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Abstract
Recent deployments of Stackelberg security games (SSG)
have led to two competing approaches to handle boundedly
rational human adversaries: (1) integrating models of hu-
man (adversary) decision-making into the game-theoretic al-
gorithms, and (2) applying robust optimization techniques
that avoid adversary modeling. A recent algorithm (MATCH)
based on the second approach was shown to outperform the
leading modeling-based algorithm even in the presence of
significant amount of data. Is there then any value in us-
ing human behavior models in solving SSGs? Through ex-
tensive experiments with 547 human subjects playing 11102
games in total, we emphatically answer the question in the
affirmative, while providing the following key contributions:
(i) we show that our algorithm, SU-BRQR, based on a novel
integration of human behavior model with the subjective util-
ity function, significantly outperforms both MATCH and its
improvements; (ii) we are the first to present experimental
results with security intelligence experts, and find that even
though the experts are more rational than the Amazon Turk
workers, SU-BRQR still outperforms an approach assuming
perfect rationality (and to a more limited extent MATCH);
(iii) we show the advantage of SU-BRQR in a new, large
game setting and demonstrate that sufficient data enables it
to improve its performance over MATCH.

Introduction
The recent multiple deployments of Stackelberg Security
Games (SSG) assist security agencies (“defenders”) to op-
timally allocate their limited resources against human ad-
versaries (Tambe 2011; Basilico, Gatti, and Amigoni 2009;
Letchford and Vorobeychik 2011). While these deployments
have often assumed that the adversary is a perfectly ratio-
nal player, who maximizes expected value, it is well un-
derstood that such an assumption is not ideal for address-
ing human adversaries (Camerer 2011). As a result, re-
searchers have been pursuing alternative approaches to han-
dle adversary’s bounded rationality in SSGs (Pita et al. 2010;
Yang et al. 2011; Pita et al. 2012).

Two competing approaches have emerged to address hu-
man bounded rationality in SSGs. One approach integrates
models of human decision-making into algorithms for com-
puting defender strategies; the other adopts robust optimiza-
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tion techniques to intentionally avoid adversary modeling.
The BRQR algorithm (Yang et al. 2011), based on model-
ing adversary decision-making with the Quantal Response
(QR) (McKelvey and Palfrey 1995) model, leads to signif-
icantly better defender strategies than any previous lead-
ing contenders. However, the more recent robust algorithm
MATCH (Pita et al. 2012) outperforms BRQR. It is indeed
surprising that despite the long history of modeling success
of QR, MATCH still performs better, even when significant
amount of data were used to tune the key parameter in QR
and no tuning was done to MATCH’s key parameter.

Thus, there is now an important open question of whether
there is any value in adversary modeling in SSGs. Our first
contribution in answering this question builds on the signifi-
cant support for QR (Haile, Hortacsu, and Kosenok 2008;
Choi, Gale, and Kariv 2012): we hypothesize that QR’s
stochastic response is crucial in building a human decision-
making model. Where we part company with the original
QR model however is in its assumption that human stochas-
tic response is based on expected value. Instead, we pro-
pose a new model based on integration of a novel subjective
utility function (SU) into QR, called the SUQR model. We
show that the SUQR model, given learned parameters (from
limited data), has superior predictive power compared to the
QR model. We then derive the SU-BRQR algorithm, simi-
lar to BRQR, to compute the defender strategy assuming the
adversary response follows the SUQR model. We evaluate
SU-BRQR’s performance by conducting two sets of experi-
ments using an online game with Amazon Mechanical Turk
(AMT) workers and show that: (i) SU-BRQR significantly
outperforms MATCH in previously used settings; (ii) SU-
BRQR usually outperforms (and always performs at least as
well as) improved versions of MATCH such as ones offering
it the same SU functions or tuning its key parameter.

SU-BRQR’s parameters were learned from previously
available (albeit limited) game data; we now test SU-BRQR
in domains without the benefit of such a-priori data. Indeed,
while some domains of SSG application, e.g., deterring fare
evasion (Yin et al. 2012) or forest protection (Johnson, Fang,
and Tambe 2012), could provide significant amounts of data
to tune SU-BRQR, would we be better off with MATCH
or other algorithms in applications that do not? Our sec-
ond contribution answers this question by conducting exper-
iments with security intelligence experts, where we do not



have any previous modeling data. These experts, who serve
as proxies for real-world adversaries, serve in the best Israeli
Intelligence Corps unit or are alumna of that unit, and are
found to be more rational than the AMT workers. Against
these experts, SU-BRQR with its earlier learned parameters,
significantly outperforms both an algorithm assuming per-
fect adversary rationality (Paruchuri et al. 2008) and (to a
more limited extent) MATCH. Finally, our third contribu-
tion tests SU-BRQR in a new large game with AMT work-
ers. We show that SU-BRQR with previously learned pa-
rameters still outperforms MATCH; and learning from more
data, SU-BRQR performance can be further improved.

Background and Related Work
SSGs are defender-attacker games where the defender at-
tempts to allocate her (“she” by convention) limited re-
sources to protect a set of targets, and the adversary plans
to attack one such target (Conitzer and Sandholm 2006;
Tambe 2011). In SSGs, the defender first commits to a
mixed strategy assuming that the adversary can observe that
strategy. Then, the adversary takes his action.

Let T be the number of targets andK be the number of de-
fender resources. The payoffs of both players depend on the
attacked target and whether that target is covered by the de-
fender. When the adversary attacks a target t, he will receive
a reward Rat if the target is not covered by the defender; oth-
erwise, he will receive a penalty P at . In contrast, the de-
fender will get a penalty P dt in the former case and a reward
Rdt in the latter case. We assume, as usual, Rat , R

d
t > 0 and

P at , P
d
t < 0. Let xt be the coverage probability of the de-

fender on target t. The defender’s expected value at target t
can be calculated as:

Udt = xtR
d
t + (1− xt)P dt

Similarly, the expected value for the attacker is given by:

Uat = xtP
a
t + (1− xt)Rat

Traditionally, the algorithms to compute the defender
strategy in SSGs have assumed a perfectly rational adver-
sary, who tries to maximize his expected value given the
defender’s strategy(Conitzer and Sandholm 2006; Paruchuri
et al. 2008; Korzhyk, Conitzer, and Parr 2010). However,
in real-world problems, the adversary’s decision may be
governed by his bounded rationality (March 1978; Conlisk
1996) due to effects such as task complexity and the inter-
play between emotion and cognition, which may cause him
to deviate from the optimal action.

Recent research has therefore focused on developing al-
gorithms to address the adversary’s bounded rationality. In
particular, BRQR(Yang et al. 2011) and MATCH(Pita et al.
2012) are the two leading contenders for handling adversary
bounded rationality in SSGs. BRQR subscribes to modeling
human decision making; it computes an optimal strategy for
the defender assuming that the adversary’s response follows
the QR model. The QR model predicts a stochastic distri-
bution of the adversary response: the greater the expected
value of a target the more likely the adversary will attack
that target. QR’s key parameter λ represents the level of

rationality in adversary’s response: as λ increases, the pre-
dicted response by the QR model converges to the optimal
action of the adversary. In contrast, instead of using a human
behavior model, MATCH computes a robust defender strat-
egy by guaranteeing a bound on the defender’s loss in her
expected value if the adversary deviates from his optimal
choice. More specifically, the defender’s loss is constrained
to be no more than a factor of β times the adversary’s loss
in his expected value. The key parameter β describes how
much the defender is willing to sacrifice when the adversary
deviates from the optimal action.

A comparison of these two algorithms by (Pita et
al. 2012), using over 100 payoff structures, showed
that MATCH significantly outperforms BRQR. They also
showed that even with sufficient data, with carefully re-
estimated λ of the QR model, and no effort to estimate
MATCH’s β parameter, MATCH still outperformed BRQR.

A Simulated Security Game: A simulated online
SSG, called “The guards and treasures” has previously
been used as the platform for human subject experi-
ments (Yang et al. 2011; Pita et al. 2012). We will
also use it in our experiments. The game is de-
signed to simulate the security scenario at the LAX air-
port, which has eight terminals that can be targeted in
an attack. Figure 1 shows the interface of the game.

Figure 1: Game Interface

Before playing the
game, all the subjects
are given detailed
instructions about how
to play. In each game,
the subjects are asked
to select one target
to attack, given the
following information:
subject’s reward and
penalty at each target,
the probability that a
target will be covered
by the guard, and the reward and penalty of the defender at
each target (more details in (Yang et al. 2011)).

The SUQR Model
The key idea in subjective expected utility (SEU) as pro-
posed in behavioral decision-making (Savage 1972; Fis-
chhoff, Goitein, and Shapira 1981) is that individuals have
their own evaluations of each alternative during decision-
making. Recall that in an SSG, the information presented
to the human subject for each choice includes: the marginal
coverage on target t (xt); the subject’s reward and penalty
(Rat ,P at ); the defender’s reward and penalty (Rdt , P dt ). In-
spired by the idea of SEU, we propose a subjective utility
function of the adversary for SSG as the following:

Ûat = w1xt + w2R
a
t + w3P

a
t (1)

The novelty of our subjective utility function is the linear
combination of the values (rewards/penalty) and probabil-
ities. (Note that we are modeling the decision-making of
the general population not of each individual as we do not



have sufficient data for each specific subject). While uncon-
ventional at first glance, as shown later, this model actually
leads to higher prediction accuracy than the classic expected
value function. A possible explanation for that is that hu-
mans might be driven by simple heuristics in their decision
making. Indeed, several studies in other research domains
have demonstrated the prediction power of simple combi-
nation of features (Meehl 1963; Dawes 1979) while com-
plex models could possibly lead to over-fitting issues (Meehl
1963). Other alternatives to this subjective utility function
are feasible, e.g., including all the information presented to
the subjects (Ûat = w1xt+w2R

a
t +w3P

a
t +w4R

d
t +w5P

d
t ),

which we discuss later.
We modify the QR model by replacing the classic ex-

pected value function with the SU function, leading to the
SUQR model. In the SUQR model, the probability that the
adversary chooses target t, qt, is given by:

qt =
eλÛ

a
t∑

t′ e
λÛa

t′
=

eλ(w1xt+w2R
a
t +w3P

a
t )∑

t′ e
λ(w1xt′+w2Ra

t′+w3Pa
t′ )

(2)

The problem of finding the optimal strategy for the de-
fender can therefore be formulated as:

max
x

T∑
t=1

eλ(w1xt+w2R
a
t +w3P

a
t )∑

t′ e
λ(w1xt′+w2Ra

t′+w3Pa
t′ )

(xtR
d
t + (1− xt)P dt )

s.t.

T∑
t=1

xt ≤ K, 0 ≤ xt ≤ 1 (3)

Here, the objective is to maximize the defender’s expected
value given that the adversary chooses to attack each target
with a probability according to the SUQR model. Constraint
(3) ensures that the coverage probabilities on all the targets
satisfy the resource constraint. Given that this optimization
problem is similar to BRQR we use the same approach as
BRQR to solve it (Yang et al. 2011). We refer to the resulting
algorithm as SU-BRQR.

Learning SUQR Parameters Without loss of generality,
we set λ = 1. We employ Maximum Likelihood Estima-
tion (MLE) (Hastie, Tibshirani, and Friedman 2009) to learn
the parameters (w1, w2, w3). Given the defender strategy x
and N samples of the players’ choices, the log-likelihood of
(w1, w2, w3) is given by:

logL(w1, w2, w3|x) =
∑N
j=1 log[qtj (w1, w2, w3|x)]

where tj is the target that is chosen in sample j and qtj
(w1, w2, w3|x) is the probability that the adversary chooses
the target tj . Let Nt be the number of subjects attacking
target t. Then we have:
logL(w1, w2, w3|x) =

∑T
t=1Ntlog[qt(w1, w2, w3|x)]

Combining with equation (2),
logL(w1, w2, w3|x) = w1(

∑T
t=1Ntxt)+w2(

∑T
t=1NtR

a
t )

+w3(
∑T
t=1NtP

a
t )−Nlog(

∑T
t=1 e

w1xt+w2R
a
t +w3Pa

t )

logL(w1, w2, w3|x) can be shown to be a concave
function: we can show that the Hessian matrix of
logL(w1, w2, w3|x) is negative semi-definite. Thus, this
function has an unique local maximum point and we can
hence use a convex optimization solver to compute the opti-
mal weights (w1, w2, w3), e.g., fmincon in Matlab.

Prediction Accuracy of SUQR model As in some real-
world security environments, we would want to learn pa-
rameters of our SUQR model based on limited data. To
that end, we used a training set of 5 payoff structures
and 2 algorithms MATCH and BRQR (10 games in to-
tal) from (Pita et al. 2012) to learn the parameters of the
new SU function and the alternatives. In total, 33 hu-
man subjects played these 10 games using the setting of 8-
targets and 3-guards from our on-line game. The parame-
ters that we learnt are: (w1, w2, w3)=(−9.85, .37, .15) for
the 3-parameter SU function; and (w1, w2, w3, w4, w5) =
(−8.23, .28, .12, .07, .09) for the 5-parameter function.

Table 1: Prediction Accuracy
QR 3-parameter SUQR 5-parameter SUQR
8% 51% 44%

We ran a Pearson’s chi-squared goodness of fit test
(Greenwood and Nikulin 1996) in a separate test set which
includes 100 payoff structures in (Pita et al. 2012) to eval-
uate the prediction accuracy of the two proposed models as
well as the classic QR model. The test examines whether the
predicted distribution of the players’ choices fits the obser-
vation. We set λ = .76 for QR model, the same as what was
learned in (Yang et al. 2011). The percentages of the payoff
structures that fit the predictions of the three models (with
statistical significance level of α = 0.05) are displayed in
Table 1. The table clearly shows that the new SUQR model
(with the SU function in Equation (1)) predicts the human
behavior more accurately than the classic QR model. In ad-
dition, even with more parameters, the prediction accuracy
of the 5-parameter SUQR model does not improve. Given
this result, and our 3-parameter models demonstrated superi-
ority (as we will show in the Experiments section), we leave
efforts to further improve the SUQR model for future work.

Improving MATCH
Since SUQR better predicts the distribution of the subject’s
choices than the classic QR, and as shown later, SU-BRQR
outperforms MATCH, it is natural to investigate the integra-
tion of the subjective utility function into MATCH. In par-
ticular, we replace the expected value of the adversary with
subjective utility function. Therefore, the adversary’s loss
caused by his deviation from the optimal solution is mea-
sured with regard to the subjective utility function.

max
x,h,η,γ

γ (4)

s.t.
∑
t∈T

xt ≤ K, 0 ≤ xt ≤ 1, ∀t (5)∑
t∈T

ht = 1, ht ∈ {0, 1} , ∀t (6)

0 ≤ η − (w1xt + w2R
a
t + w3P

a
t ) ≤M(1− ht)

(7)

γ − (xtR
d
t + (1− xt)P dt ) ≤M(1− ht) (8)

γ − (xtR
d
t + (1− xt)P dt ) ≤

β · (η − (w1xt + w2R
a
t + w3P

a
t )), ∀t (9)



We refer to this modified version as SU-MATCH, which
is shown in Equation (4)-(9) where ht represents the adver-
sary’s target choice, η represents the maximum subjective
utility for the adversary, γ represents the expected value for
the defender if the adversary responds optimally and M is a
large constant.

Constraint (7) finds the optimal strategy (target) for the
adversary. In constraint (8), the defender’s expected value
is computed when the attacker chooses his optimal strategy.
The key idea of SU-MATCH is in constraint (9). It guaran-
tees that the loss of the defender’s expected value caused by
adversary’s deviation is no more than a factor of β times the
loss of the adversary’s subjective utility.

Selecting β for MATCH: In MATCH, the parameter β
is the key that decides how much the defender is willing to
lose if the adversary deviates from his optimal strategy. Pita
et al. set β to 1.0, leaving its optimization for future work.
In this section, we propose a method to estimate β based on
the SUQR model.

Initialize γ∗ ← −∞;
for i = 1 to N do

β ← Sample([0,MaxBeta], i), x← MATCH(β);
γ ←

∑
t qtU

d
t ;

if γ ≥ γ∗ then
γ∗ ← γ, β∗ ← β;

return (β∗, γ∗);

In this method, N values of β are uniformly sampled
within the range (0, MaxBeta). For each sampled value of
β, the optimal strategy x for the defender is computed us-
ing MATCH. Given this mixed strategy x, the defender’s
expected value, γ, is computed assuming that the adversary
will respond stochastically according to the SUQR model.
The β leading to the highest defender expected value is cho-
sen. In practice, we set MaxBeta to 5, to provide an effective
bound on the defender loss, given that penalties/rewards of
both players range from -10 to 10; and N to 100, which gives
a grid size of 0.05 for β for the range of (0, 5). We refer to
the algorithm with carefully selected β as MATCHBeta.

Experimental Results
The tested algorithms in our experiments include:
SU-BRQR, MATCH, SU-MATCH, MATCHBeta, SU-
MATCHBeta, i.e., MATCH embedded with both SU and
selecting β, and DOBSS, i.e., a robust algorithm again
perfectly rational opponents.

Results with AMT Workers, 8-target Games
Our first experiment compares SU-BRQR against MATCH
and its improvements, in the setting where we learned the
parameters of the SUQR model, i.e., the 8-target and 3-guard
game with the AMT workers. In this 8-target game setting,
for each game, our reported average is over at least 45 hu-
man subjects. The experiments were conducted on the AMT
system. When two algorithms are compared, we ensured
that identical human subjects played both on the same pay-
off structures. Participants were paid a base amount of US

$1.00. In addition, each participant was given a bonus based
on their performance in the games to motivate them. Similar
to (Pita et al. 2012)’s work, we ensured that players were not
choosing targets arbitrarily by having each participant play
two extra trivial games (i.e., games in which there is a tar-
get with the highest adversary reward and lowest adversary
penalty and lowest defender coverage probability). Players’
results were removed if they did not choose that target.

We generated the payoff structures based on covariance
games in GAMUT (Nudelman et al. 2004). In covariance
games, we can adjust the covariance value r ∈ [−1, 1] to
control the correlation between rewards of players. We first
generate 1000 payoff structures with r ranging from -1 to
0 by 0.1 increments (100 payoff structures per value of r).
Then, for each of the 11 r values, we select 2 payoff struc-
tures ensuring that the strategies generated by each candi-
date algorithm (e.g., SU-BRQR and versions of MATCH)
are not similar to each. One of these two has the maximum
and the other has the median sum of 1-norm distances be-
tween defender strategies generated by each pair of the al-
gorithms. This leads to a total of 22 payoff structures. By
selecting the payoffs in this way, we explore payoff struc-
tures with different levels of the 1-norm distance between
generated strategies so as to obtain accurate evaluations with
regard to performance of the tested algorithms. We evaluate
the statistical significance of our results using the bootstrap-t
method (Wilcox 2002).

SU-BRQR vs MATCH This section evaluates the impact
of the new subjective utility function via a head-to-head
comparison between SU-BRQR and MATCH. In this ini-
tial test, the β parameter of MATCH was set to 1.0 as in
(Pita et al. 2012). Figure 2a first shows all available compar-
ison results for completeness (without regard to statistical
significance). More specifically, we show the histogram of
the difference between SU-BRQR and MATCH in the av-
erage defender expected reward over all the choices of the
participants. The x-axis shows the range of this difference
in each bin and the y-axis displays the number of payoff
structures (out of 22) that belong to each bin. For example,
in the third bin from the left, the average defender expected
value achieved by SU-BRQR is higher than that achieved by
MATCH, and the difference ranges from 0 to 0.4. There are
8 payoffs that fall into this category. Overall, SU-BRQR
achieves a higher average expected defender reward than
MATCH in the 16 out of the 22 payoff structures.

In Figure 2b, the second column shows the number of
payoffs where SU-BRQR outperforms MATCH with statis-
tical significance (α = .05). The number of payoff struc-
tures where MATCH is better than SU-BRQR with statis-
tical significance is shown in the fourth column. In the
22 payoff structures, SU-BRQR outperforms MATCH 13
times with statistical significance while MATCH defeats
SU-BRQR only once; in the remaining 8 cases, no statis-
tical significance is obtained either way. This result stands
in stark contrast to (Pita et al. 2012)’s result and directly an-
swers the question we posed at the beginning of this paper:
there is indeed value to integrating models of human deci-
sion making in computing defender strategies in SSGs, but



(a) All comparison data

SU-BRQR Draw MATCH
α = .05 13 8 1

(b) Results with statistical significance

Figure 2: SU-BRQR vs MATCH, AMT workers, 8 targets

use of SUQR rather than traditional QR models is crucial.

Table 2: Performance comparison, α = .05

SU-MATCH MATCHBeta SU-MATCHBeta
MATCH 3, 11 1, 6 1, 8
SU-BRQR 8, 2 8, 2 5, 3

SU-BRQR vs Improved MATCH In Table 2, we com-
pare MATCH and SU-BRQR against the three improved
versions of MATCH: SU-MATCH, MATCHBeta, and SU-
MATCHBeta (i.e., MATCH with both the subjective utility
function and the selected β) when playing our 22 selected
payoff structures. Here, we only report results that hold
with statistical significance (α = .05). The first number
in each cell in Table 2 shows the number of payoffs (out of
22) where the row algorithm obtains a higher average de-
fender expected reward than the column algorithm; the sec-
ond number shows where the column algorithm outperforms
the row algorithm. For example, the second row and sec-
ond column shows that MATCH outperforms SU-MATCH
in 3 payoff structures with statistical significance while SU-
MATCH defeats MATCH in 11.

Table 2 shows that the newer versions of MATCH
achieve a significant improvement over MATCH. Addition-
ally, SU-BRQR retains a significant advantage over both
SU-MATCH and MATCHBeta. For example, SU-BRQR
defeats SU-MATCH in 8 out of the 22 payoff structures with
statistical significance, as shown in Table 2; in contrast, SU-
MATCH is better than SU-BRQR only twice.

Although SU-BRQR in this case does not outperform SU-
MATCHBeta to the extent it does against MATCH (i.e., SU-
BRQR performs better than SU-MATCHBeta only 5 times
with statistical significance while SU-MATCHBeta is bet-
ter than SU-BRQR thrice (Table 2)), SU-BRQR remains
the algorithm of choice for the following reasons: (a) SU-
BRQR does perform better than SU-MATCHBeta in more
cases with statistical significance; (b) selecting the β param-
eters in SU-MATCHBeta can be a significant computational
overhead for large games given that it requires testing many
values of β. Thus, we could just prefer SU-BRQR .

Results with New Experimental Scenarios
All previous experiments are based on the 8-target and 3-
guards game, which were motivated by the LAX security
scenario (Tambe 2011). In addition, the games have been

(a) All comparison data

SU-BRQR Draw MATCH
α = .05 6 13 3

(b) Results with statistical significance

Figure 3: SU-BRQR vs MATCH, security experts

played by AMT workers or college students. To evaluate the
performance of the SUQR model in new scenarios, we intro-
duce two new experimental settings: in one the experiments
are conducted against a new type of human adversary, i.e.,
security intelligence experts; and in the other, we change the
game to 24 targets and 9 guards.

Security Intelligence Experts, 8-target games
In this section, we evaluate our algorithm with security in-
telligence experts who serve in the best Israeli Intelligence
Corps unit or are alumna of that unit. Our purpose is to ex-
amine whether SU-BRQR will work when we so radically
change the subject population to security experts. We use
the same 22 payoff structures and the same subjective utility
function as in the previous experiment with AMT workers.
Each result below is averaged over decisions of 27 experts.

SU-BRQR vs DOBSS DOBSS (Paruchuri et al. 2008) is
an algorithm for optimal defender strategies against per-
fectly rational opponents. DOBSS performed poorly in 8-
target games against AMT workers(Pita et al. 2010; Yang
et al. 2011). However, would DOBSS perform better in
comparison to SU-BRQR against security experts? Our re-
sults show that SU-BRQR is better than DOBSS in all 22
tested payoff structures; 19 times with statistical signifi-
cance. Thus, even these experts did not respond optimally
(as anticipated by DOBSS) against the defender’s strategies.

SU-BRQR vs MATCH Figure 3a shows that SU-BRQR
obtains a higher expected defender reward than MATCH
in 11 payoff structures against our experts. Furthermore,
SU-BRQR performs better than MATCH in 6 payoff struc-
tures with statistical significance while MATCH is better
than SU-BRQR only in 3 payoff structures with statistical
significance (Figure 3b). These results still favor SU-BRQR
over MATCH, although not as much as when playing against
AMT workers (as in Figure 2).

Nonetheless, what is crucially shown in this section is that
changing the subject population to security experts does not
undermine SU-BRQR completely; in fact, despite using pa-
rameters from AMT workers, SU-BRQR is still able to per-
form better than MATCH. We re-estimate the parameters
(w1, w2, w3) of the SU function using the data of experts.
The result is: w1 = −11.0, w2 = 0.54, and w3 = 0.35.
This result shows that while the experts evaluated all the cri-
teria differently from the AMT workers they gave the same



(a) All comparison data

SU-BRQR Draw MATCH
α = .05 8 11 3

(b) Results with statistical significance

Figure 4: SU-BRQR vs MATCH, 24 targets, original

importance level to the three parameters. Because of limited
access to experts, we could not conduct experiments with
these re-estimated parameters; we will show the impact of
such re-estimation in our next experimental setting.

Bounded Rationality of Human Adversaries We now
compare the AMT workers and security experts using the
traditional metric of “rationality level” of the QR model. To
that end, we revert to the QR-model with the expected value
function to measure how close these players are to perfect
rationality. In particular, we use QR’s λ parameter as a cri-
terion to measure their rationality. We use all the data from
AMT workers as well as experts on the chosen 22 games
in previous experiments to learn the λ parameter. We get
λ = 0.77 with AMT workers and λ = 0.91 with experts.
This result implies that security intelligence experts tend to
be more rational than AMT workers (the higher the λ, the
closer the players are to perfect rationality). Indeed, in 34
of 44 games, experts obtains a higher expected value than
AMT workers. Out of these, their expected value is higher
than AMT workers 9 times with statistical significance while
AMT workers is higher only once (α = .05). Nonetheless,
the lambda for experts of 0.91 suggests that the experts do
not play with perfect rationality (perfect rational λ =∞).

AMT Workers, 24-target Games
In this section, we focus on examining the performance of
the algorithms in large games, i.e., 24 targets and 9 de-
fender resources. We expect that the human adversaries may
change their behaviors because of tedious evaluation of risk
and benefit for each target. Two algorithms were tested: SU-
BRQR, MATCH. We first run experiments with the new sub-
jective utility function learned previously using the data of
the 8-target game.

SU-BRQR vs MATCH with Parameters Learned from
the 8-target Games Figure 4a shows that SU-BRQR ob-
tains a higher average defender expected value than MATCH
in 14 out of 22 payoff structures while MATCH is better
than SU-BRQR in 8 payoff structures. These averages are
reported over 45 subjects. In addition, as can be seen in
Figure 4b, SU-BRQR performs better than MATCH with
statistical significance 8 times while MATCH outperforms
SU-BRQR 3 times. While SU-BRQR does perform better
than MATCH, its superiority over MATCH is not as much
as it was in previous 8-target games.

We can hypothesize based on these results that the learned
parameters of the 8-target games do not predict human be-
haviors as well in the 24-target games. Therefore, we re-
estimate the values of the parameters of the subjective utility
function using the data of the previous experiment in the 24-
target games. The training data contains 388 data points.
This re-estimating results in w1 = −15.29, w2 = .53,
w3 = .34. Similar to the experts case, the weights in 24-
target games are different from the ones in 8-target games
but their order of importance is the same.

SU-BRQR vs MATCH with Re-estimated Parameters
In this experiment, we evaluate the impact of the new sub-
jective utility function with the re-estimated parameters on
the performance of SU-BRQR in comparison with MATCH.

Figure 5a shows that SU-BRQR outperforms MATCH in
18 payoff structures while MATCH defeats SU-BRQR in
only 4 cases. Moreover, it can be seen in Figure 5b that SU-
BRQR defeats MATCH with statistical significance 11 times
while MATCH defeats SU-BRQR only once with statistical
significance. In other words, the new weights of the subjec-
tive utility function indeed help improve the performance of
SU-BRQR . This result demonstrates that a more accurate
SU function can help improve SU-BRQR’s performance.

(a) All comparison data

SU-BRQR Draw MATCH
α = .05 11 10 1

(b) Results with statistical significance

Figure 5: SU-BRQR vs MATCH, 24 targets, re-estimated

Summary
This paper demonstrates the importance of integrating mod-
els of human decision making in computing defender strate-
gies in SSGs using a novel subjective utility function.
Through extensive experiments, the paper provides the fol-
lowing contributions: (i) we show that our SU-BRQR al-
gorithm, which involves a novel integration of QR with SU
function, significantly outperforms both MATCH and its im-
proved versions; (ii) we are the first to present experimental
results with security intelligence experts, and find that even
though the experts are more rational than the AMT workers,
SU-BRQR performs better than its competition against these
experts; (iii) we show the advantage of SU-BRQR in a new,
larger game setting and demonstrate that additional data can
further boost the performance of SU-BRQR over MATCH.
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