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ABSTRACT On-demand ridesharing services play a crucial part in the development of modern smart cities.
Unfortunately, despite their advantages, not many people opt to use them. We believe that increasing the user
satisfaction from the services will cause more people to utilize them. Sometimes, it is possible to increase
user satisfaction by providing accurate information related to the alternative modes of transportation, such
as a private taxi ride and public transportation. For example, a passenger may be more satisfied with a
shared-ride if she is told that a private taxi ride would have cost her 50% more. The challenge is thus to
decide which information should be revealed to the user in order to increase the user satisfaction.
To address this problem, we model our environment as a signaling game and analyze the perfect Bayesian
equilibria for three agents’ classes: (1) the honest agent model, in which the agent must only provide
truthful information, (2) a no utility for lying model, in which the agent receives no utility if it elects to
provide false information, and (3) a penalized false information model, in which the agent is penalized for
providing false information. We show that in the honest agent model and in the no utility for lying model,
the agent must reveal all the information regarding the possible alternatives to the passenger. However, in the
penalized false information model, there are two types of equilibria, one in which she is truthful (but must
keep silent sometimes), and the other, in which the agent provides false information. The latter equilibrium
type includes equilibria that seem unreasonable. Therefore, we propose a novel criterion to filter out such
equilibria, and demonstrate its usefulness in another game.

INDEX TERMS Multi-agent Systems, Signaling Games, Information Disclosure, Perfect Bayesian
Equilibrium Criteria.

I. INTRODUCTION

More than 55% of the world’s population are currently living
in urban areas, a proportion that is expected to increase up
to 68% by 2050 [1]. Sustainable urbanization is a key to
successful future development of our society. A key inherent
goal of sustainable urbanization is an efficient usage of
transportation resources in order to reduce travel costs, avoid
congestion, and reduce greenhouse gas emissions.

While traditional services—including buses and taxis—are
well established, large potential lies in shared but flexible ur-
ban transportation. On-demand ridesharing, where the driver
is not a passenger with a specific destination, appears to gain
popularity in recent years, and big ride-hailing services such
as Uber and Lyft are already offering such services. However,
despite the popularity of Uber and Lyft [2], their ridesharing
services, which group together multiple passengers (Uber-

Pool and Lyft-Line), suffer from low usage [3], [4].

In this paper we propose to increase the user satisfaction
from a given shared-ride, in order to encourage her to use
the service more often. That is, we attempt to use a form
of persuasive technology [5], not in order to convince users
to take a shared ride, but to make them feel better with
the choice they have already made, and thus improve their
attitude towards ridesharing. It is well-known that one of
the most influencing factors for driving people to utilize a
specific service is to increase their satisfaction from the ser-
vice (see for example, [6]). Moreover, if people are satisfied
and use the service more often it will improve the quality of
the service, such as the waiting time, cost, travel time, and
service availability, which in turn further increase the user
satisfaction.

Sometimes, it is possible to increase user satisfaction
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by providing accurate information related to the alternative
modes of transportation, during the shared ride or imme-
diately after the passenger has completed it. Therefore, we
model our environment as a signaling game [7], which mod-
els the decision of a rational agent whether to provide the
exact price (i.e., the cost or the travel time) of a possible
alternative mode of transportation, or not. In this game
there are three players: nature, the agent and the passenger.
Nature begins by randomly choosing a price from a given
distribution; this distribution is known both to the agent and
the passenger. The agent observes the price and decides
whether to disclose this price to the passenger, provide false
information, or keep silent. The passenger then determines
her current expectation over the price of the alternative. The
goal of the agent is to increase the passenger satisfaction, and
thus it would like the passenger to believe that the price of the
alternative is higher than the price of the shared-ride as much
as possible. We note that the agent may be a human being or
a computerized agent.

We use the standard solution concept of Perfect Bayesian
Equilibrium (PBE) [8], and analyze three agents’ models. In
the ‘honest agent’ (HA) model, the agent is not allowed to
report false information. In the ‘no utility for lying’ (NUFL)
model, the agent may provide false information, but she does
not receive any utility if she opts to do so. In the third model,
‘penalized false information’ (PFI), the agent may provide
false information, but a penalty is imposed on her for doing
so. We show that in the HA and NUFL models, the agent
must reveal all the information regarding the price of the
possible alternative to the passenger (unless nature selects
the minimum possible value, in which the agent may reveal
the value, may keep silent, or may use any mixed strategy of
the two). However, in the PFI model, there are two types of
equilibria, one in which the agent is truthful (but must keep
silent for some values of nature), and the other, in which
she provides false information. The latter equilibrium type
includes equilibria that seem unreasonable. Therefore, we
propose a new criterion, the credible belief criterion, to filter
out such equilibria. Intuitively, the credible belief criterion
states that if the agent deviates, and plays an off-the-path
action, the user should not increase her belief (over the prior
distribution) in a selection of nature that would cause the
agent to lose more by deviating than her belief in a selection
of nature that would cause the agent to lose less by deviating.
We further demonstrate the usefulness of the credible belief
criterion in a signaling game in the context of occupation and
education.

The contributions of this paper are twofold:
• We model the information disclosure in the ridesharing

domain as a signaling game and determine the unique
set of Perfect Bayesian Equilibria (PBE) for three dif-
ferent agent models.

• We introduce the credible belief criterion, which filters
unreasonable PBEs.

II. RELATED WORK

A. RIDESHARING
Most work on ridesharing has focused on the assignment
of passengers to vehicles. See the comprehensive surveys
by Parragh et al. [9], [10], and a recent survey by Psaraftis
et al. [11]. In particular, the dial-a-ride problem (DARP) is
traditionally distinguished from other problems of rideshar-
ing since transportation cost and user inconvenience must be
weighed against each other in order to provide an appropriate
solution. Therefore, the DARP typically includes more qual-
ity constraints that aim at capturing the user’s inconvenience.
We refer to a recent survey on DARP by Molenbruch et
al. [12], which also makes this distinction. In recent years
there is an increasing body of works that concentrate on
the passenger’s satisfaction during the assignment of pas-
sengers to vehicles [13]–[15]. Similar to these works we are
interested in the satisfaction of the passenger, but instead of
developing assignment algorithms (e.g., [16]), we focus on
the role of information disclosure as a means to improve user
satisfaction.

B. INFORMATION DISCLOSURE
There are other works in which an agent provides information
to a human user (in the context of the roads network) for
different purposes. For example, Azaria et al. [17]–[19]
develop agents that provide information or advice to a human
user in order to convince her to take a certain route. Several
other works have discussed the implications of information
disclosure on environmental factors, including traffic and
pollution [20], [21].

Bilgic and Mooney [22] present methods for explaining the
decisions of a recommendation system to increase the user
satisfaction. In their context, user satisfaction is interpreted
only as an accurate estimation of the item quality.

Grossman [23] studies markets in which sellers may opt to
reveal information to buyers in the form of a set of possible
values of their items. The sellers must include the value of
their item in the set of values revealed, or they may opt to
reveal an empty set. Grossman shows that the buyers will
always believe that the item’s value is the minimum value in
the set revealed by the seller, and only a seller with the least
valued item may opt to reveal an empty set. In our work, we
model our environment as a signaling game allowing mixed
strategies and continuous values, and we analyze it for three
agents’ classes.

C. SIGNALING GAMES
Signaling games are used to model problems in several do-
mains. For example, Noe [27] models financial decisions of a
firm (whether to use equity financing or debt financing) as a
signaling game. Bangerter et al. [29] model the job market
using signaling games, and analyze relationships between
applicants and organizations, among applicants, and among
organizations. Rogers [28] model the interaction between
the legislatures and the court as a signaling game. In this
work, we use signaling games to model user satisfaction
in ridesharing problems, and we use the perfect Bayesian

2 VOLUME 4, 2016



Zar et al.: Information Disclosure for Increasing User Satisfaction From a Shared Ride

Paper Application New criterion
Cho and Kreps (1987) [24] N/A Intuitive criterion

Cho (1987) [25] N/A Forward induction equilibrium
Banks and Sobel (1987) [26] N/A Divine criterion

Noe (1998) [27] Financial decisions of a firm N/A
Rogers (2001) [28] Legistratures-court interaction N/A

Bangerter et al. (2012) [29] Job market N/A

TABLE 1. A comparison of related works on signaling games.

equilibrium as the solution concept [8], [30], [31]. We also
consider a refinement of the PBE, the intuitive criterion intro-
duced by Cho and Kreps [24], which filters out PBEs where
the user believes that the agent chose an action that would
certainly result in a loss. However, there are cases in which
this criterion is not adequate, and additional refinements
have been suggested. Banks and Sobel define the divine
criterion [26], a refinement of the intuitive criterion, that
compares the value for the agent with different actions while
taking into account the user’s actions. Cho suggests [25] the
forward induction equilibrium, which is another refinement
of the intuitive criterion. In this work, we encounter PBEs
that seem unreasonable, yet none of the previously defined
criteria filter them. Therefore, we define the credible belief
criterion, a novel criterion that filters out these unreasonable
equilibria. We further show that this new criterion is useful in
other signaling games.

D. PREVIOUSLY PUBLISHED RESULTS
In our previous work [32], we modeled our environment as a
signaling game and analyzed the perfect Bayesian equilibria
for only a single agent class, the honest agent model. In this
paper, we analyze two additional agents’ classes: a no utility
for lying model, and a penalized false information model. In
addition, in this paper, we propose a novel criterion to filter
out unreasonable equilibria, and demonstrate its usefulness
in another game.

III. PRELIMINARIES
Recall that we attempt to increase user satisfaction by prov-
ing accurate information related to alternative modes of
transportation. Specifically, we assume that the passenger
has some estimate over the possible prices of the alternative
modes of transportation, while the agent has a more accurate
knowledge related to the prices. Therefore, we model our
setting with the following signaling game. We assume that
there is a given random variable X with a prior probability
distribution over the possible prices of a given alternative
mode of transportation. The possible values of X , denoted
by the set χ, are bounded within the range [min,max],
where min > 0. Without loss of generality, ∀x ∈ χ,
Pr(X = x) > 0 for a discrete distribution, and ∀ϵ >
0, FX(x+ ϵ)−FX(x− ϵ) > 0 for a continuous distribution.
In addition, we assume that min ∈ χ. For ease of notation,
when a distribution is concentrated at a single point, we state
that the probability at that point is 1, but do not state that the

FIGURE 1. A flowchart demonstrating the process of the signaling game.

probability of any other value of the random variable is 0.
The game is composed of three players: nature, player 1

(agent) and player 2 (passenger/user). It is assumed that both
players are familiar with the prior distribution over X . Nature
randomly chooses a number x according to the distribution
over X . The agent observes the number x and plays an action
a1 ∈ A1, where A1 is the set of possible actions for the agent.
We note that A1 depends on the environment, and it may also
depend on nature’s choice, x. We denote by [p, a′1; (1−p), a′′1 ]
a mixed strategy of playing a′1 ∈ A1 with a probability of
p and a′′1 ∈ A1 with a probability of (1 − p), where 0 ≤
p ≤ 1. Intuitively, this action is a signal (message) sent to
the user. The user observes the agent’s action and plays an
action a2 ∈ A2 = [min,max]. See Figure 1 for a flowchart
demonstrating this process, and Table 2 for a list of symbols
used throughout the paper. We consider several models for
our environment.

IV. HONEST AGENT (HA) MODEL
We begin by considering an agent that is not allowed to
provide any false information. That is, the agent’s action is
either φ (quiet) or x (say), i.e, A1 = {φ, x}.

That is, we assume that the agent may not provide false
information. This is a reasonable assumption, since providing
false information is usually prohibited by the law, or may
harm the agent’s reputation. The user observes the agent’s
action and her action, denoted a2, is any number in the range
[min,max]. The user’s action essentially means setting her
estimate about the price of the alternative. In our setting,
the agent would like the user to think that the price of the
alternative is as high as possible, while the user would like to
know the real price. Therefore, we set the utility for the agent
to a2 and the utility of the user to −(a2 − x)2. Note that we
did not define the utility of the user to be simply −|a2 − x|,
since we want the utility to highly penalize a large deviation
from the true value.

We first note that if the agent plays a1 ̸= φ then the user
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Symbol Used in Model Meaning
X All models The random variable that represents nature’s choice
x All models A value of nature’s choice
χ All models The possible values for X (which have non-zero probability)
A1 All models The set of possible actions of the agent
A2 All models The set of possible actions of the user
a1 All models An action of the agent
a2 All models An action of the user
φ All models A specific action of the agent that means keep quiet
σ1 All models A strategy of the agent
σ2 All models A strategy of the user
u1 All models The utility of the agent
u2 All models The utility of the user
µ2 All models The belief of the user
f PFI The penalty factor

Ya1 PFI A distribution that describes the user belief given a1
F PFI A set of values of x, which the agent lies for
S PFI A set of values of x, which the agent is quiet for
T PFI A set of values of x, which the agent tells the truth for
Q PFI A set of actions that the agent plays when lying
EF PFI The expectation of X , if a1 ∈ Q
Fi PFI Subsets of F , which form a partition of F
l() PFI The loss term from the credible belief criterion, when playing an off-the-path action

TABLE 2. Table of symbols used throughout the paper.

knows that a1 is nature’s choice. Thus, a rational user would
play a2 = a1. On the other hand, if the agent plays a1 = φ
then the user would have some belief about the real price,
which can be the original distribution of nature, or any other
distribution. Clearly, the user’s best response is to play the
expectation of this belief. Formally,

Observation 1. Assume that the agent plays a1 = φ, and let
Y be a belief over x. That is, Y is a random variable with a
distribution over [min,max]. Then, argmaxa∈A2

E[−(a −
Y )2] = E[Y ].

Proof. Instead of maximizing E[−(a − Y )2] we can mini-
mize E[(a − Y )2]. In addition, E[(a − Y )2] = E[(a)2] −
2E[aY ] +E[Y 2] = (a)2 − 2aE[Y ] +E[Y 2]. By differenti-
ating we get that

d

da

(
(a)2 − 2aE[Y ] + E[Y 2]

)
= 2a− 2E[Y ].

The derivative is 0 when a = E[Y ] and the second derivative
is positive; this entails that

argmin
a∈A2

(
(a)2 − 2aE[Y ] + E[Y 2]

)
= E[Y ].

Now, informally, if nature chooses a “high” value of x, the
agent would like to disclose this value by playing a1 = x.
One may think that if nature chooses a “low” value of x, the
agent would like to hide this value by playing a1 = φ. How-
ever, since the user adjusts her belief accordingly, she will
play E[X|a1 = φ]. Therefore, it would be more beneficial
for the agent to reveal also low values that are greater than
E[X|a1 = φ], which, in turn, will further reduce the new
E[X|a1 = φ]. Indeed, Theorem 1 shows that a rational agent
should always disclose the true value of x, unless x = min.
If x = min the agent can play any action, i.e., φ, min or any

mixture of φ and min. We begin by applying the definition
of PBE to our signaling game.

Definition 1. A tuple of strategies and a belief, (σ1, σ2, µ2),
is said to be a perfect Bayesian equilibrium in our setting if
the following hold:

1) The strategy of player 1 is a best response strategy.
That is, given σ2 and x, deviating from σ1 does not
increase player 1’s utility.

2) The strategy of player 2 is a best response strategy.
That is, given a1, deviating from σ2 does not increase
player 2’s expected utility according to her belief.

3) µ2 is a consistent belief. That is, µ2 is a distribution
over x given a1, which is consistent with σ1 (following
Bayes’ rule, where appropriate).

Theorem 1. A tuple of strategies and a belief, (σ1, σ2, µ2),
is a PBE if and only if:

• σ1(x) =

{
x : x > min

[p,min; (1− p), φ], 0 ≤ p ≤ 1 : x = min

• σ2(a1) =

{
a1 : a1 ̸= φ

min : a1 = φ
• µ2(x = a1|a1 ̸= φ) = 1 and µ2(x = min|a1 = φ) =

1.

Proof. (⇐) Such a tuple is a PBE: σ1 is a best response
strategy, since the utility of player 1 is x if a1 = x and
min if a1 = φ. Thus, playing a1 = x is a weakly
dominating strategy. σ2 is a best response strategy, since
it is the expected value of the belief µ2, and thus it is
a best response according to Observation 1. Finally, µ2 is
consistent: If a1 = φ and according to σ1 player 1 plays
φ with some probability (greater than 0), then according to
Bayes’ rule µ2(x = min|a1 = φ) = 1. Otherwise, Bayes’
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rule cannot be applied (and it is thus not required). If a1 ̸= φ,
then by definition x = a1, and thus µ2(x = a1|a1 ̸= φ) = 1.

(⇒) Let (σ1, σ2, µ2) be a PBE. It holds that µ2(x =
a1|a1 ̸= φ) = 1 by Bayes’ rule, implying that if a1 ̸= φ,
σ2(a1) = a1. Therefore, when a1 = x the utility of player 1
is x.

We now show that σ2(a1 = φ) = min. Assume by
contradiction that σ2(a1 = φ) ̸= min (or Pr(σ2(a1 = φ) =
min) < 1), then E[σ2(φ)] = c > min. We now deduce the
strategy of player 1. There are three possible cases: if x > c,
then a1 = x is a strictly dominating strategy. If x < c, then
a1 = φ is a strictly dominating strategy. If x = c, there is no
advantage for either playing φ or x; both options give player
1 a utility of c, and thus she may use any strategy. That is,

σ1(x) =


x : x > c

φ : x < c

[p,min; (1− p), φ], 0 ≤ p ≤ 1 : x = c.

Given this strategy, we need to apply Bayes’ rule to de-
rive µ2(x|a1 = φ). By σ1, it is possible that a1 = φ
only if x ≤ c. That is, µ2(x > c|a1 = φ) = 0 and
µ2(x ≤ c|a1 = φ) = 1. Therefore, the expected value of
the belief, c′ = EX∼µ2(x|a1=φ)[X], and according to Obser-
vation 1, σ2(φ) = c′. However, c′ = EX∼µ2(x|a1=φ)[X] ≤
E[X|X ≤ c] since player 1 plays φ only when x < c and
possibly also when x = c. In addition, E[X|X ≤ c] < c,
since c > min. That is, E[σ2(φ)] = c′ < c, which is a con-
tradiction. Therefore, the strategy for player 2 in every PBE is
determined. In addition, since σ2(φ) = EX∼µ2(x|a1=φ)[X]
according to Observation 1, then µ2(x|a1 = φ) = min, and
the belief of player 2 in every PBE is also determined.

We end the proof by showing that for x > min, σ1(x) =
x. Since σ2 is determined, the utility of player 1 is min if
a1 = φ and x if a1 = x. Therefore, when x > min, playing
a1 = x is a strictly dominating strategy.

V. NO UTILITY FOR LYING (NUFL) MODEL
The following model is identical to the first model, except
that it allows the agent to provide false information; however,
the agent does not receive any utility if she opts to do so.
Formally, the agent’s action is either φ or any number in the
range [min,max] (which does not necessarily equal x), i.e.,
A1 = {φ} ∪ [min,max]. In this setting, the utility of the
agent is

u1(x, a1, a2) =

{
a2 : a1 ∈ {φ, x}
0 : otherwise.

The analysis of the possible PBE for the HA model (Theo-
rem 1) holds for the current model as well. However, in the
current model there are additional perfect Bayesian equilib-
ria. For example,

• σ1(x) = φ

• σ2(a1) =

{
min : a1 ̸= φ

E[X] : a1 = φ

• µ2(x = min|a1 ̸= φ) = 1 and µ2(x|a1 = φ) =
Pr(X = x).

Note that the belief µ2 is consistent, since the agent plays
a1 ̸= φ with probability 0, and thus Bayes’ rule is not
violated. Indeed, the user believes that if the agent deviates
and plays a1 > min she does not provide the truthful
value of x. However, this belief is not reasonable, since the
agent does not have an incentive to do so, as it would result
in the lowest possible utility for her (zero). We thus use
the intuitive criterion [24] to filter the equilibria with non-
reasonable beliefs.

In order to define the intuitive criterion for our setting,
we first define the notion of a seemly deviation action.
Informally, an action is considered a seemly deviation if there
exists a situation in which the agent may expect to gain (or
not lose) from this deviation.

Definition 2. For nature’s choice x and strategy σ1, let a′1
be an action such that Pr(σ1(x) = a′1) = 0. We say that a′1
is a seemly deviation for the agent, if there exist user actions
w, z ∈ A2 such that u1(x, a

′
1, w) ≥ u1(x, σ1(x), z).

We note that in our NUFL model, if the agent’s strategy
for a given x is either φ or x, providing false information is
never a seemly deviation for the agent. The reason is that by
deviating, the agent will always receive an outcome of zero,
regardless of the user’s action, which is certainly less than the
agent’s payoff had she played her original strategy.

Recall that an action is considered an off-the-path action
for the agent if, according to a specific strategy, it should
never be played (regardless of nature’s choice of x). That is,
an agent action that the user does not expect to see.

Definition 3. Given a strategy for the agent, σ1, an agent
action, a ∈ A1 is off-the-path, if ∀x ∈ χ Pr(σ1(x) = a) =
0.

We can now define the intuitive criterion for our setting.
Informally, the criterion requires that given an off-the-path
action a, the user believes that nature’s choice of x is such
that a is a seemly deviation (unless a is not a seemly deviation
for all x).

Definition 4. A Perfect Bayesian Equilibrium, (σ1, σ2, µ2),
is said to satisfy the intuitive criterion, if for all off-the-path
actions a ∈ A1, if there exists x ∈ X such that a is a seemly
deviation from σ1(x) then for all x ∈ X that a is not a seemly
deviation from σ1(x), µ2(x|a) = 0.

Clearly, in our NUFL model, a PBE that satisfies the
intuitive criterion cannot consist of a user’s belief that the
agent provides false information with a probability greater
than 0.

Similarly to the HA model, we show that under the NUFL
model using the intuitive criterion, a rational agent should
always disclose the true value of x (unless x = min).

Theorem 2. A tuple of strategies and a belief, (σ1, σ2, µ2),
is a PBE that satisfies the intuitive criterion if and only if:
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• σ1(x) =

{
x : x > min

[p,min; (1− p), φ], 0 ≤ p ≤ 1 : x = min

• σ2(a1) =

{
a1 : a1 ̸= φ

min : a1 = φ
• µ2(x = a1|a1 ̸= φ) = 1 and µ2(x = min|a1 = φ) =

1.

Proof. (⇐) As shown in Theorem 1 such a tuple is a PBE. It
also satisfies the intuitive criterion: the only actions that can
be off-the-path are φ and min. Given each of these actions,
the user’s belief is that x = min. In both cases, if x = min,
the actions a = φ and a = min are seemly deviations.

(⇒) In any PBE the agent will never lie, since lying is
a strictly dominated strategy. Furthermore, since the PBE
satisfies the intuitive criterion, the user never believes that
the agent lies. Specifically, given an action a1 ̸= φ, if it is
possible to apply Bayes’ rule (i.e., the action is not off-the-
path) then the user will not believe that the agent lies. If the
action a1 is off-the-path then the user can believe that x = a1
(the agent told the truth). This is a seemly deviation, since the
user can play a2 = max (which will result in u1 = max).
However, the user cannot believe that x ̸= a1, since it is not
a seemly deviation. Overall, the agent never lies and the user
never believes that the agent lies and thus we are back to the
case of Theorem 1.

VI. PENALIZED FALSE INFORMATION (PFI) MODEL
This model is identical to the NUFL model, except for
the utility of the agent when providing false information.
Namely, the agent is penalized by a fraction of a2 when she
provides false information. Formally, let 0 < f < 1, the
utility of the agent is

u1(x, a1, a2) =

{
a2 : a1 ∈ {φ, x}
f · a2 : otherwise.

Note that this formulation captures situations in which there
is a chance that the lie is revealed and then the utility is zero.
However, there is also a probability (f ) that the lie is not
revealed, and thus the agent’s expected utility, in case of a lie,
is f · a2. We assume that min < f ·max (otherwise, the PFI
model becomes identical to the NUFL model, because the
utility for the agent for providing false information is always
lower than her utility for playing a1 = x or a1 = φ).

Interestingly, under the PFI model a rational agent should
not always disclose the true value of x. Intuitively, if the
user always plays a2 = a1, the agent is better off by
playing a1 that is higher than x, such that f · a1 > x. We
obtain two general PBEs: one in which the agent is truthful
(but sometimes plays φ), and one in which the agent lies.
Specifically, the strategy of a truthful agent is to play φ on a
set S (silent), and otherwise to play x (the truth). In general,
the agent will remain silent except for some values that are
slightly higher than the expectation on the values in S. S
cannot be empty, i.e., the agent must keep silent for some
values of x, but S may include all values of x, i.e., the agent

may always play φ. The strategy of the non-truthful agent
uses a partition of the interval [min,max] to three sets: F
(false), S (silent), and T (truth). In general, the agent will
lie, and she will say the most beneficial lie, that is, the value
that will maximize σ2. However, in some cases the agent will
say the truth. Let EF be the maximum value of σ2. If σ2(x)
is only slightly lower than EF , that is σ2(x) ≥ f · EF , the
agent can play x (the truth), since she will not be penalized.
The agent may play φ if σ2(φ) equals f · EF . We use Q to
indicate the set of lies used by the agent, that is, the values
that the agent uses when a1 ̸= x.

Note that in the current model the intuitive criterion cannot
be violated, since for nature’s choice x and a deviation
a′1, u1(x, a

′
1,max) > u1(x, σ1(x),min). That is, every

deviation of the agent is a seemly deviation. To simplify the
exposition, we concentrate on PBEs with pure strategies.

Before we formally describe the PBEs under the PFI
model, we show two lemmas that provide constraints on the
user’s strategy, sigma2, in a PBE.

Lemma 1. If (σ1, σ2, µ2) is a PBE then ∀x1, x2 ∈
X,σ2(σ1(x1)) ≥ f · σ2(σ1(x2)).

Proof. Assume by contradiction that for some x1, x2 it holds
that σ2(σ1(x1)) < f · σ2(σ1(x2)). Then, σ1 is not a strategy
of an equilibrium since the agent will benefit from deviating
from it and playing σ1(x2) given x1.

As a corollary of Lemma 1 we can deduce that there exists
some c such that σ2(σ1(·)) ∈ [f · c, c].

Lemma 2. ∀x ∈ X , σ2(σ1(x)) ≥ σ2(φ).

Proof. Assume by contradiction that for some x it holds
that σ2(σ1(x)) < σ2(φ). Then, σ1 is not a strategy of an
equilibrium since the agent will benefit from deviating from
it and playing φ given x.

We are now ready to formally describe the PBEs under the
PFI model.

Theorem 3. A tuple of strategies and a belief, (σ1, σ2, µ2),
is a PBE if and only if it is one of the following:

1) (truthful agent) Let S ⊆ [min,max] where S is non-
empty, such that if x /∈ S then E[X | X ∈ S] ≤ x ≤
E[X | X ∈ S]/f . For s ∈ S let Ys be a random
variable such that E[Ys] ≤ E[X | X ∈ S].

• σ1(x) =

{
φ : x ∈ S

x : otherwise

• σ2(a1) =


E[X | X ∈ S] : a1 = φ

a1 : a1 /∈ S ∪ {φ}
E[Ya1 ] : a1 ∈ S

• µ2(x = a1 | a1 /∈ S ∪ {φ}) = 1

µ2(x | a1 = φ) =

{
Pr(X=x)

Pr(σ1(X)=φ) : x ∈ S

0 : x /∈ S
µ2(x | a1 ∈ S) = Ya1

.
2) (non-truthful agent) Let F, S, T be a partition of

[min,max] where F is not empty. Let Q =
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{q1, . . . , qr} for some natural number r, where qi ∈
[min,max] and ∀i ̸= j, qi ̸= qj . Let EF = E[X |
X ∈ F ∪ (Q ∩ T )]. Let F1, F2, . . . , Fr be a partition
of F , such that for all i ∈ {1, 2, . . . , r} it holds that
E[X | X ∈ Fi ∪ ({qi} ∩ T )] = EF . For each x ∈ T ,
f · EF ≤ x ≤ EF . For x /∈ T ∪ Q, let Yx be a
random variable such that E[Yx] ≤ f · EF , and let
Yφ be also such a variable. If S is not empty, then
E[X | X ∈ S] = f · EF .

• σ1(x) =


qi : x ∈ Fi for some i

x : x ∈ T

φ : x ∈ S

• σ2(a1) =


a1 : a1 ∈ T \ Q
f · EF : a1 = φ and S ̸= ∅
EF : a1 ∈ Q
E[Ya1 ] : otherwise

• µ2(x = a1 | a1 ∈ T \ Q) = 1
µ2(x | a1 = qi) ={

Pr(X=x)
Pr(X∈Fi∪({qi}∩T )) : x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise
µ2(x | a1 /∈ T ∪ Q or (a1 = φ and S = ∅)) =
Pr(Ya1

= x).
If S ̸= ∅ then

µ2(x | a1 = φ) =

{
Pr(X=x)

Pr(σ1(X)=φ) : x ∈ S

0 : x /∈ S.

Proof. We begin with the truthful agent case.
(⇐) Let (σ1, σ2, µ2) be a tuple of strategy and belief that
satisfies the conditions of the truthful agent. µ2 satisfies
Bayes’ rule:

• If a1 /∈ S ∪ {φ}, according to σ1, a1 = x; therefore, by
Bayes’ rule: µ2(x = a1 | a1 /∈ S ∪ {φ}) = 1.

• If a1 = φ, according to σ1 and Bayes’ rule:
µ2(x | a1 = φ) = Pr(X=x)Pr(a1=φ|x)

Pr(σ1(X)=φ) ={
Pr(X=x)

Pr(σ1(X)=φ) : x ∈ S

0 : x /∈ S.

• If a1 ∈ S then the agent’s action is off-the-path, and
thus mu2 is not required to follow Bayes’ rule.

Given σ1 and µ2, the strategy of the user, σ2, is a best
response, since it is the expectation over the user’s belief
regarding x (according to Observation 1). Finally, given σ2

and µ2, the agent does not have an incentive to deviate from
σ1:

• If x ∈ S, the agent strategy is σ1(x) = φ, and the utility
is E[X | X ∈ S]. If the agent deviates and plays x
instead, her utility is E[Yx] which is at most E[X | X ∈
S]. If the agent plays any other action a1 /∈ {x, φ} then
her utility is f · σ2(a1). However, the maximum value
of σ2 is E[X | X ∈ S]/f , which is obtained when
a1 = max(A1\(S∪{φ})). Therefore, there is no action
that provides higher utility for the agent.

• If x /∈ S, the agent strategy is σ1(x) = x, and the
utility is x. By definition, x ≥ E[X | X ∈ S]. If
the agent deviates and plays φ instead, her utility is
E[X | X ∈ S]. If the agent plays any other action her
maximal utility is f ·E[X | X ∈ S]/f . Therefore, there
is no action that provides higher utility for the agent.

(⇒) Let (σ1, σ2, µ2) be a tuple of strategies and belief
in PBE, and assume that ∀x, σ1(x) ∈ {φ, x}. That is,
there exists a set S = {x : σ1(x) = φ}, where for
x /∈ S, σ1(x) = x. Applying Bayes’ rule entails that:
µ2(x | a1 = φ) = Pr(σ1(X)=φ|X=x)·Pr(X=x)

Pr(σ1(X)=φ) . That is,

if x ∈ S, µ2(x | a1 = φ) = Pr(X=x)
Pr(σ1(X)=φ) , and 0

otherwise. For s ∈ S define Ys = µ2(x | a1 = s). For any
other a1, σ1(x) = x, therefore, (according to Bayes’ rule):
µ2(x = a1 | a1 /∈ S ∪ {φ}) = 1. Since the user plays
the expectation on her belief, the user’s strategy in a PBE
must match the σ2 defined above. It remains to show that
for every s ∈ S it holds that E[Ys] ≤ E[X | X ∈ S]. For
x ∈ S, σ1(x) = φ. Therefore, since the strategies are in PBE,
u1(x, φ, σ2(φ) ≥ u1(x, a1, σ2(a1) for every a1 (otherwise
the agent would have an incentive to deviate). Hence, we can
set a1 = x, and obtain E[X | X ∈ S] ≥ E[Yx].

We now consider the non-truthful agent case.
(⇐) Let (σ1, σ2, µ2) be a tuple of strategy and belief that

satisfies the conditions of the non-truthful agent. µ2 satisfies
Bayes’ rule:

• If a1 ∈ T \ Q according to σ1, a1 = x; therefore, by
Bayes’ rule: µ2(x = a1|a1 ∈ T \ Q) = 1.

• If S ̸= ∅ and a1 = φ, according to σ1 and Bayes’
rule: µ2(x | a1 = φ) = Pr(X=x)Pr(a1=φ|x)

Pr(σ1(X)=φ) ={
Pr(X=x)

Pr(σ1(X)=φ) : x ∈ S

0 : x /∈ S.

• If a1 = qi (for some i), according to σ1 and Bayes’ rule:
µ2(x | a1 = qi) =

Pr(X=x)Pr(a1=qi|x)
Pr(σ1(X)=qi)

={
Pr(X=x)

Pr(X∈Fi∪({qi}∩T )) : x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise.

• Otherwise (i.e., a1 ∈ (S ∪ F ) \ Q), the agent’s action
is off-the-path, and thus µ2 is not required to follow
Bayes’ rule.

Given σ1 and µ2, the strategy of the user, σ2, is a best
response, since it is the expectation over the user’s belief
regarding x. Finally, given σ2 and µ2, the agent does not have
an incentive to deviate from σ1:

• If x ∈ Fi for some i, the agent strategy is σ1(x) =
qi, and the utility is f · EF . Note that maxx σ2(x) =
EF ; therefore, there is no other non-truthful action that
provides higher utility for the agent. In addition, if the
agent deviates and plays x instead, her utility is E[Yx] ≤
f ·EF . Similarly, playing φ results in a utility of at most
f ·EF . Therefore, there is no action that provides higher
utility for the agent.
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• If x ∈ T , the agent strategy is σ1(x) = x, and the utility
is either EF or x, which is at least f · EF . If the agent
deviates and plays φ instead, her utility is at most f ·
EF . Any other action is non-truthful and thus results in
a utility at most f ·EF . Therefore, there is no action that
provides higher utility for the agent.

• If x ∈ S, the agent strategy is σ1(x) = φ, and the utility
is f · EF . If the agent deviates and plays x instead, her
utility is E[Yx] which is at most f ·EF . Any other action
is non-truthful and thus results in a utility at most f ·EF .
Therefore, there is no action that provides higher utility
for the agent.

(⇒) Let (σ1, σ2, µ2) be a tuple of strategies and belief
in PBE, and assume that there exists x such that σ1(x) /∈
{x, φ}. Let F = {x : σ1(x) /∈ {x, φ}}. Let S = {x :
σ1(x) = φ} and T = {x : σ1(x) = x}. Clearly, F , S and
T are a partition of [min,max]. Let Q = {σ1(x) : x ∈ F}
and r = |Q|. Denote the members of Q as q1, . . . , qr, and
for i ∈ [r] let Fi = {x ∈ F : σ1(x) = qi}. Assume
towards contradiction that there exist x1, x2 ∈ F such that
u1(x1, σ1(x1), σ2(σ1(x1))) > u2(x2, σ1(x2), σ2(σ1(x2))).
Then, the agent should deviate by playing σ1(x1) when
x = x2, which is a contradiction to (σ1, σ2, µ2) being a
PBE. Therefore, in equilibrium, all x ∈ F must lead to the
same utility for the agent, and the user’s action must be the
same for any q ∈ Q; denote this action by EF . That is, the
utility of the agent is f ·EF . Similarly, if S is not empty, then
σ2(φ) = f ·EF , otherwise the agent should deviate and play
some q ∈ Q if σ2(φ) < f · EF , or play φ instead of lying if
σ2(φ) > f ·EF . Following the above arguments regarding σ1

and since µ2 must follow Bayes’ rule when it is applicable,
we obtain that µ2(x = a1 | a1 ∈ T \ Q) = 1, µ2(x | a1 =

qi) =

{
Pr(X=x)

Pr(X∈Fi∪({qi}∩T )) : x ∈ Fi ∪ ({qi} ∩ T )

0 : otherwise
, and if

S ̸= ∅ then µ2(x | a1 = φ) =

{
Pr(X=x)

Pr(σ1(X)=φ) : x ∈ S

0 : x /∈ S
.

Since the user must play the expected value of her belief,
for any qi, σ2(qi) =

∑
x∈[min,max] x · µ2(x|a1 = qi) =∑

x∈[min,max] x · Pr(X = x | X ∈ Fi ∪ ({qi} ∩ T ) =
E[X|X ∈ Fi ∪ ({qi} ∩ T )] = EF . That is, EF = E[X |
X ∈ F ∪ (Q ∩ T )]. Overall, the strategy of the agent in a
PBE must match the σ1 defined above.

For an off-the-path action a1, that is a1 /∈ T ∪ Q, or a1 =
φ and S = ∅, the belief is a random variable; we denote
this variable as Ya1

. Since σ2(a1) = E[Ya1
], then E[Ya1

] ≤
f · EF . Otherwise, if E[Ya1 ] > f · EF the agent will have
an incentive to deviate and play a1. Specifically, if E[Yφ] >
f · EF , the agent will benefit from playing φ when x ∈ F ,
and if for some a ∈ [min,max] E[Ya] > f · EF , the agent
will benefit from playing a when x = a. Overall, the belief
of the user and her strategy in a PBE must match µ2 and σ2

defined above, respectively.

VII. CREDIBLE BELIEF CRITERION
The PBEs in which the agent of the PFI model is non-
truthful include equilibria that seem unreasonable. Consider
the following PBE: the agent always plays a1 = min+max

2 .
First note that the agent always lies, unless x = min+max

2 .
Therefore, EF = E[X] and her utility will be f · E[X]
(unless x = min+max

2 ), while a truthful agent obtains a
utility of E[X]. Suppose that x = max, the agent will still
play a1 = min+max

2 since playing max or even φ would
cause the user to update her belief such that the expectation
of X under this belief is less than f ·EF , which will result in
a lower utility for the agent. However, while the user’s belief
does not violate Bayes’ rule or the intuitive criterion, there is
no justification for it, except for allowing this PBE.

We therefore propose a new filtering criterion, by ap-
plying a restriction on the belief of the user. Namely,
we propose the credible belief criterion, which intuitively
states that if the agent deviates, and plays an off-the-
path action, the user should not increase her belief (over
the prior distribution) in a selection of nature that would
cause the agent to lose more by deviating than her be-
lief in a selection of nature that would cause the agent
to lose less by deviating. For the previous example, sup-
pose that σ2(max) = min, which implies that µ2(x =
min|a1 = max) = 1. However, u1(min,max,min) =
f · min and u1(min, min+max

2 , EF ) = f · EF so
u1(min, min+max

2 , EF )− u1(min,max,min) = f ·EF −
f · min. On the other hand, u1(max, min+max

2 , EF ) −
u1(max,max,min) = f · EF − min; therefore, the agent
loses more from deviating and playing a1 = max when
x = min than when x = max, but the user increased her
belief (over the prior) for x = min and decreased it for
x = max.

For the definition of the credible belief criterion, we use
the following notation. Given a PBE, let

l(x, a1) = u1(x, σ1(x), σ2(σ1(x)))− u1(x, a1, σ2(a1)).

Intuitively, l(x, a1) is the loss in utility of the agent when
nature chose x and the agent deviates and plays a1 (instead
of σ1(x)).

Definition 5. A tuple of strategies and a belief (σ1, σ2, µ2)
that form a PBE, is said to violate the credible belief crite-
rion if there exists an off-the-path action a1 and x1, x2 ∈
[min,max] such that l(x1, a1) ≤ l(x2, a1) but Pr(X =
x2) · µ2(x = x1 | a1) < Pr(X = x1) · µ2(x = x2 | a1).

Intuitively, we would have liked to write the last inequality
in Definition 5 as µ2(x=x1|a1)

µ2(x=x2|a1)
< Pr(X=x1)

Pr(X=x2)
or µ2(x=x1|a1)

Pr(X=x1)
<

µ2(x=x2|a1)
Pr(X=x2)

; however, since the denominators may be zero,
we use the equivalent inequality Pr(X = x2) · µ2(x = x1 |
a1) < Pr(X = x1) · µ2(x = x2 | a1).

The following theorem describes the PBEs under the PFI
model that satisfy the credible belief criterion (based on the
PBEs that appear in Theorem 3).
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Theorem 4. A tuple of strategies and a belief (σ1, σ2, µ2)
is a PBE that satisfies the credible belief criterion, if it takes
the form of case (1) in Theorem 3 (truthful agent) with the
following restrictions on µ2(x | a1) for an off-the-path action
a1, which, in turn, restrict Ya1 :

1) ∀x1, x2 ∈ S \{a1}, P r(X = x2) ·µ2(X = x1 | a1) =
Pr(X = x1) · µ2(X = x2 | a1).

2) ∀x1 ∈ S, x2 /∈ S, Pr(X = x2) · µ2(X = x1 | a1) ≥
Pr(X = x1) · µ2(X = x2 | a1).

3) ∀x1, x2 /∈ S, where x1 < x2, Pr(X = x2) · µ2(X =
x1 | a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).

4) ∀x ∈ S, Pr(X = x) · µ2(X = a1 | a1) ≥ Pr(X =
a1) · µ2(X = x | a1),

or if it takes the form of case (2) in Theorem 3 (non-truthful
agent) with the following restrictions on µ2(x | a1) for an
off-the-path action a1, which, in turn, restrict Ya1 :

1) ∀x ∈ F ∪ S ∪ T \ {a1}, P r(X = x) · µ2(X = a1 |
a1) ≥ Pr(X = a1) · µ2(X = x | a1).

2) ∀x1, x2 ∈ F ∪ S \ {a1}, P r(X = x2) · µ2(X = x1 |
a1) = Pr(X = x1) · µ2(X = x2 | a1).

3) ∀x1 ∈ F ∪ S, x2 ∈ T, Pr(X = x2) · µ2(X = x1 |
a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).

4) ∀x1, x2 ∈ T \ Q, where x1 < x2, Pr(X = x2) ·
µ2(X = x1 | a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).

5) ∀x1 ∈ T \ Q, x2 ∈ Q, P r(X = x2) · µ2(X = x1 |
a1) ≥ Pr(X = x1) · µ2(X = x2 | a1).

6) ∀x1, x2 ∈ Q, P r(X = x2) · µ2(X = x1 | a1) =
Pr(X = x1) · µ2(X = x2 | a1).

Proof. We begin by showing that there exists at least one
instance that follows the form of case (1) in Theorem 3
that satisfies the above restrictions. Specifically, ∀x /∈ S,
we may set µ2(X = x | a1) = 0 and ∀x ∈ S, we
may set µ2(X = x | a1) = Pr(X=x)

Pr(X∈S) . By doing so all
the above restrictions are satisfied. Furthermore, in this case
E[Ya1 ] = E[X | X ∈ S], which satisfies the restriction
on Ya1 in Theorem 3. This implies that the additional set of
restrictions on µ2(x | a1) does not nullify the PBE of the
form of case (1) in Theorem 3.

Next, we show that any PBE that takes the form of case
(1) in Theorem 3 and satisfies the above restrictions, satisfies
the credible belief criterion. We note that the credible belief
criterion is only applicable to the user’s belief for the agent’s
off-the-path actions, i.e., µ2(x | a1). Therefore, we only
consider the case that a1 ∈ S. We consider the following
different cases for x: x = a1, x ∈ S \ {a1}, and x /∈ S. We
note the following:

• l(x = a1, a1) < l(x ∈ S, a1) < l(x /∈ S, a1), since
E[X | X ∈ S]−E[Ya1

] < E[X | X ∈ S]− f ·E[Ya1
]

and for all x /∈ S,E[X | X ∈ S] − f · E[Ya1
] <

x− f · E[Ya1 ].
• for x1, x2 /∈ S, where x1 < x2, l(x1, a1) < l(x2, a1).

We show that for any x1, x2, if l(x1, a1) ≤ l(x2, a1) then
Pr(X = x2) · µ2(x = x1 | a1) ≥ Pr(X = x1) · µ2(x =
x2 | a1). There are five possible cases:

• x1, x2 ∈ S \ {a1}, the credible belief criterion is
satisfied by restriction (1).

• x1 ∈ S \ {a1}, x2 /∈ S, the credible belief criterion is
satisfied by restriction (2).

• x1, x2 /∈ S and x1 < x2, the credible belief criterion is
satisfied by restriction (3).

• x1 = a1, x2 ∈ S, the credible belief criterion is satisfied
by restriction (4).

• x1 = a1, x2 /∈ S, the credible belief criterion is satisfied
by restriction (2).

Next, we show that any PBE that takes the form of case
(2) in Theorem 3 and satisfies the above restrictions, satisfies
the credible belief criterion. Recall that since a1 is an off-
the-path action, a1 ∈ F ∪ S. We show that for any x1, x2, if
l(x1, a1) ≤ l(x2, a1) then Pr(X = x2) · µ2(x = x1 | a1) ≥
Pr(X = x1) ·µ2(x = x2 | a1). There are six possible cases:

• x1 = a1, x2 ∈ F ∪ S ∪ T \ {a1}, the credible belief
criterion is satisfied by restriction (1).

• x1, x2 ∈ F ∪ S \ {a1}, the credible belief criterion is
satisfied by restriction (2).

• x1 ∈ F ∪S \ {a1}, x2 ∈ T , the credible belief criterion
is satisfied by restriction (3).

• x1, x2 ∈ T \ Q, the credible belief criterion is satisfied
by restriction (4).

• x1 ∈ T \ Q, x2 ∈ Q, the credible belief criterion is
satisfied by restriction (5).

• x1, x2 ∈ Q, the credible belief criterion is satisfied by
restriction (6).

We proceed by proving that the credible belief criterion is
not satisfied in any other case. We first show that in case (1)
of Theorem 3 (truthful agent) where the above restrictions are
violated, the credible belief criterion does not hold.

• If restriction (1) is violated, then there exist x1, x2 ∈
S \ {a1} such that Pr(X = x2) · µ2(X = x1 | a1) <
Pr(X = x1) · µ2(X = x2 | a1). But since l(x1, a1) =
l(x2, a1), this violates the credible belief criterion.

• If restriction (2) is violated, then there exist x1 ∈
S, x2 /∈ S such that Pr(X = x2) · µ2(X = x1 |
a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) < l(x2, a1), this violates the credible belief
criterion.

• If restriction (3) is violated, then there exist x1, x2 /∈ S,
such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =
x1) · µ2(X = x2 | a1). But since l(x1, a1) < l(x2, a1),
this violates the credible belief criterion.

• If restriction (4) is violated, then there exist x ∈ S such
that Pr(X = x) · µ2(X = a1 | a1) < Pr(X = a1) ·
µ2(X = x | a1). But since l(x, a1) < l(a1, a1), this
violates the credible belief criterion.

Finally, we show that in case (2) of Theorem 3 (non-
truthful agent), where the above restrictions are violated, the
credible belief criterion does not hold.

• If restriction (1) is violated, then there exist x ∈ F ∪S∪
T \ {a1} such that Pr(X = x) · µ2(X = a1 | a1) <
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Pr(X = a1) · µ2(X = x | a1). But since l(x, a1) <
l(a1, a1), this violates the credible belief criterion.

• If restriction (2) is violated, then there exist x1, x2 ∈
F ∪ S \ {a1} such that Pr(X = x2) · µ2(X = x1 |
a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) = l(x2, a1), this violates the credible belief
criterion.

• If restriction (3) is violated, then there exist x1 ∈ F ∪
S \ {a1}, x2 ∈ T such that Pr(X = x2) · µ2(X =
x1 | a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) < l(x2, a1), this violates the credible belief
criterion.

• If restriction (4) is violated, then there exist x1, x2 ∈
T \Q, where x1 < x2, such that Pr(X = x2) ·µ2(X =
x1 | a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) < l(x2, a1), this violates the credible belief
criterion.

• If restriction (5) is violated, then there exist x1 ∈ T \
Q, x2 ∈ Q such that Pr(X = x2) · µ2(X = x1 |
a1) < Pr(X = x1) · µ2(X = x2 | a1). But since
l(x1, a1) < l(x2, a1), this violates the credible belief
criterion.

• If restriction (6) is violated, then there exist x1, x2 ∈ Q
such that Pr(X = x2) · µ2(X = x1 | a1) < Pr(X =
x1) · µ2(X = x2 | a1). But since l(x1, a1) = l(x2, a1),
this violates the credible belief criterion.

Finally, we show another signaling game in which the
credible belief criterion is useful. In this game there are two
players: a worker and an employer. There are three types of
workers: spiritual, social, and analytical. The worker type is
drawn from a uniform distribution known to the employer;
the worker is familiar with her type. The worker has to choose
which education to acquire: spiritual education, social edu-
cation or analytical education. The education is visible to the
employer and thus, serves as a signal. Education that matches
the worker’s type is obtained for free, but she must pay 1 for
education that does not match her type. After acquiring her
education, the worker is assigned, by the employer, to one
of three jobs: spiritual job, social job, or analytical job. The
worker obtains a reward of 1 for spiritual job, 2 for social job,
and 3 for analytical job, regardless of her type and education.
The employer’s utility is 1 if the worker’s job matches her
type, and −1 otherwise. Formally, the game is defined as
follows:

• Types = {sp, so, an} where ∀x ∈ Types, Pr(X =
x) = 1/3

• A1 = {sped, soed, aned}
• A2 = {spj , soj , anj}
• u1(x, a1, a2) = reward(a2)−payment(x, a1), where:

-- reward(a2) =


1 : a2 = spj

2 : a2 = soj

3 : a2 = anj

-- payment(x, a1) =

{
0 : x = a1

1 : x ̸= a1

• u2(x, a1, a2) =

{
1 : x = a2

0 : x ̸= a2

One of the PBEs in this game is the following:

• σ1(x) = sped

• σ2(a1) =

{
soj : a1 = sped

spj : otherwise

• µ2(X | a1 = sped) =


1/3 : x = sp

1/3 : x = so

1/3 : x = an

• µ2(X | a1 ̸= sped) =


1 : x = sp

0 : x = so

0 : x = an

This tuple is a PBE. The worker does not benefit from
deviating: if the worker is of a spiritual type, she will only
lose from choosing any other education. If the worker is
of a social or analytical type, and she chooses any other
education, the employer will assign her to a spiritual job,
which will result in a lower or equal utility. The employer
also does not benefit from deviating: if the worker played
sped, according to the employer’s belief, all types are equally
likely, so the employer does not benefit from deviating. If
the worker played soed or aned, according to the employer’s
belief, the worker’s type is sp, so she must play spj . Finally,
the belief is consistent: for a1 = sped the belief is same as
the original distribution, which is consistent with Bayes’ rule
since σ1(X) = sped with probability of 1. For a1 ̸= sped,
which is off-the-path, any belief is consistent.

Indeed, this PBE is unreasonable. For example, if the
worker chose to acquire analytical education, it is more likely
that her type is analytical, but the employer believes that the
worker is of a spiritual type. The intuitive criterion does not
filter this PBE, because it is always possible for the employer
to play a2 = anj , in which case the worker will not lose.

However, the credible belief criterion filters this PBE:
for the off-the-path action aned, the worker loses more if
her type is an than if her type were sp; however, the em-
ployer increases her belief over the prior more for x = sp
than for x = an. More formally, if a1 = aned, and
x1 = an, x2 = sp, it holds that l(x1, a1) < l(x2, a1), but
µ2(x1|a1)
Pr(X=x1)

< µ2(x2|a1)
Pr(X=x2)

.
We note that there is a PBE in this game that satisfies the

credible belief criterion:

• σ1(x) =

{
soed : x = so

aned : otherwise

• σ2(a1) =


soj : a1 = soed

anj : a1 = aned

spj : a1 = sped
• µ2(X = sp | a1 = sped) = 1
• µ2(X = so | a1 = soed) = 1
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• µ2(X = an | a1 = aned) =


1/2 : x = sp

0 : x = so

1/2 : x = an

This is a PBE since no player can benefit from deviating
and the employer’s belief is consistent. Moreover, the cred-
ible belief is satisfied since for the only off-the-path action
a1 = sped, the belief is higher than the prior only for
x = sp, and as required, this is the x with the lowest loss:
l(sp, sped) = 1, l(so, sped) = 2 and l(an, sped) = 3.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper, we took a first step towards the analysis of
information disclosure for increasing user satisfaction from
a shared ride. We modeled our environment as a signaling
game and analyzed the perfect Bayesian equilibria for three
agents’ classes: an honest agent model, a no utility for lying
model, and a penalized false information model. We showed
that in the honest agent model and in the no utility for lying
model, the agent must reveal all the information regarding
the possible alternatives to the passenger. However, in the
penalized false information model, there are two types of
equilibria, one in which she is truthful (but must keep silent
sometimes), and the other, in which the agent provides false
information. The latter equilibrium type includes equilibria
that seem unreasonable. Therefore, we proposed a novel
criterion to filter out such equilibria. After filtering out the
unreasonable equilibria, we can conclude from the theoretical
analysis that in all three agent models, the agent should
never provide any false information. Table 3 summarizes the
properties of each agent model and the solution concepts that
we use.

In future work, we intend to extend our theoretical analysis
to additional domains for demonstrating the usefulness of the
credible belief criterion. In addition, we would like to gather
data of humans interacting with each other in the ridesharing
scenario described in this paper and according to each of
the agent models studied. It will be interesting to investigate
(for each agent model) whether humans play according to the
PBE strategies.
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