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Abstract
Ride-sharing services are gaining popularity and
are crucial for a sustainable environment. A special
case in which such services are most applicable, is
the last mile variant. In this variant it is assumed
that all the passengers are positioned at the same
origin location (e.g. an airport), and each have a
destination. One of the major issues in a shared
ride is fairly splitting of the ride cost among the
passengers.
In this paper we use the Shapley value, which is one
of the most significant solution concepts in cooper-
ative game theory, for fairly splitting the cost of a
shared ride. We consider two scenarios. In the first
scenario there exists a fixed priority order in which
the passengers are dropped-off (e.g. elderly, injured
etc.), and we show a method for efficient computa-
tion of the Shapley value in this setting. Our results
are also applicable for efficient computation of the
Shapley value in routing games.
In the second scenario there is no predetermined
priority order. We show that the Shapley value can-
not be efficiently computed in this setting. How-
ever, extensive simulations reveal that our approach
for the first scenario can serve as an excellent
proxy for the second scenario, outperforming other
known proxies.

1 Introduction
On-demand ride-sharing services, which group together pas-
sengers with similar itineraries, can be of significant social
and environmental benefit, by reducing travel costs, road con-
gestion and CO2 emissions. Indeed, the National Household
Travel Survey performed in the U.S. in 2009 [Santos et al.,
2011] revealed that approximately 83.4% of all trips in the
U.S. were in a private vehicle (other options being public
transportation, walking, etc.). The average vehicle occupancy
was only 1.67 when compensating for the number of passen-
gers. The deployment of autonomous cars in the near future
is likely to increase the spread for ride-sharing services, since
it will be easier and cheaper for a company to handle a fleet
of autonomous cars that can serve the demands of different
passengers.

Most works in the domain of ride-sharing are dedicated to
the assignment of passengers to vehicles, or to planning op-
timal drop-off routes [Psaraftis et al., 2016; Alonso-Mora et
al., 2017; Molenbruch et al., 2017]. In this paper we study
a fair allocation of the cost of the shared ride in the last mile
variant [Cheng et al., 2014]. That is, we analyze the cost
allocation when all passengers are positioned at the same ori-
gin location. We concentrate on the Shapley value [Shapley,
1953] as our notion of fair cost allocation. The Shapley value
is widely used in cooperative games, and is the only cost
allocation satisfying efficiency, symmetry, null player prop-
erty and additivity. The Shapley value has been even termed
the most important normative division scheme in cooperative
game theory [Winter, 2002]. However, the Shapley value de-
pends on the travel cost of a ride of each subset of the passen-
gers. Therefore, as stated by Özener and Ergun [Özener and
Ergun, 2008], “In general, explicitly calculating the Shapley
value requires exponential time. Hence, it is an impractical
cost-allocation method unless an implicit technique given the
particular structure of the game can be found”.

There are two possible general structures of the last-mile
ride-sharing problem. In some cases there is a priority order
in which the passengers are dropped-off. Such prioritization
may be attributed to the order in which the passengers arrived
at the origin location, or the frequency of passenger usage
of the service; the latter is similar to the different boarding
groups on an aircraft. Other rationales for prioritization may
include urgency of arrival or priority groups in need (e.g. el-
derly, disabled, pregnant women, and the injured). Clearly, in
such cases, the prioritization is preserved when determining
the travel cost of a ride with a subset of the passengers. We
denote this problem as the prioritized ride-sharing problem.
Indeed, in some scenarios there is no predetermined priori-
tization order. In such cases it is assumed that a ride with a
subset of the passengers is performed using the shortest (or
cheapest) path that traverses their destinations. We denote
this problem as the non-prioritized ride-sharing problem.

The prioritized and the non-prioritized ride-sharing prob-
lems are closely related to traveling salesman games [Potters
et al., 1992]. In these games, a service provider makes a
round-trip along the locations of several sponsors, where the
total cost of the trip should be distributed among the spon-
sors. Specifically, the prioritized ride-sharing problem is sim-
ilar to the fixed-route traveling salesman game, also known as



routing game [Yengin, 2012], while the non-prioritized ride-
sharing problem is similar to the traveling salesman game.
Most of the works on traveling salesman games concentrated
on finding an element of the core, a solution game concept
which is different from the Shapley value. One exception is
the work of Yengin [Yengin, 2012], who has studied the Shap-
ley value of routing games and has conjectured that there is
no efficient way for computing the Shapley value in routing
games.

In this paper, we show an efficient computation of the
Shapley value for the prioritized ride-sharing problem. Our
method is based on smart enumeration of the components
that are used in the computation of the Shapley value. Fur-
thermore, our approach can be generalized to routing games,
and we thus also provide an efficient way for computing the
Shapley value in routing game. We then move to analyze
the non-prioritized ride-sharing problem and show that, un-
less P=NP, there is no polynomial time algorithm for comput-
ing the Shapley value. Fortunately, we show through exten-
sive simulations that when the given travel path is the shortest
path the Shapley value of the prioritized ride-sharing problem
can be used as an excellent proxy for the Shapley value of the
non-prioritized ride-sharing problem.

We note that the term ride-sharing is used in the literature
with different meanings. We consider only the setting where
the vehicle operator does not have any preferences or prede-
fined destination. Instead, the vehicle’s route is determined
solely by the passengers’ requests. In addition, the context
of our work is that the assignment of the passengers to the
vehicle has already been determined, either by a ride-sharing
system or by the passengers themselves, and we only need
to decide on the cost allocation. Since we focus on the case
where the assignment has already been determined, we do not
consider the ability of passengers to deviate from the given
assignment and join a different vehicle, which is acceptable
since either they want to travel together or no other alternative
exists.

To summarize, the contributions of this paper are two-fold:

1. We show an efficient method for computing the Shapley
value of each passenger in a shared-ride when the prior-
ity order is predetermined. Our solution entails that the
Shapley value can be computed in polynomial time in
routing games as well, which is in contrast to a previous
conjecture made.

2. We show that, while there exist no polynomial algorithm
for computing the Shapley value of the non-prioritized
ride-sharing problem (unless P=NP), the Shapley value
of the prioritized ride-sharing problem can be used as
an excellent proxy for the Shapley value of the non-
prioritized ride-sharing problem (under the assumption
that the provided travel path is the shortest path).

2 Related Work
The ride-sharing cost allocation problems that we study are
closely related to traveling salesman games [Potters et al.,
1992]. Specifically, the prioritized ride-sharing problem is
similar to the fixed-route traveling salesman game [Fishburn

and Pollak, 1983; Potters et al., 1992; Besozzi et al., 2014],
also known as routing game [Yengin, 2012].

One variant of routing game is the fixed-route traveling
salesman problems with appointments. In this variant the ser-
vice provider is assumed to travel back home (to the origin)
when she skips a sponsor. This variant was introduced by
Yengin [Yengin, 2012], who also showed how to efficiently
compute the Shapley value for this problem but stated that
his technique does not carry over to routing games.

The prioritized ride-sharing problem can also be inter-
preted as a generalization of the airport problem [Littlechild
and Owen, 1973] to a two dimensional plane. In the airport
problem we need to decide how to distribute the cost of an
airport runway among different airlines who need runways of
different lengths. In our case we distribute the cost among
passengers who need rides of different lengths and destina-
tions. It was shown that the Shapley value can be efficiently
computed for the airport problem, however achieving effi-
cient computation of the Shapley value in our setting requires
a different technique.

The Shapley value for the traveling salesman game, which
is related to our non-prioritized ride-sharing problem, has
rarely received serious attention in the literature, due to its
computational complexity. Notably, Aziz et al. [Aziz et al.,
2016] suggested a number of direct and sampling-based pro-
cedures for calculating the Shapley value for the traveling
salesman game. They further surveyed several proxies for the
Shapley value that are relatively easy to compute, and exper-
imentally evaluate their performance. We develop a proxy
for the Shapley value for the non-prioritized ride-sharing
problem which is based on the Shapley-value for the priori-
tized ride-sharing problem, and compare its performance with
proxies that are based on the work of Aziz et al.

The problem of fair cost allocation was also studied in
the context of logistic operation. In this domain, shippers
collaborate and bundle their shipment requests together to
achieve better rates from a carrier [Guajardo and Rönnqvist,
2016]. The Shapley value was also investigated in this
domain of collaborative transportation [Frisk et al., 2010;
Sun et al., 2015]. In particular, Özener and Ergun [Özener
and Ergun, 2008] stated that “we do not know of an efficient
technique for calculating the Shapley value for the shippers’
collaboration game”. Indeed, Fiestras-Janeiro et al. [Fiestras-
Janeiro et al., 2012] developed the line rule, which is in-
spired by the Shapley value, but requires less computational
effort and relates better with the core. However, the line rule
is suitable for a specific inventory transportation problem.
Özener [Özener, 2014] describes an approximation of the
Shapley Value when trying to simultaneously allocate both
the transportation costs and the emissions among the cus-
tomers. Overall, we note that the main requirements from a
cost allocation in the context of logistic operation is stability,
and an equal distribution of the profit, since the collaboration
is assumed to be long-termed. The type of interaction is our
setting is inherently different, as it is an ad-hoc short term
collaboration.

In another domain, Bistaffa et al. [Bistaffa et al., 2015] in-
troduce a fair payment scheme, which is based on the game
theoretic concept of the kernel, for the social ride-sharing



problem (where the set of commuters are connected through
a social network).

3 Preliminaries
We are given a weighted graphG(V,E) that represents a road
network; V is the set of possible locations, and E is a set of
weighted edges that represents the set of roads. We are given
an ordered set U = {u1, u2, ..., un} of passengers (users) that
depart from the same origin, d0 ∈ V , where passenger u1
is dropped-off first, passenger u2 is dropped off second, etc.
Each passenger ui has a corresponding destination di ∈ V .
We denote by δ(ui, uj) the shortest travel distance between
the destinations of ui and uj in G and δ(ui, ui) = 0. To
simplify the notation we define a dummy passenger, u0, as-
sociated with d0 and a dummy passenger, un+1, such that for
every i ∈ {0, 1, ..., n}, δ(ui, un+1) = 0. Given a set S ⊆ U ,
let c(S) be the cost associated with the subset S. That is, c(U)
is the total travel cost of the shared ride. We note that c(S),
where S ( U , depends on the order in which the passen-
gers are dropped off. Therefore, c(S) is defined differently in
the prioritized ride-sharing problem (in which the original or-
der in U is preserved) and in the non-prioritized ride-sharing
problem (in which the shortest path is used to determine the
order). The Shapley value for a passenger ui is formally de-
fined as:

φ(ui) =
∑

S⊆U\{i}

|S|!(|U | − |S| − 1)!

|U |!
(
c(S ∪ {i})− c(S)

)
.

That is, the Shapley value is an average over the marginal
costs of each passenger.

4 The Prioritized Ride-sharing Problem
In this section we assume that the passengers are ordered ac-
cording to some predetermined priority order, and efficiently
compute the payment for every passenger using the Shapley
value. Unlike other related work [Potters et al., 1992], we do
not require that the priority order will be the optimal order
that minimizes the total cost.

4.1 Notation
Given the ordered set of passengersU we assume that passen-
ger u1 has the highest priority, passenger u2 has the second
highest priority, etc. Given a set S ⊆ U , let S̃ be the set S or-
dered in an ascending order (according to the priority order),
and let S[i] be the passenger that is in the i-th position in S̃.
For ease of notation we use S[0] to denote u0 and S[|S|+ 1]
to denote un+1.

Given a set S ⊆ U , let v(S) be the shortest travel distance
of the path that starts at the origin d0 and traverses all of the
destinations of the passengers in S according to an ascend-

ing order. That is, v(S) =
|S|−1∑
i=0

δ(S[i], S[i+ 1]). This value

(v(S)) serves as the cost associated with a subset of passen-
gers, c(S), in the computation of the Shapley value.

Let R be a permutation on U and let PRi be the set of the
previous passengers to ui in permutation R.

4.2 Efficient Computation of the Shapley Value
We are interested in determining the payment for each pas-
senger, ui, according to the Shapely value, φ(ui). The Shap-
ley value has several equivalent formulas, and we use the fol-
lowing formula to derive an efficient computation in the pri-
oritized ride-sharing problem:

φ(ui) =
1

n!

∑
R

(
v(PRi ∪ {ui})− v(PRi )

)
.

Given a permutation R and a passenger ui, let ul ∈ PRi
be a passenger such that l < i and ∀uj ∈ PRi , j ≤ l or
i < j. If no such passenger exists, then ul is defined as u0.
Similarly, let ur ∈ PRi be a passenger such that i < r and
∀uj ∈ PRi , j < i or r ≤ j. If no such passenger exists, then
ur is defined as un+1. We use ` (and r) to denote the position
of ul (and ur) in the ordered P̃Ri , respectively. If ul = u0
then ` = 0, and if ur = un+1 then r= |PRi |+1. We note that
PRi [`] = ul, PRi [r] = ur and r = `+ 1.

For example, assume U = {u1, u2, u3, u4, u5, u6} and
R = {u6, u2, u5, u4, u3, u1}, we get PR4 = {u6, u2, u5} and
thus P̃R4 = {u2, u5, u6}, ul = u2 (i.e., ` = 1), ur = u5 (i.e.,
r = 2), and PR4 [`] = u2.

Our first observation is that the computation of the Shapley
value in our setting, φ(ui), may be written as the sum over
the distances between pairs of destinations.

Observation 1. φ(ui) = 1
n!

n−1∑
p=0

n∑
q=p+1

αip,qδ(up, uq), for

some αip,q ∈ Z.

Proof. We note that φ(ui) ·n! is a sum over v(S) for multiple

S ⊆ U . By definition, v(S) =
|S|−1∑
j=0

δ(S[j], S[j + 1]), such

that S[j] = up and S[j + 1] = uq where p < q.

We now show that we can rewrite the computation of the
Shapely value in our setting as follows.

Lemma 1.

φ(ui) =
1

n!

∑
R

(
δ(ul, ui) + δ(ui, ur)− δ(ul, ur)

)
Proof.

v(PRi ) =

|PR
i |−1∑
j=0

δ(PRi [j], PRi [j + 1]) =

`−1∑
j=0

δ(PRi [j], PRi [j+1])+δ(ul, ur)+

|PR
i |−1∑
j=r

δ(PRi [j], PRi [j+1])

In addition,

v(PRi ∪ {ui}) =
`−1∑
j=0

δ(PRi [j], PRi [j + 1])+



δ(ul, ui) + δ(ui, ur) +

|PR
i |−1∑
j=r

δ(PRi [j], PRi [j + 1]).

By definition,

φ(ui) =
1

n!

∑
R

[
v(PRi ∪ {ui})− v(PRi )

]
=

1
n!

∑
R

(
`−1∑
j=0

δ(PRi [j], PRi [j +1])+ δ(ul, ui) + δ(ui, ur) +

|PR
i |−1∑
j=r

δ(PRi [j], PRi [j + 1]) −
( `−1∑
j=0

δ(PRi [j], PRi [j + 1]) +

δ(ul, ur) +
|PR

i |−1∑
j=r

δ(PRi [j], PRi [j + 1])
))

=

1
n!

∑
R

(
δ(ul, ui) + δ(ui, ur)− δ(ul, ur)

)
Following Observation 1 and Lemma 1 we now show that

we can rewrite the computation of the Shapely value as a sum
over distances, that can be computed in polynomial time.

Theorem 1. For each i, φ(ui) =
i∑

p=0

n∑
q=i

βip,qδ(up, uq),

where q 6= p, and βip,q ∈ Q are computed in polynomial
time.

Proof. By definition, l < i < r. According to Lemma 1
φ(ui) · n! is a sum over δ(up, uq), where p ≤ i ≤ q. There
are several terms in this sum:
βi0,i multiplies δ(u0, ui). Now, δ(u0, ui) appears in φ(ui)

in every permutation R when ul = u0. That is, in all of the
permutations where passenger ui appears before any other
passenger ux such that x < i. We now count the number of
such permutations. There are

(
n
i

)
options to place the pas-

sengers u1, u2, ..., ui among the n available passengers. For
each such option there are (i − 1)! options to order the pas-
sengers u1, u2, ..., ui such that ui is the first passenger among
them. Finally, there are (n − i)! options to order the pas-
sengers ui+1, ui+2, ..., un. Therefore, δ(u0, ui) appears in(
n
i

)
· (i − 1)! · (n − i)! = n!

i permutations, and by inserting
1
n! into the sum we get that βi0,i =

1
i .

For each p, q such that p < i < q, βip,q multiplies
δ(up, uq). Now, δ(up, uq) appears negatively in φ(ui) in ev-
ery permutation R when ul = up and ur = uq . That is, in
all of the permutations where passengers up, uq appear before
ui (i.e., up, uq ∈ PRi ), but any other passenger ux such that
p < x < q, x 6= i, appears after ui. We now count the num-
ber of such permutations. There are

(
n

q−p+1

)
options to place

the passengers up, up+1, ..., ui, ..., uq among the n available
passengers. For each such option there are (q−p+1−3)! op-
tions to order the passengers up, up+1, ..., ui, ..., uq such that
up is the first passenger, uq is the second and ui is the third
passenger among them. Similarly, there are (q − p+ 1− 3)!
options to order these passengers such that uq is the first
passenger, up is the second and ui is the third. Finally,
there are (n − (q − p + 1))! options to order the passengers

u1, u2, ..., up−1, uq+1, uq+2, ..., un. Therefore, δ(up, uq) ap-
pears in

(
n

q−p+1

)
· 2 · (q − p − 2)! · (n − (q − p + 1))! =

2·n!
(q−p−1)·(q−p)·(q−p+1) permutations, and by inserting 1

n! into
the sum we get that βip,q = − 2

(q−p−1)·(q−p)·(q−p+1) .
Similarly, we get that βi0,q = − 1

q·(q−1) , βip,i =
1

(i−p)·(i−p+1) and βii,q =
1

(q−i)·(q−i+1) .

We note that the prioritized ride-sharing problem is very
similar to the setting of routing games [Potters et al., 1992].
The model of routing games is of one service provider that
makes a round-trip along the locations of several sponsors in
a fixed order, where the total cost of the trip should be dis-
tributed among the sponsors. Clearly, our problem is almost
identical: the service provider corresponds to the vehicle and
the sponsors correspond to the passengers. The only differ-
ence is that in a routing game the sponsors also pay the cost
of the trip back to the origin. Indeed, the results presented in
this section carry over to routing games.
Theorem 2. The Shapley value in routing games can be com-
puted in polynomial time.

Proof (sketch). We use our previous definitions and results
with the following slight modifications. The dummy passen-
ger un+1 becomes associated with d0. Thus, δ(ui, un+1) =
δ(ui, u0). In Observation 1 we need to modify the bound in
the outer sum (with the index p) to n and the bound in the
inner sum (with the index q) to n + 1. In addition, we use

the proof of Theorem 1, but we add
i∑

p=0
βip,n+1δ(up, un+1)

to the calculation of φ(ui), where for p < i, βip,n+1 =

− 1
(n−p)·(n−p+1) and βii,n+1 = 1

n−i+1 .

Note that this is an unexpected result, since it refutes the
conjecture in [Yengin, 2012] that there is no efficient way for
computing the Shapley value in routing games.

5 Non-prioritized Ride-sharing Problem
Similar to the prioritized ride-sharing problem we are given
an initial priority order, which determines the drop-off order
of the passengers. However, in the non-prioritized variant we
do not enforce the fixed order for every subset of passengers.
Instead, given a strict subset of passengers S, the cost as-
sociated with it, c(S), is the length of the shortest path that
traverses all of the destinations of the passengers in S.

5.1 The Hardness of the Non-prioritized
Ride-sharing Problem

In Section 4 we showed that we can efficiently compute the
Shapley value for the prioritized ride-sharing problem. In
essence, the computation could be done efficiently since most
of the travel distances cancel out, and only a polynomial num-
ber of terms remain in the computation. Unfortunately, this
is not the case with the non-prioritized ride-sharing problem,
where the Shapley value cannot be computed efficiently un-
less P = NP .

Clearly, finding the length of the shortest path (not nec-
essarily a simple path) that starts at a specific node, v0, and



traverses all nodes in a graph (without returning to the origin)
cannot be performed in polynomial time, unless P = NP .
We denote this problem as path-TSP. We use the path-TSP
to show that computing the Shapley value for the prioritized
ride-sharing cannot be done efficiently, unless P = NP (we
note that theorem 1 in [Aziz et al., 2016] has a flaw, and there-
fore cannot be used).
Theorem 3. There is no polynomial time algorithm that com-
putes the Shapley value for a given passenger in the non-
prioritized ride-sharing problem unless P = NP .

Proof. Given an instance of the path-TSP problem on a graph
G(V,E) we denote the solution by x. We construct an in-
stance of the non-prioritized ride-sharing problem as follows.
We build a graph G′(V ′, E′), where we add a node v′, i.e.,
V ′ = V ∪ {v′}. If e ∈ E then e ∈ E′, and for all
v ∈ V , (v, v′) ∈ E′ with a weight of M , where M is
the sum of weights of all the edges in E. Finally, we set
U = D = V ′ \ {v0}, d0 = v0, and the drop-off order is
arbitrarily chosen. Recall that c(U) is the total travel cost as-
sociated with the chosen drop-off order. We ask to compute
the Shapley value of the passenger u′ that is associated with
the destination v′.

Clearly, the marginal contribution of u′ to any strict subset
of U \{u′} is exactlyM . However, the marginal contribution
of u′ to the complete set U \ {u′} is exactly c(U) minus x
(the length of the shortest path starting at v0 and traversing
all nodes in V ). That is,

φ(u′) =
(|U | − 1)!

|U |!
(c(U)− x) + |U |!− (|U | − 1)!

|U |!
M

After some simple mathematical manipulations we get that
x = (|U | − 1)M − |U |φ(u′) + c(U). Therefore, if we can
compute φ(u′) in polynomial time then we can solve the path-
TSP problem in polynomial time, which is not possible unless
P = NP .

5.2 Shapley Approximation based on a Prioritized
Order

In Section 4 we presented a method for efficiently computing
the Shapley value when a prioritization exists. In this sec-
tion we show that our solution may be also applicable to the
non-prioritized ride-sharing problem as an efficient proxy for
the Shapley value. We term our proxy SHAPO: SHapley Ap-
proximation based on a Prioritized Order.

We compare SHAPO with the following three proxies for
computing the Shapley value in traveling salesman games,
that are in use in real-world applications [Aziz et al., 2016].
Depot Distance This method divides the total ride cost pro-
portionally to the distance from the depot, i.e.

Depot(ui) =
δ(u0, ui)∑n
j=1 δ(u0, uj)

c(U).

For example, a passenger traveling to a destination that is
twice as distant from the origin as another passenger has to
pay twice the cost, regardless of the actual travel path. We
note that this method has outperformed all other methods in
[Aziz et al., 2016] on real data. However, since [Aziz et al.,

2016] consider also a form of measure that is not applicable
to our domain (the ranking over the actors), they recommend
using other proxies.
Shortcut Distance This method divides the total cost pro-
portional to the change realized by skipping a destination
when traversing the given path. Formally, let Cuti =
δ(ui−1, ui) + δ(ui, ui+1)− δ(ui−1, ui+1). Then,

Shortcut(ui) =
Cuti∑n
j=1 Cutj

c(U).

Re-routed Margin This method is a more sophisticated re-
alization of the shortcut distance method. That is, instead of
using the given path when skipping a destination, we compute
the optimal path. Formally,

Reroute(ui) =
c(U)− c(U \ {ui})∑n
j=1 c(U)− c(U \ {uj})

c(D).

Note that when evaluating this proxy we need to solve n
TSPs, one for leaving out each destination. This is the only
proxy we consider that requires a non-negligible time to com-
pute.

Experimental Settings
In order to evaluate the performance of SHAPO, we evaluated
each of the methods for 3, 4, 5, 6, 7, 8 and 9 passengers. For
the road network we used the graph of the city of Toulouse,
France1. This graph includes the actual distances between
the different vertices. To convert the distances to travel costs
we assumed a cost of $1 per kilometer. The graph also in-
cludes the Toulouse-Blagnac airport, which was set as the
origin (d0). We cropped the graph to 40, 000 vertices, by
running Dijkstra algorithm [Dijkstra, 1959] starting at the air-
port, sorting all vertices by their distance from the airport, and
removing all farther away vertices (including those that are
unreachable). The destination vertices were randomly sam-
pled for every passenger using a uniform distribution over all
vertices, and each of the methods was evaluated 100 times
against the true Shapley value of all passengers.

For running the simulations we assume that the given order
of the passengers is according to the shortest path. This is a
reasonable assumption, since if there is no prioritization, it is
very likely that, in order to reduce the overall cost, the vehi-
cle would travel using the shortest path (computed once). We
conjecture that the results presented in this paper will carry-
out also to situations in which the given passenger order is
very close to being optimal (but not necessarily the exact op-
timal order), but we leave it for future investigation.

Results
Figure 1 presents the running time, in seconds, required to
compute the Shapley value and its proxies for all passengers
on a single instance (in logarithmic scale). As expected, we
can compute the proxies, except for the Re-routed margin
proxy, almost instantaneously. However, due to the extensive
time required to compute the Shapley value, and since we
evaluate each method 100 times, we only evaluate the perfor-
mance of all methods with up-to 9 passengers.

1obtained from https://www.geofabrik.de/data/
shapefiles_toulouse.zip



Figure 1: Running time, in seconds, required to compute a
single instance of the Shapley value (in logarithmic-scale).

We evaluate the performance of SHAPO against the three
other proxies using 5 different statistical measures (averaged
on all 100 iterations). We use X(ui) to denote the estimated
Shapley value by the evaluated proxy.

1. Percent: The average percentage of the deviation
from the Shapley value. Formally, Percent =
1
n

∑n
i=1

|X(ui)−φ(ui)|
φ(ui)

.

2. MAE: The mean absolute error, MAE =
1
n

∑n
i=1 |X(ui)− φ(ui)|.

3. MSE: The mean squared error, MSE =
1
n

∑n
i=1(X(ui) − φ(ui))

2. This measure gives
higher weight to larger deviations.

4. RMSE: The root mean squared error, RMSE =√
1
n

∑n
i=1(X(ui)− φ(ui))2.

5. Max-Error: The maximum deviation among all pas-
sengers between the real and estimated Shapley value,
Max = maxni=1(|X(ui)− φ(ui)|).

The results are depicted in Tables 1, 2, 3, 4 and 5. SHAPO
significantly outperforms the other proxies in all measures,
with any number of passengers evaluated. Despite the de-
pot distance method outperforming the other two methods,
SHAPO is between 5.5 to 42.3 times better than the depot dis-
tance in all measures. Note that the units of MAE and Max-
Error are dollars. That is, as depicted in Table 2, SHAPO de-
viated by only 19 cents, on average, from the actual Shapley
value. The depot distance deviated by $1.33, while the av-
eraged shared-ride cost per passenger was approximately $5.
Similarly, the maximal deviation of SHAPO was less than 44
cents (on average), while the maximal deviation of the depot
distance was more than $2.9.

6 Conclusions
The Shapley value is considered one of the most important
division scheme of revenues or costs, but its direct computa-
tion is often not practical for a reasonable size game. There-
fore, Mann and Shapely [Mann and Shapley, 1962] suggest

to consider restrictions and constraints in order to find games
where the Shapley value can be efficiently computed. We
showed that the prioritized ride-sharing problem is an exam-
ple of such a game by showing that the Shapley value can
be efficiently computed. However, we show that the non-
prioritized ride-sharing problem, which is possibly the next
level of generalization, cannot be efficiently computed (un-
less P = NP ). Interestingly, the prioritized ride-sharing
can still serve as an efficient proxy for the Shapley value of
the non-prioritized ride-sharing problem where the provided
travel path is the shortest path.

There are several interesting directions for future work.
One possible direction is to compare our proxy for computing
the Shapley value in the non-prioritized ride-sharing problem
to a sampling based approach [Castro et al., 2009]. It is ex-
pected that a sampling based approach will be more accurate
if there is a sufficient number of samples, but it will certainly
require a lot more computation time. It is thus interesting to
analyze when our proxy is still better than a sampling-based
approach, and when it is the point in which a sampling-based
approach becomes better than our proxy. From a theoretical
perspective, we showed that computing the Shapley value for
the non-prioritized ride-sharing problem is a hard problem.
However, the hardness may be derived also from the hardness
of path-TSP. There are several polynomial time approxima-
tion and heuristics for TSP that can be adjusted for path-TSP.
It is thus interesting to analyze the computational complexity
of finding the Shapley value, where c(S) is computed using
one of these approximations or heuristics.
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