase begins. The discussion is composed of structured
sentences (examples are presented in Figure 1). Although
we do not use free chat, our frame-work allows the composi-
tion of approximately 4, 000 sentences (which is, for instance,
much richer than the options available in [11] or what can be
achieved using icons as in [2]). A video demonstrating the
user interface can be found at: http://azariaa.com/pirate.avi.

We use structured sentences rather than free text for several
reasons. First of all, structured sentences, as opposed to open
text, enable focusing on the dynamics of the discussion, and
less on the syntax. Furthermore, the structured sentences en-
courage participants to use meaningful sentences, and they
also encourage players to speak and be active because the
player merely selects a sentence rather than phrasing his own.
Since the players have limited time, slow typists may not have
time to respond. Structured sentences limit the effect of typ-
ing speed (since this environment is new to everyone). Fi-
nally, the controlled environment also makes it easy to add an
agent that plays similarly to other players and keeps the agent
inconspicuous. This does not mean that an agent cannot be
deployed into an unstructured environment, but adding “so-
cial credentials” to the agent were not the focus of this work.
An open chat environment requires solving NLP challenges
in order to automatically tag sentences. These are difficult
challenges, but recent progress in NLP seems promising [28].
Once these challenges are solved it would be straightforward
to adapt our agent to incorporate the NLP tagging.

We also implemented a second variation of the game. This
variation is different only for the scenario where the pirate
manages to escape (does not receive a majority of the votes).
In this variation the pirate is told that one of the credible vil-
lagers will turn him over to the village ruler, if he escapes
with the money. This results in neither the pirate nor the other
players receiving any money, unless the pirate manages to
convince the other players to cast at least one vote against the
villager. In this case the villager will be considered unreliable
(to the village ruler) and the pirate will gain all of the coins,
that he escaped with. This setting encourages the pirate to be
active in the game. We call this version of the game the “in-
former version” and differentiate it from the “basic version”.
A description of the formal model for the Pirate game can be
found in the Appendix.

RELATED WORK
Of all existing games, the “Pirate Game” we introduce is most
similar to the Mafia games (also known as “werewolf”), how-
ever pirate game is a simpler game which is closer to actual
situations which take place in real life. In the mafia game
once a player is accused to be a malicious player (or the were-
wolf”) by a majority of votes, this player is eliminated from
the game and the game continues. The mafia game also in-
cludes a phase in which the malicious player (or the were-
wolf”) eliminates a credible player. Furthermore, every time a
player is eliminated his real role is revealed. This elimination

process receives considerable attention in studies which ex-
amine this game. However, in real-life situations there is very
seldom a situation where some users are eliminated and the
discussion continues without them. We therefore introduce
the pirate game which we believe resembles real-life situa-
tions much better. The mafia game has been used as a plat-
form for studying communication, coordination and function-
ality in situations where participants have different amounts
of information, and have also raised much interest in theo-
retical analysis [18, 6]. Dias et al. [11] introduce MIXER
(Moderating Interactions for Cross-Cultural Empathic Rela-
tionships), which is a platform incorporating intelligent and
interactive characters and is based on the mafia game. They
study the level of human reasoning (e.g. if someone wanted
to eliminate a player which turned out to be a credible villager
he may be the werewolf), and the level of reasoning which is
required for an agent in order to play well. Aylett et al. [2]
use the MIXER platform for studying the attitude children
adopt towards cultural differences. They had children play
the mafia game using two different sets of rules and observed
how a child playing in one set of rules reacts when exposed
to a group playing the game under a different set of rules.
The mafia game has also been used for detecting deceptive
participants using audio and video data [8, 25]. Chittaranjan
and Hung [8] use non-verbal audio cues such as: the length
of speaking intervals, the number of speaking turns, interrup-
tions and pitch. They achieve an F-Measure of 0.62 for de-
ception detection. These cues are used to detect suspicious
behavior. They also show that the degree of speaker activity
influences the group decision. In a later work, Raiman, Hung
and Englebienne [25] combine these audio features with low
quality visual data, in which facial expressions cannot be rec-
ognized, but gestures can. Combining the audio data with the
video results in an improved detection rate with an F-measure
of 0.76.

A similar study was performed by [15] who use digital au-
dio tape to detect deceptive speech. They use both prosodic
features (which do not use the actual words) such as pitch,
loudness, duration, etc. and lexical features such as denials
and flags for positive and negative emotion words (a total of
20 features). The best combination resulted with an accuracy
of 64.4%. Our experiment is run under the assumption that
the conversation is performed over the web where visual and
audio data are unavailable.

Zhou et al. [30], use a text-based environment in which
deceptive senders have to persuade receivers to make de-
cisions which they know to be incorrect. This experiment
tests whether the automatic extraction of linguistic cues
contributes to differentiation between deceptive and non-
deceptive texts. In their work, though subjects were moti-
vated to play the game, there was no special motivation for
the deceptive players to be deceptive. In the game we de-
sign we make a point of motivating the deceptive player to
act accordingly. The deceptive senders were found to be more
expressive than honest senders. This is contrary to previous
work that shows that liars tend to be less expressive. This
result was explained by the fact that previous studies were
conducted in an interview type scenario where a liar had to

answer in real time without planning or editing, as opposed
to this experiment where liars can think about and edit the
message before they send it. This work was later extended
[31] to a chat-based environment where the effects of the
type of environment on deception detection by human sub-
jects were studied. They observed that humans felt that view-
ing the messages assisted detection more than viewing video
of the actual typing of the liars. However, the accuracy of
the human deception detection in all settings was lower than
50%. Although the text-based domain that we use is simi-
lar to the domains used by Zhou et al., our research differs
substantially from these studies. We use machine learning
to differentiate between deceptive and non-deceptive texts as
opposed to these studies that either collected statistics on the
existence of automatically extracted phrases or used humans
for detecting deception.

Newman et al. [20] and Toma and Hancock [29] find that cer-
tain words are chosen more often by liars. Zhou et al. use
text-based computer mediated environments to study what
linguistic-based cues are used more in deceptive texts than
in non-deceptive texts [31] and how modality affects human
deception detection in chat-based environments [30]. How-
ever they do not build a model for deception detection with
machine learning.

Another study on deceptive language is performed by [19].
Their data consists of paragraphs written by subjects who
were asked to write their opinion on a topic and then write
the opposite opinion. Naive Bayes and Support Vector Ma-
chines were used to classify words in this data set. Words
that are connected to the self such as “I, friends, self” are of-
ten used in the honest text. In contrast, detached words such
as “you, other, human” appear more often in the deceptive
text. When topics were evaluated separately, an average de-
tection rate of 70.8% was found. When testing the portability
of the classifiers across topics, accuracy dropped to 59.8% on
average.

Toma and Hancock analyze text which is presented in on-
line dating profiles [29]. This is a setting where the sub-
jects have time to revise their descriptions, and make sure
they sound honest. Yet again deceptive participants use less
self-references, and use more negations. 63% of the profiles
were correctly classified using logistic regression. Ott et al.
conduct a study [23] in which they try to differentiate hon-
est hotel reviews from fake ones. They asked Mechanical
Turk workers to write fake positive reviews for a set of hotels
and fetched (presumable) truthful positive reviews from Tri-
pAdvisor. One of their proposed methods reaches a success
rate of nearly 90%. Ott et al. also conduct a recent simi-
lar study [22] for negative reviews. These types of studies
are inherently different to the discussion environment that we
study, since in a discussion environment people are part of a
group and refer to each other, while in writing a review etc.
each person merely posts the review, doesn’t refer to anyone
else and isn’t required to later post any additional response.
While writing a review, description or opinion is composed of
a large bulk of text; in a discussion environment the messages
are short and fast. As we chose to focus on the dynamics

of the discussion and therefore use structure sentences, most
of the features which heavily rely on syntax features are not
applicable to our work.

Mancilla-Caceres et al. [17] developed a game in order to
identify children who act as bullies within a social network.
The game involves a restricted set of resources and two tasks.
One is collaborative and the other competitive. The commu-
nication between participants is through text messages. Man-
cilla et al. manually classify the messages exchanged and,
using machine learning, are able to detect the bullies with an
accuracy of slightly above 60%. This game is reminiscent
of our game as it uses text messages and players are given
a set of resources. However our game is aimed at assessing
dishonest behavior and not aggressive behavior.

Similar work dealing with cyberbullying was performed by
Bosse and Stam [5]. They deploy an agent in a game in
order to reduce cyberbullying in it. However, their agent is
given special capabilities over the ordinary players, such as
using rewards and punishments. Additionally, since they do
not deal with deception, their agent is not required to appear
trustworthy to the other players.

Human-agent interaction has taken a major role in the nego-
tiation environment [27, 14, 3]. Occasionally, in such envi-
ronments, agreements aren’t enforceable and thus an agent
must reason about the probability or the likelihood that the
opponent might be deceiving and will not keep his promise.
However, to the best of our knowledge, in this realm, pre-
dictions are based merely on the user’s actions and monetary
promises and not on verbal or textual context.

Our work should not be confused with the following works
on deception and deception detection in agents, [26, 16, 7, 9],
where agents must determine whether other agents are lying,
or agents use deception themselves. Santos an Li [26] study
deception detection in a multi-agent environment. They fo-
cused on the agent’s reasoning process in a medical inference
system. In this system the agents infer medical information
in an intensive care unit. Some of these agents are simulated
to be deceptive. Correlation between the various agents in
the system are used to make predictions on the agent reason-
ing process and are then used to detect deception. Kaluža,
Kaminka and Tambe [16] propose a two step approach for de-
tecting suspicious behavior in agents. In their study they sim-
ulate an airport domain, where agents simulate passenger be-
havior. Some of the agents simulate suspicious behavior. The
detection of suspicious agents is based on sequences of events
performed by the agents. In the first stage trigger events are
detected, and in the second multiple events are combined to
determine suspiciousness. An interesting study is performed
by Bridewell and Isaac [7]. They developed a framework for
socially aware inference, using deception as an example of
social behavior. They model the mental states of other agents
using beliefs, goals and intentions. Christian and Young [9]
use strategic deception in a planner in order to achieve certain
goals. The deception is used in order to improve planning.
This is an example to the agent being deceptive itself rather
than detecting deception in others.

THE DIG AGENT
We present the Deception In Group detector and catcher
Agent (DIG). The DIG agent is capable of participating in
the pirate game while posing as a regular player. During an
ongoing session of the pirate game, DIG uses input from mul-
tiple previous games, along with input from the current game,
and outputs the next sentence it wants to contribute to the
discussion. DIG has four components. The first is used to
detect the deceiver and is called the ’Suspector’. The sec-
ond component, the ’Output Selector’, aims to avoid raising
suspicion (as being the pirate). The third component is the
’Accuser’; it directs the other credible players towards DIG’s
suspect. The fourth component, the ’Responder’, responds to
sentences other players may direct to DIG.

The structure of DIG is presented in Figure 2. All of the sen-
tences from the chat in the current game are provided as input
to the ’Suspector’ component which (using machine learn-
ing) outputs an ordered list of suspects. This list of suspects
is provided as input to the ’Accuser’ and is used to output a
time-dependent list of possible sentences for the DIG agent
to use. In addition, the last sentence in the current chat is in-
put to the ’Responder’. In the case this sentence is referred to
DIG, the ’Responder’ (Using training data) outputs another
optional sentence set. Based on the sentences in the chat and
the optional sentence set, the ’Output Selector’ (using ma-
chine learning) selects a sentence for DIG to output. We de-
scribe the components in detail.

The Suspector Component
The ’Suspector’ relies on a machine learning model built of-
fline that classifies various users’ texts and whether or not
they played the role of a deceiver. We use data from previous
games. For each player in each game we build a feature vec-
tor. We use the feature set mentioned below and label each
player vector as being the pirate or a credible villager. We
used an SVM classifier with a linear kernel [10] which is built
on these player vectors. The ’Suspector’ is interested in the
SVM-score (the signed distance from the separating hyper-
plane) and not in the actual SVM classification. The online
part of the component works as follows: it extracts feature
vectors from all of the sentences that appeared in the game.
The feature vectors are fed to the model (built offline), and
the model outputs the degree of suspiciousness for each of
the players. The component then sorts the players accord-
ing to their degree of suspiciousness. The ’Suspector’ is used
mainly by the ’Accuser’ component.

The Output Selector Component
The ’Output Selector’ gets a set of sentences from the ’Ac-
cuser’ and the ’Responder’ components and using another
machine learning model outputs the least suspicious sentence
from the perspective of human players (the sentence that
would raise the least suspicion if said at the current time).
Similarly to the model used in the ’Suspector’ component,
the model we build here (offline) uses player feature vectors
and uses SVM as described above. However, this model uses
different labeling. The player vectors are labeled as being
suspicious or not, based on whether they received votes or
did not (rather than whether the player was a pirate or not).

Note: just as the ’Suspector’ component, this model is built
on a group of sentences and not on single sentences. The
model is fed with features derived from all of the sentences
that appeared in the game, together with each option provided
as input by the ’Accuser’ or ’Responder’. Based on the SVM-
score obtained from this model, for each of the options, the
’Output Selector’ chooses the sentence which would raise the
least suspicion, towards DIG, if said at the current time. In
addition to the above, a random delay was added to each sen-
tence said by DIG, in order to appear human.

The Accuser Component
The ’Accuser’ is awoken by a clock at given times1 and se-
lects possible sentences for DIG to say. The list of sentences
output by this component is based on a manual tagging of
all sentences. For example, some sentences were tagged as
opening sentences, such as ”Who is the pirate”, ”I am not the
pirate” and ”I am a credible villager”. Other sentences were
tagged as accusing sentences, as alter justification (standing
up for a different player) and as questions to other players.
The ’Accuser’ component could also output an empty sen-
tence as part of the set of sentences. Depending on the time
left until the end of the game and according to a manually
constructed table which determines which sentence tags are
appropriate for which time, and based upon the ’Suspector’s
suspects, the ’Accuser’ provided the ’Output Selector’ a set of
possible sentences to output. For example, when 100 seconds
remain till the end of the game, the ’Accuser’ component pro-
vides all sentences which were either tagged as accusing sen-
tences (towards the ’Suspector’s top suspect) or tagged as al-
ter justification sentences (towards the ’Suspector’s least sus-
pected player). The sentence tags are determined under the
assumption that as time progresses, more confident sentences
should be chosen. The exact sentence to say is chosen by the
’Output Selector’. The ’Accuser’s main goal is to encourage
the other players to vote for DIG’s suspect. This component is
also in charge of casting a vote (on the ’Suspector’’s leading
suspect) in the voting phase.

The Responder Component
The ’Responder’ is activated when someone referrers to DIG
in the previous sentence. The ’Responder’ then searches the
data set for sentences used by other players when posed with
the same question or statement. The ’Responder’ provides
these sentences to the ’Output Selector’ which determines
which sentence to output. Similarly to the ’Accuser’ com-
ponent, if any of these sentences require reference to another
player (if the sentence is tagged as accusing or alter justifica-
tion), the player which the ’Responder’ refers to depends on
the list of suspects obtained from the ’Suspector’.

DIG Feature Selection
For the machine learning used in DIG’s ’Suspector’ and ’Out-
put Selector’ components we need to define the feature set
obtained from the structured chat. We used 41 features, some
of which are mentioned in [30] and the rest were dedicated

1We used fixed time values, however, these clock values may be
learned online and updated according to performance.

Figure 2. The structure of the DIG agent. Circles represent components, arrows represent input and output.

to our problem. Since we wanted our approach to be scal-
able and suitable also for a free chat environment, we used
more general features such that other sentences (which do not
appear in the structured sentences) may be mapped to these
features as well. Some of the features also depend on the or-
der of the sentences and not solely on whether a sentence was
said (or how many times it was said). For the learning, each
player is treated as an instance which must be classified. All
of the 41 features that we used had a positive impact. The top
10 features are:

• Fraction of talking: the fraction of sentences said by the
player out of the total number of sentences said (in current
game).

• Accusations: the number of accusing sentences used by
the player. And the fraction of accusations from all sen-
tences said by that player.

• Consistency: indicates the level of accusation consistency
towards the other players. A player who always accused
the same other player will have a high value, while a player
who accused all three other players equally will have a low
value. This feature calculates the maximum among the ac-
cusations towards each of the other players and divides it
by the total number of accusations.

• Characteristics: indicates how many times a player re-
ferred to a different player’s characteristics such as being
too quiet, talkative, accusatory etc. This was easily identi-
fied since we used structured sentences (see the third form
of sentences in Figure 1).

• First sentence: indicates whether the player was first, sec-
ond, third or fourth to say his first sentence.

• First Accusation: indicates whether the player was first,
second, third or fourth to accuse a different player of being
the pirate.

• Self-justification: indicates how many times the player
stood up for himself (saying he is not a pirate etc.).

• Alter justification: indicates how many times the player
stood up for a different player (saying that a different
player is not a pirate etc.).

• Agreeing: indicates whether a player agreed with other
players (and how many times).

• Agree to accusation: indicates whether a player agreed
with another player when that other player accused some-
one (and how many times).

EXPERIMENTS
All of our experiments were performed using Amazon’s Me-
chanical Turk service (AMT) [1]2. Participation in all ex-
periments consisted of a total of 320 subjects from the USA,
of which 47.8% were females and 52.2% were males. The
subjects’ ages ranged from 18 to 67, with a mean of 32 and
median of 30. All subjects had to pass a short quiz to assure
that they understood the rules and had to practice the usage of
the structured sentences before they could play. We ran ex-
periments with the two versions of the game (“informer” and
“basic”), each with two different setups. We ran the game
with only human players and then with an agent playing the
role of one of the credible villagers (the agent is never the pi-
rate). The subjects weren’t told about the agent and therefore
assumed all players were humans. According to comments
we collected, no players suspected a nonhuman player.

Participants had to play 5 games each. Each game was played
with different participants, so no deductions based on partici-
pants’ behavior can be made between games. The discussion
phase was limited to 240 seconds and the voting phase was
limited to 30 seconds. The average number of sentences per
2For a comparison between AMT and other recruitment methods
see [24].

game was 36.6. The subjects were paid 62 cents for partici-
pating in the study. They gained 12 cents for every time they
were a credible villager in a group that managed to catch the
pirate and 36 cents if they were a pirate who managed to es-
cape with the gold. A stake of 36 cents for a single game
is relatively high in AMT (58% of total payoff for 5 games).
This is in order to increase the players’ incentive to play seri-
ously.

The players enjoyed the game very much. When asked
whether they enjoyed the game, on a scale between 1 to 5
they gave it on average a score of 4.01 (standard deviation of:
1.06). The players also provided very positive feedback such
as: “It was the best survey or game I have done...”, “This was
really fun... Thanks for the good time!” and “That was so
much fun! ... I could play it all day!”. . Interestingly, the sub-
jects found the “informer version” of the game more enjoy-
able than the “basic version”: 4.22 vs. 3.79 (p < 0.01). This
can be explained by the fact that in the “informer version”
both the pirate (needs to incriminate a certain player) and the
credible villagers (need to find who is trying to incriminate a
different player) have a clearer task. On average the subjects
did not seem to believe that they played very well. The sub-
jects were asked how well they believed that they played (on a
1 to 5 scale) and the average response was 2.89 (standard de-
viation of: 1.05). Interestingly, the subjects seemed to believe
that they played slightly better in the “informer version”: 2.94
vs. the “basic version”: 2.84, however, these differences are
not statistically significant and have no support in the actual
results (as presented later).

DIG Construction
Recall that two of DIG’s components (the ’Suspector’ and the
’Output Selector’) are based on machine learning. We now
describe their construction.

Constructing the ’Suspector’ component
The ’Suspector’ component builds a model that identifies
whether a player is a pirate or a credible villager. We used the
results obtained from the all-human games (with no agent)
as our learning data for this component. For the “basic ver-
sion” we used 204 examples and for the “informer version”
we used 272 examples. We obtained an accuracy of 72.1%
and an F-Measure of 0.69 for the “basic version” of the game,
and similarly an accuracy of 72.8% and an F-Measure of 0.7
for the “informer version”. Some interesting insights into the
pirate’s behavior are: The pirate is an average talker (not too
much, not too little), doesn’t talk much about himself, avoids
direct accusation but hints that someone else is the pirate, is
often the third to talk (rarely the first). In the “informer ver-
sion” the pirate talks mostly about the same player, and in
“basic version” the pirate talks about others quite equally.

Constructing the ’Output Selector’ Component
We use this component to supply DIG with information re-
garding which sentences to use and which to avoid. The
model of this component was less accurate (using the same
feature-set above), with only 56.4% accuracy and an F-
Measure of 0.56 in the “basic version”. This result implies
that we aren’t very successful at predicting which players will

Figure 3. Success rate in catching the pirate. Compares both versions of
the game, with and without an agent.

receive votes and which will not (possibly because the sub-
jects themselves might have voted almost randomly). The ac-
curacy in the “informer version” was slightly higher at 61.0%
and an F-Measure of 0.61, implying that in the “informer ver-
sion” we were more successful at identifying whom the other
players suspect. We found that people think that the pirate is
quiet, is the first to talk, and that the pirate tends to agree with
others, especially when making accusations.

Based on this model, the ’Output Selector’ component chose
to say “I am a credible villager” at the beginning of the
game, and decided to use “Alter justification” (stood up for
other players) with the least suspicious player (when such
sentences were optional according to the ’Accuser’ compo-
nent’s output). The ’Output Selector’ component tried to
avoid any accusations, and therefore started to accuse a player
only towards the end of the game (when the ’Accuser’ com-
ponent only provided sentences tagged as accusing). It al-
ways avoided asking other players whether they were pirates,
as this was also shown to raise suspicion. The ’Output Selec-
tor’ preferred sentences which clearly said for whom it would
vote “I will vote for...” rather than using a phrase such as “I
believe that I will vote for...” as, once again, while the first
is shown to lower the other players’ suspicion, the latter is
shown to raise it.

Experimental Results
Figure 3 presents the success rate of the credible villagers at
catching the pirate in both versions of the game, with and
without the agent. In both versions of the game the groups in-
cluding the DIG agent (basic: 43.7%, informer: 39.7%) sig-
nificantly outperform (using chi square test, with α = 0.05)
the groups that didn’t include the DIG agent (basic: 27.5%,
informer: 26.5%). The performance of the human players
without the agent is very close to the expected utility of ran-
dom voting which is 0.26 (see random voting analysis in the
appendix).

Table 1 summarizes the voting results. These should not be
confused with the success rate. The number of correct votes
in the setting that includes DIG were higher than those with-
out DIG. This is true both in the “basic version” of the game
(41.9% with DIG vs. 35.9% without DIG) and in the “in-
former version” (42.4% with DIG vs. 33.8% without DIG).

agent human
game agent correct correct correct

version participation votes votes votes
basic no agent 35.1% - 35.1%
basic with agent 41.9% 48.3% 38.6%

informer no agent 33.8% - 33.8%
informer with agent 42.4% 46.6% 41.6%

Table 1. Voting Accuracy (random vote = 33.3%)

Even more interesting are the number of correct human votes.
Humans cast more correct votes when DIG participated than
when humans played alone (see Table 1 for details). This is
true both for the “basic version” and for the “informer ver-
sion”. This implies that not only did DIG help the group by
casting more accurate votes, but DIG also seems to improve
the number of correct votes cast by the humans in its group.
We would also like to mention that very rarely did subjects
cast an empty vote (only in 4% of the cases).

We end this section by testing the ability of DIG to avoid sus-
picion (as being the pirate). Recall that one of DIG’s proper-
ties is to choose sentences that reduce suspicion. We measure
suspicion by counting the number of votes cast by the other
credible villagers against DIG. Note, that as DIG was never
the pirate, a low vote percentage is better than a high one. In
the “basic version”, 32.2% of the votes were cast against DIG
(meaning they falsely thought DIG was the pirate), which is
still a little below average (which is 33.3%) and therefore may
be reasonable. However, unfortunately, 37.6% of the votes in
the “informer version” were cast against DIG (which is higher
than the average). We explain this by the fact that DIG tried to
encourage the other humans to vote for the player which DIG
detected as the pirate, as required by the ’Accuser’ compo-
nent. This act in the “informer version” probably raised sus-
picion (as players might have incorrectly assumed that DIG
is the pirate and therefore trying to incriminate the informer).
Another reason that could have caused suspicion in both ver-
sions is that people might have noticed that DIG doesn’t play
as a completely normal player, as the ’Responder’ component
was not the focus of this study. We believe that had we not
selected DIG’s sentences with care using the ’Output Selec-
tor’ component, the suspicion would have been greater. We
plan to investigate this in future work. An example of one of
the games played by DIG (in the basic version) can be found
at: http://azariaa.com/GameExample.htm.

DISCUSSION
One might wonder how the use of open chat rather than struc-
tured sentences would affect the relationship between the suc-
cess rates of human players and the agent. Previous work [31]
has shown that people are roughly as good as chance at de-
tecting liars. We believe that since we succeeded while using
structured sentences, using free text, and extracting features
from it should be even more successful, but requires addi-
tional research.

We designed our agent to remain unsuspicious, as we did not
want it to be falsely accused as being the pirate, and since we
wanted it to be able to influence other players. We believe

that if the agent seemed human these goals would be accom-
plished. However, behaving like a human was not a goal by
itself. It is unclear how well the agent would perform, if the
context was one not restricted to structured sentences, and the
agent could identify it-self as non-human. This would require
additional research. On the other hand, it would be easier for
DIG to function in such an environment.

In our game people had little experience at deceiving. It is
interesting to know how well DIG would perform against ex-
perienced deceivers. Note that this problem is not specific
to our work, but a known challenge in deception detection in
general. People, who would be experienced in deceiving in
these types of environments, would be experts at deceiving
people, rather than agents. We have shown people use differ-
ent features for deception detection than DIG. Experienced
deceivers would probably avoid the features picked up by hu-
mans. However they may still display other features, which
DIG would pick up. Therefore, DIG may be able to succeed
in detection of experienced deceivers as well. This has not
been determined.

If DIG does not have enough data collected yet, it could use
data from a similar domain. Alternatively DIG can collect
data from Mechanical Turk, or ask humans to tag discussions.

In our game, we have a single deceptive participant. We
would expect that in a scenario where there may also be zero
or multiple deceptive participants DIG will not perform as
well, but will still perform much better than humans (who will
also not perform as well). An extension to this work would
need to design a new game to account for multiple deceptive
participants.

CONCLUSIONS AND FUTURE WORK
In this paper we presented “the pirate game” as a platform
that enables the study of deception in a computerized dis-
cussion text-based environment. We presented two versions
of the game, the “basic version” where the deceiving partic-
ipant could hide and an “informer version” where the decep-
tive player was encouraged to be active. In both versions
we found that humans’ success rate in catching the decep-
tive player was similar to the success rate of random votes
achieved when all players cast a random vote. This result is
consistent with previous studies which show that people do
not perform much better than chance when asked to detect
deception.

We introduced DIG, an agent that uses machine learning to
build a successful strategy for deception detection. DIG was
successful at detecting the deceptive player in both versions
of the game. DIG provided two contributions to the group of
players. The first is that as we look at a group task, the ability
of DIG to cast a correct vote increases the group ability. The
second contribution of DIG is the indication that other players
have higher detection rates when the agent participates.

The platform we introduce is a first step towards decreas-
ing deception in textual discussion based environments. The
input method relies on the use of structured sentences. Al-
though, this method has many benefits, as we described,
many natural discussion based environments use free text. As

NLP continues to develop and improve, it is natural to ex-
tend our work to include NLP tagging and integrate it into
our agent.

In future work we also intend to pursue a method for the agent
to select its sentences so that it increases its probability of
detecting the pirate. The agent will need to find a question
for each situation that, when answered, may either increase
or decrease the probability that the agent’s current suspect is
the real pirate. This is a very challenging issue since each
sentence may change the behavior of the rest of the game.

ACKNOWLEDGMENT
This work was supported in part by ERC grant #267523, and
ARO grants W911NF0910206 and W911NF1110344.

REFERENCES
1. Amazon. Mechanical Turk services.

http://www.mturk.com/, 2012.

2. Aylett, R., Hall, L., Tazzyman, S., Endrass, B., André,
E., Ritter, C., Nazir, A., Paiva, A., Höfstede, G., and
Kappas, A. Werewolves, cheats, and cultural sensitivity.
In AAMAS’14 (2014), 1085–1092.

3. Azaria, A., Aumann, Y., and Kraus, S. Automated
strategies for determining rewards for humanwork. In
AAAI’12 (2012).

4. Bhaskaran, N., Nwogu, I., Frank, M., and Govindaraju,
V. Lie to me: Deceit detection via online behavioral
learning. In FG’11 (march 2011), 24 –29.

5. Bosse, T., and Stam, S. A normative agent system to
prevent cyberbullying. In WI-IAT’11, vol. 2, IEEE
(2011), 425–430.

6. Braverman, M., Etesami, O., and Mossel, E. Mafia: A
theoretical study of players and coalitions in a partial
information environment. Annals of Applied Probability
18, 3 (2008), 825–846.

7. Bridewell, W., and Isaac, A. Recognizing deception: A
model of dynamic belief attribution. In Advances in
Cognitive Systems: Papers from the 2011 AAAI Fall
Symposium (2011), 50–57.

8. Chittaranjan, G., and Hung, H. Are you a werewolf?
detecting deceptive roles and outcomes in a
conversational role-playing game. In ICASSP (2010),
5334–5337.

9. Christian, D., and Young, R. M. Strategic deception in
agents. In AAMAS’04, IEEE Computer Society (2004),
218–226.

10. Cortes, C., and Vapnik, V. Support-vector networks.
Machine learning 20, 3 (1995), 273–297.

11. Dias, J., Aylett, R., Reis, H., and Paiva, A. The great
deceivers: Virtual agents and believable lies. In CogSci
2013 (2013), 2189–2194.

12. Ekman, P. Telling Lies: Clues to Deceit in the
Marketplace, Politics, and Marriage. W. W. Norton &
Company, 1991.

13. Farrell, J., and Rabin, M. Cheap talk. The Journal of
Economic Perspectives 10, 3 (1996), 103–118.

14. Gal, Y., Kraus, S., Gelfand, M. J., Khashan, H., and
Salmon, E. Negotiating with people across cultures
using an adaptive agent. ACM TIST 3, 1 (2012).

15. Graciarena, M., Shriberg, E., andFrank Enos, A. S.,
Hirschberg, J., and Kajarekar, S. Combining prosodic,
lexical and cepstral systems for deceptive speech
detection. In Proc. IEEE ICASSP (2006).

16. Kaluža, B., Kaminka, G. A., and Tambe, M. Detection
of suspicious behavior from a sparse set of multiagent
interactions. In AAMAS’12 (2012), 955–964.

17. Mancilla-Caceres, J. F., Pu, W., Amir, E., and Espelage,
D. Identifying bullies with a computer game. In AAAI
(2012).

18. Migdal, P. A mathematical model of the mafia game.
CoRR abs/1009.1031 (2010).

19. Mihalcea, R., and Strapparava, C. The lie detector:
Explorations in the automatic recognition of deceptive
language. In ACL/AFNLP (Short Papers) (2009),
309–312.

20. Newman, M. L., Pennebaker, J. W., Berry, D. S., and
Richards, J. M. Lying words: predicting deception from
linguistic styles. Pers Soc Psychol Bull 29(5) (2003),
665–75.

21. Ott, M., Cardie, C., and Hancock, J. Estimating the
prevalence of deception in online review communities.
In WWW ’12, ACM (2012), 201–210.

22. Ott, M., Cardie, C., and Hancock, J. T. Negative
deceptive opinion spam. In HLT-NAACL 2013 (2013).

23. Ott, M., Choi, Y., Cardie, C., and Hancock, J. T. Finding
deceptive opinion spam by any stretch of the
imagination. In HLT ’11 - Volume 1 (2011), 309–319.

24. Paolacci, G., Chandler, J., and Ipeirotis, P. G. Running
experiments on Amazon Mechanical Turk. Judgment
and Decision Making 5, 5 (2010).

25. Raiman, N., HayleyHung, and Englebienne, G. Move,
and i will tell you who you are: detecting deceptive roles
in low-quality data. In ICMI ’11, ACM (2011), 201–204.

26. Santos, E., and Li, D. On deception detection in
multiagent systems. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on 40, 2
(march 2010), 224 –235.

27. Simari, G. I., Broecheler, M., Subrahmanian, V., and
Kraus, S. Promises kept, promises broken: An axiomatic
and quantitative treatment of fulfillment. In KR (2008),
59–69.

28. Toledo, A., Katrenko, S., Alexandropoulou, S.,
Klockmann, H., Stern, A., Dagan, I., and Winter, Y.
Semantic annotation for textual entailment recognition.
In Advances in Computational Intelligence. Springer,
2013, 12–25.

29. Toma, C. L., and Hancock, J. T. Reading between the
lines: linguistic cues to deception in online dating
profiles. In CSCW ’10, ACM (2010), 5–8.

30. Zhou, L., Burgoon, J. K., Nunamaker, J. F., and
Twitchell, D. Automating linguistics-based cues for
detecting deception in text-based asynchronous
computer-mediated. Group Decision and Negotiation 13
(2004), 81–106.

31. Zhou, L., and Zhang, D. Typing or messaging? modality
effect on deception detection in computer-mediated
communication. Decision Support Systems 44, 1 (2007),
188 – 201.

APPENDIX

FORMAL MODEL
In the formal model, the Pirate Game consists of k play-
ers P = {p1, p2, ..., pk}, one of which is a pirate. We as-
sume k ≥ 4. The identity of the pirate player is known
only to the pirate himself. The game includes two phases:
the first phase consists of a communication phase where all
players can discuss their strategy. The communication in this
phase bears no cost and is not binding (“cheap talk” [13]).
The second phase is a voting phase where all players ex-
cept the pirate may simultaneously cast their vote v(p), where
v : P → {{p1}, {p2}, ..., {pk}, φ} and φ indicates an empty
vote. It is assumed that the pirate always casts an empty vote
φ. If the majority of the votes are cast against the pirate, all
players but the pirate receive a point and the pirate receives
zero points. Otherwise the pirate receives a point and the
other players receive zero points. More formally, we define a
function for a player’s role:

r(p) =

{
0 if p is the pirate
1 else

(1)

We will use r(p) = 1 − r(p). The reward function for each
player u(p) is given by:

u(p) =r(p) + (-1)r(p)·

1
{(k∑

i=1

∑
p′∈v(pi)

r(p′)
)
≥
⌈1 +

∑k
i=1 |v(pk)|
2

⌉}
(2)

where 1{} is the indicator function.

Equilibrium Strategies
Assuming all players are perfectly rational, the communica-
tion phase doesn’t reveal any information regarding the pi-
rate’s identity, since the pirate may act as if he were a cred-
ible player. We provide the equilibrium strategies analysis
in order to compare human performance to that of perfectly
rational players.

Pure strategy equilibrium
Given a player p′, the strategies ∀p|r(p) = 1, v(p) = {p′}
are in equilibrium, since any deviation from the equilibrium

by a single player will not change the final result3. Assum-
ing p′ is random, this equilibrium assures an expected utility
of 1

k for the credible players (and 1 − 1
k for the pirate). Al-

though it is in equilibrium, agreeing upon the player to vote
for (p′) requires the communication phase to allow simul-
taneous messaging. Assuming simultaneous messaging, all
players must choose a random number x(p) between 1 and k,
simultaneously publish it, and then vote for player pl where
l =

∑
p∈P x(p) (mod k). Although the pirate may choose a

non-random number, since he has no knowledge of the num-
bers chosen by the other players, the result remains random.
This method was also proposed in [6].

Mixed Equilibrium
Following is a mixed equilibrium for the game:
∀p|r(p) = 1,∀p′|p′ 6= p, v(p) = {p′} with probability 1

k−1 .
The expected utility for the credible players using this equi-
librium is given by the following binomial distribution mass
function:

∑k−1
j=d k2 e

(
j

k−1
)
(1
k−1)j · (1− 1

k−1)k−1−j

When k = 4, the above mixed equilibrium yields a slightly
greater expected utility than the pure equilibrium mentioned
before (0.26 vs. 0.25). Being symmetric towards all players,
the mixed equilibrium doesn’t require any prior communica-
tion. However, as k increases, the mixed equilibrium yields a
very low expected utility for the credible players. For exam-
ple, when k = 7 the expected utility of the credible players
goes down to 0.01.

Alternative Models
Informer version
We also consider a model with a slight modification to the
pirate’s utility function, where there exists a player p̄ whose
identity is known only to the pirate. The pirate’s utility func-
tion is identical to Equation 2, except if p̄ doesn’t receive even
a single vote, in which case the pirate’s utility is 0 regardless
of the other votes. Formally, if

∑k
i=1

∑
p′∈v(pi)

r(p′) = 0, then
the pirate’s utility is 0. This change doesn’t affect the equilib-
ria, as they do not depend on the pirate’s actions.

Voting pirate
Allowing also the pirate to vote significantly reduces the cred-
ible villagers’ probability of catching him. In addition to al-
lowing the pirate to vote, one might also consider requiring
that the pirate need only receive the plurality of votes (rather
than the majority), where in case of a tie, the chosen player is
defined by a toss of a coin. This drastically changes the equi-
libria for all games. As long as all players vote and no player
votes for himself, almost any mixed strategy is in equilibrium
with an expected utility of 1

k for the credible players, since, in
every game, one and only one player is chosen. For symmet-
ric reasons, there is a probability of exactly 1

k that this player
is the pirate.

3if the majority of players plus one have a strategy of v(p) = {p′},
all other players may have any other strategy and still be in equilib-
rium. Although additional equilibria exist, in this appendix we give
only a few examples of equilibria and do not try to list them all.

	Introduction
	The Pirate Game
	Related Work
	The DIG Agent
	The Suspector Component
	The Output Selector Component
	The Accuser Component
	The Responder Component
	DIG Feature Selection

	Experiments
	DIG Construction
	Constructing the 'Suspector' component
	Constructing the 'Output Selector' Component

	Experimental Results

	Discussion
	Conclusions and Future Work
	Acknowledgment
	REFERENCES
	Formal Model
	Equilibrium Strategies
	Alternative Models

