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Abstract—We present the single track road problem. In this
problem two agents face each-other at opposite positions of a
road that can only have one agent pass at a time. We focus on
the scenario in which one agent is human, while the other is
an autonomous agent. We run experiments with human subjects
in a simple grid domain, which simulates the single track road
problem. We show that when data is limited, building an accurate
human model is very challenging, and that a reinforcement
learning agent, which is based on this data, does not perform
well in practice.

I. INTRODUCTION

While humans can cope with new situations quite easily,
even state-of-the-art algorithms trouble with new situations
that they haven’t been trained on. Unfortunately, when it
comes to autonomous vehicles the results may be devastating.
One example for an uncommon, yet important scenario for
autonomous vehicles is the problem of a single track road. In
this problem two vehicles in opposite directions must cross
a narrow road, which is not wide enough to allow both
vehicles to pass at the same time. Therefore, one vehicle must
deter from the road and let the other vehicle cross. Despite
only a small portion of the roads being single track roads,
autonomous vehicles must be able to function properly in these
types of roads. Furthermore, some more common situations
resemble the single track road problem, for example, if cars
park where they shouldn’t and block one of the lanes or if one
lane is blocked for any other reason (e.g., a falling tree), the
traffic in both ways must operate with a single lane.

In this paper we model the single track road problem as
a sequential two player game on a two row grid (see Figure
I). The upper row represents a road that allows both players
to advance. However, the lower row can only be used for
allowing the other player to pass, as the players cannot advance
when placed in the lower row. We find several equilibria of
the game, which should determine how a perfectly rational
agent should behave in such a game. However, people tend
to deviate from what is considered rational behavior, since
they are influenced by different effects including anchoring,
inconsistency of utility and a lack of understanding of other
agent’s behavior [22], [1], [9]. Indeed, as we later show, while
some people tend to follow the game theoretic solution, many
others do not follow it, and behave unexpectedly. Due to non-
perfectly rational behavior of humans, algorithmic approaches

Fig. 1. The initial state of the single road game board. The red circle is
controlled by the human player and the blue circle is controlled by the
autonomous agent. Both players must reach the opposite side of the board
without colliding. The players may travel freely on the upper row, but they
cannot advance when located on the lower row.

that assume rational behavior tend to perform poorly with
humans [7], [3], [4], [2], [17].

Therefore, a common approach for developing an agent that
can proficiently interact with humans is composed of several
stages [5], [18], [20]. The first stage includes the collection of a
data-set of humans interacting in the environment. Next, based
on the collected data-set a human behavior model is developed,
usually by applying machine-learning techniques. Finally, the
human model is used by the agent to determine the actions
that are the most beneficial for it. In this paper we attempt to
follow this common practice for the single track road game.
Therefore, we collect human data in this game and use it to
compose a human model. Then, we model the agent’s problem
as a reinforcement learning environment by an MDP with the
human model being a part of the environment. Finally, we use
value iteration, a dynamic programming based method, to find
the supposedly optimal action for the agent. We note that the
solution provided by value iteration is optimal only under the
assumption that the MDP models the environment perfectly,
which includes the human model.

However, composing a human behavior model based on a
relatively small data-set may be inaccurate, as people are many
times unpredictable and different humans tend to behave very
differently from one another, despite a game being relatively
simple [21], [6].

To summarize the contributions of this paper are two-fold:
1) We present the single track road problem, model it as a

sequential game, and present the equilibria of the game.
We show that people do not follow strategies that may
be in an equilibrium.

2) We model the problem as an MDP in which the human’s
actions are modeled as a part of the environment. The
model uses data from humans interacting with simple
agents to determine the probability of the human taking
each action at a given state.



II. RELATED WORK

Trajectory prediction of surrounding vehicles and pedes-
trians is very important for the development of autonomous
vehicles, as such knowledge can prevent accidents. Indeed,
trajectory prediction is challenging due to the unexpected
nature of human behavior. Therefore, many works attempt
to find a sufficient solution to overcome this challenge [16].
By Houenou et al. [13] trajectory prediction can be based
on a deterministic method that selects the current maneuver
from a predefined set using kinematic measurements and road
geometry detection. The authors state that their model cannot
be applied to very low speed scenarios and therefore not
applicable to our scenario. Deo and Trivedi. [10] estimate
a probability distribution of future positions of a vehicle
conditioned on its track history and the track histories of
vehicles around it, at a certain time. Using this information,
they predict a maneuvers from six possible maneuvers that
have been defined. They use the publicly available NGSIM
US-101 and I-80 highway data-sets for their experiments.
Their model relies purely on vehicle tracks to infer maneuver
classes and ignores the lanes and the map.

Ding at el. [11] use a Recurrent Neural Network for com-
posing an observation encoding. Based on this encoding, they
propose a Vehicle Behavior Interaction Network (VBIN) to
capture the social effect of another agent on the prediction
target, based on their maneuver features and relative dynamics
(e.g., relative positions and velocities). VBIN is an end-to-
end trainable framework and is suitable for dynamic driving
scenarios where the dynamics of the agents affect their im-
portance in social interactions. They use data collected from
highways US-101 and I-80 that is the same as [10]; since it
deals only with highway roads with a large number of agents, it
is not applicable for our setting. Kim et al. [15] propose a deep
learning approach for trajectory prediction based on a Long
Short Term Memory (LSTM). Their model is used to analyze
the temporal behavior and predict the future coordinates of the
surrounding vehicles. Based on the coordinates and velocities
of the surrounding vehicles the vehicle’s future location is
produced after a short certain time. However, the experiments
were conducted using data collected from highway driving,
which is again not suitable to our case.

Elhenawy at el. [12] introduce a real time game-theory-
based algorithm that is inspired by the chicken-game for
controlling autonomous vehicle movements at uncontrolled
intersections. They assume that all vehicles communicate to
a central management center in the intersection to report their
speed, location and direction. The intersection management
center uses the information from all vehicles approaching the
intersection and decides which action each vehicle will take.
They further assume that vehicles obey the Nash-equilibrium
solution of the game and will take the action received from
the management center. Unfortunately, these assumptions are
very strong and cannot be applied to our setting. Camara
at el. [8] suggest a more realistic game-theory model based
on the sequential chicken-game. The model assumes both

agents share the same parameters Ucrash and Utime and both
know this to be the case and they both play optimally from
their state. It assumes that no lateral motion is permitted,
and that there is no communication between the agents other
than seeing each other’s positions. The sequential chicken-
game can be viewed as a sequence of one-shot (sub-)games,
which can be solved similarly. The sub-game at time t can
be written as a standard game theory matrix, which can be
solved using recursion, game theory, and equilibrium selection
to give values and optimal strategies at every state. While they
handling with In the case of a junction by finding a Nash
equilibrium and assuming that human obey it, we deal with the
single track road and give not only a game-theory analysis but
also provide a novel Reinforcement Learning solution that not
involved the assumption about humans and Nash equilibrium.

III. THE SINGLE TRACK ROAD GAME

We now provide a formal definition for the single track road
game, which is the main focus of this paper. Two agents A
and B are placed on a 2 × n grid at both ends on the upper
row, where agent A is positioned at the upper right corner,
with coordinates (1, n), and agent B is positioned at the upper
left corner, with coordinates (1, 1), i.e. each agent’s goal is
to maximize u(W ), their future outcome where W refers to
the agent. Each agent’s goal is to reach the other side in a
minimal number of steps, and without colliding with the other
agent. The set of actions available for each agent depends
on its location. In the upper row each agent can perform the
following actions:

• Advance: move to the other side.
• Stay: remain in current position.
• Down, move to the bottom row.

In the bottom row each agent can perform one of the following
actions:

• Stay: remain in current position.
• Up: return to the top row.

Both agents take actions synchronously, and do not observe
the other’s action before they take their own action. We define
the reward function as follows:

• Collusion: if both agents collide, each agent loses 100
points, and the game ends.

• Arrived at destination: an agent that arrives at its des-
tination receives a reward of 30 points. The game ends
only for the agent that has reached its destination, i.e.,
the second agent continues to play until it reaches its
destination, in which case it will receive a reward of 30
points as well.

• Time loss: any agent that is still in the game (did not reach
its destination or collided with the other agent) loses 1
point each time-step.

IV. GAME THEORETICAL ANALYSIS

In this section we present the game-theory analysis for the
single track road problem. Let x(W ) be the x coordinate
(column) of agent W and let y(W ) bet its y coordinate (row).



Let d(A,B) = x(A)−x(B). Note that if agent B has passed
agent A, d(A,B) will be negative.

Theorem. For two agents A,B in the 2×n grid of the single
track road game. The following strategies are in a sub-game
perfect Nash equilibrium:

• Agent A uses the following strategy:
– If y(A) = 1 (it is in the upper row) it takes action

Advance.
– If y(A) = 2 (it is in the lower row) it takes action

Up.
• Agent B uses the following strategy:

– If y(B) = 1 (the agent is in the upper row):
∗ If d(A,B) ≥ 3 or d(A,B) < 0, it takes action

Advance.
∗ If y(A) = 1 and d(A,B) = 1 it takes action

Down.
∗ If y(A) = 1 and d(A,B) = 2, it may either take

action Stay or Down (or any mixed strategy of the
two).

– If y(B) = 2 (the agent is in the lower row):
∗ If d(A,B) ≤ 0 it takes action Up.
∗ If y(A) = 1 and d(A,B) = 1 it takes action Stay.
∗ If y(A) = 1 and d(A,B) ≥ 4 it takes action Up.
∗ If y(A) = 2 and d(A,B) ≥ 3 it takes action Up.
∗ Otherwise, it may either take action Stay or Up

(or any mixed strategy of the two).

Proof. The proof handles each of the agents separately and
shows that no agent should deviate from its determined strat-
egy under the assumption that the other agent remains with
its strategy. This is true also for any sub-game. Given agent
B’s strategy, agent A should not deviate, as deviation will
either cause it longer to reach its destination (resulting in a
lower reward), or to collide with agent B (if it decides to take
action Down when agent B is directly below it), resulting in a
much lower reward. Similarly, given agent A’s strategy, agent
B should not deviate, due to the following:

• If y(B) = 1 (the agent is in the upper row):
– If y(A) = 1 and d(A,B) = 1, under the assumption

that A would Advance, taking an action other than
Down would lead to a collision, which will result in
a very low reward.

– If d(A,B) ≥ 3 or d(A,B) < 0, so either agent A is
very far or it has already passed agent B. Therefore,
there is no risk of collision, and deviating and taking
action Down or Stay will result in arriving later at
the destination, which will result at a lower reward.

– If y(A) = 1 and d(A,B) = 2, deviating and taking
action Advance would result in a collision. Therefore,
agent B should take either action Down or Stay (or
any mixed strategy of the two).

• If y(B) = 2 (the agent is in the lower row):
– If d(A,B) < 0, there is no risk of a collision since

agent A already passed agent B. Therefore, deviating
and playing Stay delays B’s arrival at the destination.

– If y(A) = 1 and d(A,B) = 1, playing action Up
(instead of Stay) will lead to a collision, resulting in
a lower reward.

– If y(A) = 1 and d(A,B) ≥ 4, since there is no risk
of collision, taking action Up will yield the greatest
reward, and any other action will cause it to reach
the destination later.

– If y(A) = 2 and d(A,B) ≥ 3, similarly, any action
other than Up will cause a delay in arriving at the
destination.

– Otherwise, agent B can choose whether to take
action Stay or Up because there is no risk of a
collision and it will not affect the arrival time. We
note that if it takes action Up and agent A follows
its strategy, agent B’s next action will be Down.

Clearly, due to the symmetry of the game, agents A and B
may switch policies and the resulting set of strategies will be in
equilibrium. However, since both sets of policies and equilibria
are symmetrical, we cannot predetermine which equilibrium
to select. Furthermore, as we will show in the experiments,
human agents, in most cases, do not follow any of the above
strategies (see section VII).

V. PROBLEM SPECIFICATION

We use a 2×6 grid to model the single-road game problem,
and the reward functions described in Section IV (see Figure
I). We set γ to 0.999.

We define a state as a pair (i, j) in which i is a position
of the autonomous agent, and j is a position of the human
agent. We refer to this state representation as a state without
velocity. We also use a more complex representation of a state
by considering also the previous locations of both players; this
representation is referred to as a state with velocity. That is,
a state is a tuple of two pairs ((i, j), (l, k)), where the first
coordinate of each pair corresponds to the position on the
board of the autonomous agent, and the second coordinate
corresponds to the position of a human agent. The first pair,
(i, j), is the current state of the two agents, and the second
pair, (l, k), is their previous state.

VI. EXPERIMENTAL DESIGN

We recruited 470 participants from Mechanical Turk [19]
to play the single road game. The participants first read the
game instructions and were then required to answer three
short and simple questions, to ensure that they had read and
understood the instructions. The participants then played the
game only once. Upon completion (either by reaching the other
side, or if colliding with the other agent), the participants
provided demographic information including whether they
have a valid driving license, an expired driving license or
no driving license. In addition, the participants were asked
to state how much they agreed with each of the following five
statements:

1) The agent played aggressively.



2) The agent played generously.
3) The agent played wisely.
4) The agent was predictable.
5) I felt the agent was a computer.

We used a seven point Likert-like scale [14] for these state-
ments, ranging from strongly disagree (1) to strongly agree
(7).

446 participants completed the game and answered the
survey. We used the following 4 different baseline agents for
the data gathering phase.

1) Careful: an agent that adheres to the strategy of agent
B in Theorem IV. That is, it tries to moves left, but
tries to avoid colliding with the other agent as well, so
if moving left may risk colliding with the other agent
it stays in place. If staying in place also risks colliding
with the other agent, it moves down.

2) Aggressive: an agent that adheres to the strategy of agent
A in Theorem IV. That is, the agent always moves left.

3) Semi-aggressive: an agent that moves left unless the
other agent is already there, in which case it stays in
place until the other agent moves out of its way.

4) Random: an agent that moves randomly.

VII. RESULTS

In this section we present a comparison of all agents
mentioned above. Figure 2 presents a comparison between the
performance of all baseline agents, Velocity and Non-Velocity
Value Iteration. As depicted by Figure 2, the Careful agent out-

Fig. 2. A comparison between the performance of all baseline agents, Velocity
and Non-Velocity Value Iteration.

performs all other agents in terms of the agent’s performance.
Furthermore, no agent achieved a positive average reward.
We also note that the agent that uses the state representation
with velocity obtained slightly better results than the agent
that used the non-velocity state representation, though these
differences are not statistically significant. We now turn to
evaluate the human’s score when playing with each of the
agents. Although the agents are designed to be selfish, clearly,
it is more beneficial if also the human player would result with

a better score. Table I presents the performance of each of
the agents along with the performance of the humans playing
against them.

TABLE I
A COMPARISON BETWEEN THE PERFORMANCE OF EACH OF THE AGENTS

ALONG WITH THE HUMAN PLAYER WHO PLAYED AGAINST EACH OF THEM.

Avg. agent’s
score

Avg.
human’s
score

Avg. social
welfare

Careful -2.29 -0.86 -3.15
Aggressive -16.27 -18.40 -34.67
Semi-aggressive -60.97 -62.11 -123.08
Random -59.40 -57.62 -117.02
Non-Velocity VI -6.34 -9.03 -15.37
Velocity VI -5.33 -6.03 -11.36

As shown in Table I, the Careful agent also outperforms all
other agents in terms of the human’s performance.

Next, we evaluate the prediction of the policy evaluation
algorithm, using both forms of state representations (i.e.,
with and without velocity). Table II presents the prediction
compared with the actual score of every agent. As can be seen
in the table, the prediction that uses a state representation with
velocity, outperforms the prediction that uses a state represen-
tation without velocity. However, both predictions performed
badly and cannot serve as a good model for predicting human
behavior.

TABLE II
THE ACCURACY OF THE PREDICTION OF A POLICY EVALUATION

ALGORITHM USING A MODEL WITH VELOCITY AND A MODEL WITHOUT
VELOCITY.

True
score

Prediction
with velocity
(error)

Prediction
without
velocity
(error)

Careful -2.29 -14.41 (12.12) -4.86 (2.57)
Aggressive -16.27 -6.21 (10.6) 1.14 (17.41)
Semi-aggressive -60.97 -56.47 (4.5) -47.81 (13.16)
Non-Velocity VI -6.34 0.51 (6.85) 13.63 (19.97)
Velocity VI -5.33 14.47 (20.02) N/A

We now turn to analyze the survey results for each agent
(see Table III). Each value in the table is the average of all the
scores of the measured values: Aggressively, Computer, Gener-
ously, Wisely and Predictable. Note that the lower the ‘Aggres-
sively’ and ‘Computer’ parameters, the better the performance.
On the other hand, the higher the ‘Generously’, ‘Wisely’ and
‘Predictable’ parameters, the better the performance. As can
be seen in Table III, the Careful agent obtained the best results

TABLE III
SURVEY RESULTS OF ALL AGENTS

Aggress. Comp. Generous Wise Pred.
Careful 3.94 5.70 4.23 4.92 4.28
Aggressive 5.04 5.83 3.28 4.59 4.97
Semi-aggressive 4.57 5.73 3.21 4.33 4.52
Random 3.51 5.64 4.01 3.72 3.57
Non-Velocity VI 4.88 6.20 3.27 4.65 4.82
Velocity VI 4.82 6.01 4.20 4.72 4.76



compared to the other agents among all parameters except its
score on Predictable. These results entail that the Careful agent
demonstrates a clear improvement over all the other agents.

Next, we compare the performance of the humans according
to their demographic information. No statistically significant
differences between male and female players were found,
with female participants obtaining an average of −25.98 and
male participants an average of −25.66. Similarly, education
level did not seem to have any impact on the performance
of the participants. Interestingly, participants with a driving
license that has expired, obtained a much lower average score
(−60.15) than those with a valid driving license (−24.77) and
those without a driving license. Although these differences
appear to be statistically significant using a one-tail t-test
(p < 0.05), this result requires deeper investigation, as the
number of participants whose driving license has expired is
only 13. Furthermore, an ANOVA test does not show that
these differences are statistically significant.

Finally, we present the number of human participants who
followed a strategy that could be in a Nash equilibrium. As
can seen in Figure 3, only a small portion of the participants
followed one of the two strategies that could be in equilibrium:
the ‘Careful’ strategy or the ‘Aggressive’ strategy. Clearly,
most of the participants did not follow a strategy that could
be in a Nash equilibrium.

Fig. 3. The number and percentage of human participants who followed
a strategy that could be in a Nash equilibrium as well as the number and
percentage of them who did not follow any strategy in equilibrium. The error
bars present the 95% confidence interval.

VIII. CONCLUSIONS

In this paper we present the single track road problem. In
this problem two agents face each-other at opposite positions
of a road that can only have one agent pass at a time. We
focused on the scenario in which one agent is human, while the
other is an autonomous agent. We ran experiments with human
subjects in a simple grid domain, which simulates the single
track road problem. We showed that when data is limited,
building an accurate human model is very challenging, and
that a reinforcement learning agent, which was based on this
data, did not perform well in practice.
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