
SUGILITE: Creating Multimodal Smartphone Automation
by Demonstration

Toby Jia-Jun Li1, Amos Azaria2, and Brad A. Myers1
 1 Human-Computer Interaction Institute, Carnegie Mellon University

2 Computer Science Department, Ariel University
{tobyli, bam}@cs.cmu.edu, amos.azaria@ariel.ac.il

ABSTRACT
SUGILITE is a new programming-by-demonstration (PBD)
system that enables users to create automation on
smartphones. SUGILITE uses Android’s accessibility API to
support automating arbitrary tasks in any Android app (or
even across multiple apps). When the user gives verbal
commands that SUGILITE does not know how to execute,
the user can demonstrate by directly manipulating the regu-
lar apps’ user interface. By leveraging the verbal instruc-
tions, the demonstrated procedures, and the apps’ UI hierar-
chy structures, SUGILITE can automatically generalize the
script from the recorded actions, so SUGILITE learns how to
perform tasks with different variations and parameters from
a single demonstration. Extensive error handling and con-
text checking support forking the script when new situa-
tions are encountered, and provide robustness if the apps
change their user interface. Our lab study suggests that us-
ers with little or no programming knowledge can success-
fully automate smartphone tasks using SUGILITE.

Author Keywords
Programming by demonstration; smartphone automation;
end-user development.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces - Interaction styles.

INTRODUCTION
In smartphone usage, many common tasks are repetitive
and tedious. Some also require a large number of actions, or
navigating through a complex user interface (UI) structure.
For instance, the current version of the Starbucks app for
Android requires 18 taps to order a venti Iced Cappuccino
with skim milk, and even more if the user does not have the
account information stored. For those tasks, the users would
often like to have them automated [2,26,38], for example,
to have them performed by an intelligent software agent on

their behalf [18]. In a motivating survey we conducted with
65 participants, 62.7% reported that they were interested in
having a way to automate their repetitive tasks.

Intelligent agents like Siri, Cortana and Google Now can be
activated by voice commands to perform various tasks, in-
cluding device control, communication, web search, and
calendar management. Such agents allow the user to focus
on the specifications of the task while the agent performs
the low-level actions [25], as opposed to the usual direct
manipulation UI, in which the user must select the correct
objects, execute the correct operations and control the envi-
ronment [40]. However, prevailing smartphone intelligent
software agents have limited functionality. They can only
invoke built-in apps (e.g. Phone, Message, Calendar, Music
etc.) and a few integrated external apps and web services
(e.g. Search, Weather, Wikipedia). They lack the capability
of controlling arbitrary third-party apps and services.

Companies like Apple are opening up the APIs to enable
the third-party apps to integrate into their agents and to be
activated from voice commands [45]. However, due to the
cost and effort required, it is most likely that only some
apps will be integrated and only some of the most popular
tasks in those apps will be supported. Even for the support-
ed apps, end users will still not be able to create automa-
tions for their personalized tasks and to integrate their per-
sonal requirements into the current smartphone agents. For
example, most existing agents can invoke the music player,
but they cannot incorporate the user’s personal preferences
in the automation, like applying a specific equalizer for an
artist, or setting the volume to a pre-specified level before
playing. Enabling personalization and customization is par-
ticularly important for modern smartphone users because
they have very diverse patterns in what apps they use and
how they use them [44].

Programming by Demonstration (PBD) is a promising
technique to enable end users to automate their activities
without necessarily requiring programming knowledge. It
allows users to program in the same environment in which
they perform the actions [11,24,30]. This makes PBD par-
ticularly appealing for many smartphone users, who have
little knowledge of conventional programming languages,
but are familiar with how to perform the tasks they wish to
automate using the existing smartphone apps.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05…$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025483

In this paper, we describe the design and implementation of
SUGILITE1, a PBD system that enables users to create task
automations on smartphones and perform the tasks through
a conversational interface. SUGILITE allows users to create
generalized automation for tasks in arbitrary third-party
mobile apps by simply demonstrating the procedure of per-
forming the task using the regular app UI. SUGILITE is
named after a purple gemstone, and stands for: Smartphone
Users Generating Intelligent Likeable Interfaces Through
Examples. Our approach addresses the following three
problems and limitations of other approaches:

Applicability: Many existing PBD systems [5,9,26] and
mobile end-user development (EUD) systems [16,17] re-
quire the apps involved in the tasks to either use a special
framework or library, or to provide an open API for their
functionality. This limits the applicability of those systems
– they can only be used to automate a small subset of tasks.

In contrast, SUGILITE can automate tasks using any third-
party Android app (with a few exceptions noted in the
Technical Limitation section), and can even create scripts
that automate tasks across multiple apps. This makes PBD
on smartphones much more useful, given nowadays an av-
erage U.S. smartphone user spends 90% of their mobile
device time on apps [20], and uses 26.7 different apps [37].

Generalizability: Some previous macro-recording tools
[39] do not suffer the applicability issues above. They can
record a sequence of input events and replay the same ac-
tions at a later time. However, these scripts cannot be gen-
eralized, and will only perform the exact same tasks but not
tasks with variations or different parameters. Other PBD
systems (e.g. [27,32]) support generalization, but require
multiple examples with different values for the parameters
from the user. Prior studies have shown that end users often
have a hard time giving meaningfully different examples
for script generalization [12,28].

Our system has a multi-modal interface where the user can
give a verbal command to execute an automation through a
voice conversational interface, while making demonstra-
tions and editing existing scripts using direct manipulation.
In the background, SUGILITE detects the apps’ UI hierarchy
structures for all the activities that users visit. Then,
SUGILITE combines the voice command, the actions record-
ed and an analysis of the app’s structures to infer generali-
zations of the script. This allows SUGILITE to learn a gener-
alized task from a single demonstration. In addition, if the
recorded script encounters a new situation at runtime, then
SUGILITE will allow the user to demonstrate new steps,
which can either replace the original script (e.g., if the app
has permanently changed the UI, or the users change what
they want to do), or else can form a fork, and further gener-
alize the script to work in the new situation. Finally, ad-

1 The source code is available at http://www.toby.li/sugilite_repo

vanced users can manually generalize, review and edit the
script through SUGILITE’s editing interface.

Usability: Some mobile EUD systems (e.g. [38,46]) require
users to program automations using a visual programming
language or a textual scripting language. This imposes a
significant learning barrier and prevents users with limited
programming knowledge from using these systems.

In contrast, SUGILITE users can create automations by
demonstrating the procedure using the familiar UIs of the
actual apps involved. In our lab study, most participants
were able to successfully automate tasks through SUGILITE,
regardless of their prior programming experience.

Contributions
To summarize, the contributions of this paper are:

• SUGILITE, a mobile PBD system that enables the user to
create an automation for arbitrary tasks across any or
multiple third-party smartphone apps and to execute au-
tomated tasks through a multi-modal (speech) interface.

• A PBD script generalization mechanism that leverages
the verbal command, the recorded actions, and recorded
information about the UI hierarchy structures of the
third-party apps to create a generalized program from a
single demonstration. The system also has a representa-
tion of the recordings that allows users to manually edit
scripts if necessary.

• An error checking and handling mechanism that im-
proves the system’s robustness when the underlying
apps change, and also supports further generalization of
the scripts to handle new situations as they arise.

• A lab study that showed users with different levels of
programming experience were able to use our tool to
create automation for four tasks derived from real-world
scenarios with an 85.5% completion rate, plus subjective
feedback showing they like and would want to use a tool
like SUGILITE.

RELATED WORK
In this section, we discuss prior work in four areas related
to our system: PBD in general, PBD generalization, instruc-
table intelligent agents, and mobile end-user development
(EUD) systems that use techniques other than PBD.

Task Automating by Demonstration
There have been many PBD systems to help people auto-
mate tasks [11,24]. However, PBD systems often require
access to the internal data of the software where the demon-
stration happens. This limits the reach of those systems. For
example, the CHINLE system [9] only works with interface
generated by the SUPPLE framework [14], and DOC-
WIZARDS [5] only records actions performed on SWT
widgets within Eclipse. Some PBD system focus on auto-
mating a specific type of task like file manipulation [29],
photo manipulation [15], web tasks [23], or interactive in-
terface construction [13,27]. Much work also has been done
on PBD for human-robot interaction (e.g. [3,6,35])

Very few PBD systems exist on smartphones. KEEP DOING
IT [26] derives IF-THEN automation rules from the user’s
demonstration. But it can only invoke system functions like
turning on Wi-Fi, setting the ringer to silent, etc. It does not
have the ability to control arbitrary third-party apps on the
phone like SUGILITE does. To our knowledge, SUGILITE is
the first PBD system to allow the automation of arbitrary
tasks on any third-party app on a smartphone.

However, there are macro-recording tools on smartphone
like [39] that can record a sequence of input events and
replay them later. A major limitation of such tools com-
pared to SUGILITE is that they are too literal. They can only
replay exactly the same procedure that was demonstrated,
without the ability to generalize the demonstration to per-
form similar tasks. They are also brittle to any UI changes
in the app.

Script Generalization
A major challenge for any PBD-based automation tool is
script generalization [11,24,33] to support performing a
similar task, but not necessarily the identical task [11].
Many approaches have been used in generalizing PBD
scripts, including removing details (e.g. [19]), heuristics
(e.g. [22,31,34]) and using multiple examples (e.g. [27]).
SUGILITE uses a different approach, as discussed below.

Verbal Instruction
SUGILITE also uses verbal instructions in creating the au-
tomation. Prior works like [1,4,8,42] enable the users to
instruct the agent to perform tasks using commands in natu-
ral language. A weakness of that approach on smartphone
automation relates to efficiency – it can be slower to de-
scribe a smartphone operation in natural language than to
simply tap on the screen. While we do not seek to make
contributions in enabling better comprehension of verbal
instructions, we leverage the current state-of-art work in

comprehending verbal instructions to enhance the SUGILITE
script generalizations.

End-User Development on Smartphone
Task automation is an important application for mobile
EUD [36]. Besides PBD, there are other approaches to ena-
ble the end users to create automation on smartphones.
Some approaches (e.g. [16,17,47]) use the “trigger-action”
model, in which an “action” will be performed when the
trigger happens. Compared with SUGILITE, these tools can
only be applied on apps or services with open APIs availa-
ble. The simple structures of their automation model also
limit their uses in automating more complex tasks.

Alternatively, other systems like [38,46] allow the user to
create automation with more complicated control structures
(e.g. conditions, loops, exceptions). However, these suffer
in usability compared with SUGILITE because they demand
that users work with visual programming languages or tex-
tual scripting languages in unfamiliar interfaces.

EXAMPLE USAGE SCENARIO
This section presents an example scenario of a user interact-
ing with SUGILITE. This example demonstrates our system’s
ability to learn generalized tasks with third-party applica-
tions from a user’s single demonstration.

Order Starbucks Coffee2
Smartphone users can order a wide range of products
through the apps provided by merchants. In our motivating
survey, respondents reported that many such tasks required
them to navigate through a complicated multi-level menu in
the app to locate the desired offering, which would be espe-
cially annoying the same task is performed frequently.

2 This scenario is also shown in the accompanying video.

Figure 1. Screenshots of SUGILITE: (a) the conversational interface; (b) the recording confirmation popup; (c) the recording dis-

ambiguation/operation editing panel and (d) the viewing/editing script window.

Automating repetitive activities is a key motivation for
SUGILITE. In this scenario, we show an example of how a
user automates ordering Starbucks drinks using SUGILITE.

The user first gives SUGILITE a voice command, “Order a
Cappuccino.” using the conversational voice interface (Fig-
ure 1a), for which SUGILITE answers “Sorry but I don’t un-
derstand. Would you like to teach me? Say ‘demonstrate’ to
demonstrate.” The user then says, “demonstrate” and starts
demonstrating the procedure of ordering a Cappuccino us-
ing the Starbucks app.

She first clicks on the Starbucks icon on the home screen,
taps on the main menu and chooses “Order”, which is ex-
actly the same procedure as what she would do if she is
ordering manually through the Starbucks app. (Alternative-
ly, she could also say verbal commands such as “Click on
Starbucks”, etc.) After each action, a confirmation dialog
from SUGILITE pops up (Figure 1b) to confirm that the ac-
tion has been recorded, and which also serves to slow down
the user to make sure that the Android accessibility API has
time to record the action.

The user continues the Starbucks “Order” procedure by
clicking on “MENU”, “Espresso Drinks”, “Cappuccinos”,
“Cappuccino”, “Add to Order” and “View Order” in se-
quence, which are all exactly the same steps that she would
do without SUGILITE. In this process, the user could also
demonstrate customizing the size, flavor, etc. according to
her personal preferences. SUGILITE pops up the confirma-
tion dialog after each click, except for the one on “Cappuc-
cino”, where SUGILITE is confused and must ask the user to
choose from two identifying features on the same button
(explained in the Implementation section): “Cappuccino”
and “120cal” (Figure 1c). When finished, the user clicks on
the SUGILITE status icon and selects “End Recording”.

After the demonstration, SUGILITE analyzes the recording
and parameterizes the script according to the voice com-
mand and its knowledge about the UI hierarchy of the Star-
bucks app (details in the Implementation section).

This parameterization allows the user to give the voice
command “Order a [DRINK]”, where [DRINK] can be any
of the drinks listed on the Starbucks app’s menus. SUGILITE
can then order the drink automatically for the user by ma-
nipulating the user interface of the Starbucks app. Alterna-
tively, the automation can also be executed by using the
SUGILITE graphical user interface (GUI) or invoked exter-
nally by a third party app using the SUGILITE API.

Additional Examples
To exhibit the generalizability and customizability of
SUGILITE, we list some other example tasks that we have
successfully taught SUGILITE to execute:

- (American Express) “Pay off my credit card balance.”
- (Venmo) “Send [AMOUNT] dollars to [NAME].”
- (Fly Delta) “Find the flights from [CITY] to [CITY] on

[DATE].”

- (CHI 2016) “Show me the papers by [NAME].”
- (Transit) “When is [BUS LINE] coming?”
- (Pokémon Go) “Collect my coins in the shop.”
- (GrubHub & Uber) “Request an Uber to the nearest

[TYPE] restaurant

THE SUGILITE SYSTEM

Key Design Features

Multi-Modal Interface
To provide flexibility for users in different contexts, both
creating the automation and running the automation can be
performed through either the conversational voice interface
or the GUI. In order to create an automation, the user can
either give a new voice instruction, for which SUGILITE will
reply “… Would you like to teach me?” or the user can start
a new demonstration using SUGILITE’s GUI.

When teaching a new command to Sugilite, the user can use
verbal instructions, demonstrations, or a mix of both in cre-
ating the script. Even though in most cases, demonstrating
app operations through direct manipulation will be more
efficient, we anticipate some useful scenarios for instructing
by voice, like when touching on the phone is not conven-
ient, or for users with motor impairment.

The user can also execute automations by either giving
voice commands or by selecting from a list of scripts. Run-
ning an automation by voice allows the user to give a com-
mand from a distance. For scripts with parameters, the pa-
rameter values are either explicitly specified in the GUI, or
inferred from the verbal command when the conversational
interface is used (see the Generalization section for details).

During recording or executing, the user has easy access to
the controls of SUGILITE through the floating duck icon
(See Figure 1, where the icon is on the right edge of the
screen). The floating duck icon changes the appearance to
indicate the current status of SUGILITE – whether it is re-
cording, executing, or tracking in the background. The user
can start, pause or end the execution/recording as well as
view the current script (Figure 1d) and the script list from
the pop-up menu that appears when users tap on the duck.
The GUI also enables the user to manually edit a script by
deleting an operation and all the subsequent operations, or
to resume recording starting from the end of the script. Se-
lecting an operation lets the user edit it using the editing
panel (Figure 1c).

The multi-modality of SUGILITE enables many useful usage
scenarios in different contexts. For example, one may au-
tomate tasks like finding nearby parking or streaming audi-
ble books by demonstrating the procedures in advance by
direct manipulation. Then the user can perform those tasks
by voice while driving without needing to touch the phone.
A user with motor impairment can have her friends or fami-
ly automate her common tasks so she can execute them
later through the voice interface.

Script Generalization
Verbal Commands and Demonstrations: As shown in the
example usage scenario, SUGILITE can automatically identi-
fy the parameters in the task and generalize the scripts from
a single demonstration. After the user finishes the demon-
stration, SUGILITE first compares the identifying features of
the target UI elements and the arguments of the operations
against the verbal command, trying to identify the parame-
ters by matching the words in the command. For example,
for the verbal command “find the flights from New York to
Los Angeles”, SUGILITE identifies “New York” and “Los
Angeles” as two parameters if the user typed “New York”
into the departure city textbox and “Los Angeles” into the
destination textbox during the demonstration.

This parameterization method provides users control over
the level of personalization and abstraction in SUGILITE
scripts. For example, if the user demonstrated ordering a
venti Cappuccino with skim milk by saying the command
“order a Cappuccino”, we will discover that “Cappuccino”
is a parameter, but not “venti” or “skim milk”. However, if
the user gave the same demonstration, but had used the
command, “order a venti Cappuccino.” then we would also
consider the size of the coffee (“venti”) to be a parameter.

For the generalization of text entry operations (e.g. typing
“New York” into the departure city textbox), SUGILITE al-
lows the use of any value for the parameters. In the check-
ing flights example, the user can give the command “find
the flights from [A] to [B]” for any [A] and [B] values after
demonstrating how to find the flights from New York to
Los Angeles. SUGILITE will simply replace the two city
names by the value of the parameters in the corresponding
steps when executing the automation.

In order to support generalization over UI elements,
SUGILITE records the set of all possible alternatives to the
UI element that the user operates on. SUGILITE finds these
alternatives based on the UI structure, looking for those in
parallel to the original target UI element. For example, sup-
pose the user demonstrates “Order a Cappuccino” in which
an operation is clicking on “Cappuccino” from the “Cap-
puccinos” menu that has two options “Cappuccino” and
“Iced Cappuccino”. SUGILITE will first identify “Cappucci-
no” as a parameter, and then add “Iced Cappuccino” to the
set as an alternative value for the parameter, allowing the
user to order Iced Cappuccino using the same script. By
keeping this list of alternatives, SUGILITE can also differen-
tiate tasks with similar command structure but different
values. For example, the commands “Order Iced Cappucci-
no” and “Order cheese pizza” invoke different scripts, be-
cause the phrase “Iced Cappuccino” is among the alterna-
tive elements of operations in one script, while “cheese
pizza” would be among the alternatives of a different script.
If multiple scripts can be used to execute a command (e.g.,
if the user has two scripts for ordering pizza with different
apps), the user can explicitly select which script to run.

App UI Hierarchy Structure: A limitation of the above
method in handling alternative elements is that it can only
generalize at the leaf level of a multi-level menu tree. For
example, the generalized script for “Order a Cappuccino”
cannot be used to order drinks like a Latte or Macchiato
because they are on other branches of the Starbucks “Or-
der” menu. Since the user did not go to those branches dur-
ing the demonstration, SUGILITE could not know the exist-
ence of those options or how to reach those options in the
menu tree. This is a challenge of working with third-party
apps, which will not expose their internal structures to us
nor can we traverse the menu structures without invoking
their app on the main UI thread.

To address this issue, we created a background tracking
service that records all the clickable elements in apps and
the corresponding previous actions taken to reach each ele-
ment. This service can run all the time, so SUGILITE can
learn about all parts of an app that the user visits. Through
this mechanism, we can construct the path to navigate the
menu structure to reach a UI element. The text labels of all
such elements can then be added to the sets of alternative
parameter values for the scripts. This means that we can
allow the user to order drinks that are not an immediate
sibling to Cappuccino at the leaf level of the Starbucks or-
der menu tree from a single demonstration.

This method has its trade-offs. First, it brings in false posi-
tives. For example, there is a clickable node “Store Loca-
tor” in the Starbucks order menu. The generalizing process
will then mistakenly add “Store Locator” to the list of what
the user can order. Second, running the background track-
ing affects the phone’s performance. Third, SUGILITE can-
not generalize for items that were never viewed by the user.
Lastly, many participants expressed privacy concerns about
allowing background tracking to store text labels from apps,
since apps may dynamically generate labels with personal
data like an account number or balance.

Error Checking and Handling
Error checking and handling has been a major challenge for
many PBD systems [21]. SUGILITE provides error handling
and checking mechanism to detect when a new situation is
encountered during execution or when the app’s UI changes
after an update.

When executing a script, an error occurs when the next op-
eration in the script cannot be successfully performed.
There are many possible reasons for an execution error.
First, it is possible that the app has been updated and the
layout of the UI has been changed, so SUGILITE cannot find
the object specified in the operation. Second, it is possible
that the app is currently in a different state than it was dur-
ing the demonstration. For example, if a user demonstrates
how to request an Uber cab during normal pricing, and then
uses the script to request a cab during surge pricing, then an
error will occur because SUGILITE does not know how to
handle the popup from the Uber app that asks for surge

price confirmation. Third, the execution can also be inter-
rupted by an external event, like a phone call or an alarm.

In SUGILITE, when an error occurs, an error handling pop-
up will be shown, asking the user to choose between three
options: keep waiting, end executing, or fix the script. The
“keep waiting” option will keep SUGILITE waiting until the
current operation can be performed. This option should be
used in situations like prolonged waiting in the app or an
interrupting phone call, where the user knows that the app
will eventually return to the recorded state in the script,
which SUGILITE knows how to handle. The “end executing”
option will simply end the execution of the current script.

The “fix the script” option has two sub-options: “replace”
and “create a fork”, which allow the user to either demon-
strate a procedure from the current step that will replace the
corresponding part of the old script, or create a new alterna-
tive fork in the old script. The “replace” option should be
used to handle permanent changes in the procedure due to
an app update or an error in the previous demonstration, or
if the user changes her mind about what the script should
do. The “create a fork” option (Figure 1d) should be used to
enable the script to deal with a new situation. The forking
works similarly to the try-catch statement in programming
languages, where SUGILITE will first attempt to perform the
original operation, and then execute the alternative branch
if the original operation fails. (Other kinds of forks, branch-
es, and conditions are planned as future work.)

The forking mechanism can also handle new situations in-
troduced by generalization. For example, after the user
demonstrates how to check the score of the NY Giants us-
ing the Yahoo! Sports app, SUGILITE generalizes the script
so it can check the score of any sports team. However, if the
user gives a command “check the score of NY Yankees”,
everything will work properly until the last step, where
SUGILITE cannot find the score because the demonstrations
so far only show where to find the score on an American
football team’s page, which has a different layout than a
baseball team’s page. In this case, the user creates a new
fork and demonstrates how to find the score for a baseball
team. Details about how SUGILITE finds items on the screen
is described below in the Implementation section.

Manual Script Editing
For advanced users, we provide an interface to manually
edit and manually generalize the script (Figure 1d). In this
interface, users can delete operations, create forks, or re-
sume recording to add more operations to an existing script.
They can also manually generalize the scripts to better re-
flect their intentions. For example, for the action “Click on
‘Chile Mocha Frappuccino in Starbucks ‘Featured’ menu”,
the user can override the heuristic-generated identifying
feature (see the Recording Handler section in Implementa-
tion for details) to use the screen location of the item in-
stead of the text label of the item so the script will click on
the top item on the “Featured” menu instead of always
choosing the Chile Mocha Frappuccino.

Lastly, the user can manually create parameters. SUGILITE
supports the use of a simple markup language. For the ac-
tion “Set the text of the textbox ‘Message’ to ‘The bus is
delayed, I’ll be home by 6PM’”, the user can manually
modify the text to “@transportation is delayed, I’ll be
home by @time” so she can reuse the script in similar sce-
nario by only providing the values for the parameters in-
stead of the whole text. Similarly, the user can set a pa-
rameter with the value or label of one UI element (e.g., the
result of a search), which can be used for a later operation.

Implementation
In this section, we discuss the implementation of the
SUGILITE components and how they are integrated with
each other. SUGILITE is an Android application implement-
ed in Java. Scripts and tracking data are stored locally on
phone in an SQLite database. SUGILITE does not require
jailbreaking/root access to the phone and should work on
any phone running Android 4.4 or above.

Conversational Interface
The conversational intelligent agent we used in SUGILITE is
built using the Learning by Instruction Agent (LIA) [4].
When the user gives a voice command, the audio is first
decoded into text using Google’s Speech API. Then LIA
uses a Combinatory Categorial Grammar (CCG) parser to
parse the verbal command. Based on the parsing result, LIA
can initiate a new recording or execute a SUGILITE script.
Details on LIA can be found in [4].

Background Accessibility Service
The SUGILITE background service registers as an Android
accessibility service. It listens to AccessibilityEvent3 and
distributes the events to the recording handler or the execu-
tion handler based on the current mode of the system. The
service receives an AccessibilityEvent through the listener
whenever a view on the screen is clicked on (or long-
clicked on), selected or focused. The service will also re-
ceive an AccessibilityEvent if the text on a view has
changed, the state of the current window has changed, or
the content of the current window has changed.

Recording Handler
The recording handler receives the AccessibilityEvent from
the background service during the demonstration. It con-
sumes the event if the event is for a user action (click, long
click or text entry). From the AccessibilityEvent object, the
handler gets meta-data features (text labels, screen loca-
tions, accessibility labels, view ID) for the target UI ele-
ment on which the action was performed. It also includes
all the other elements in the hierarchy of the entire current
screen (the UI layout), which SUGILITE saves for error
checking and generalization. SUGILITE also saves the child
features (i.e. element has a child element that…) and the
parent features of the target UI element.

3 https://developer.android.com/reference/android/view/accessibility/Acces
sibilityEvent.html

SUGILITE applies the following rule-based heuristics to de-
termine a subset of the features to be used in identifying the
current screen and the current target UI element. SUGILITE
first looks for the text or accessibility label in the UI ele-
ment. If it has one, the system will verify that this feature is
unique among all the UI elements on the screen. If this
fails, SUGILITE seeks to find a unique second-level feature
like view ID or label of a child element. If SUGILITE fails to
find a feature to uniquely identify the element on the
screen, it will use the screen coordinates of the element’s
bounding box. The chosen subset of features needs to (1)
uniquely identify the UI layout of the screen and the specif-
ic target UI element on that screen, and (2) still work for
future runs of the application to identify the same element.

If the handler determines that the heuristic-generated fea-
ture set can fulfill the above two requirements, the confir-
mation popup (Figure 1b) will be shown. Otherwise the
disambiguation panel (Figure 1c) will be shown to ask the
user to manually disambiguate what features should be used
in the script. After this, SUGILITE generates and saves an
operation to the current recorded script. The operation also
stores identifiers for all the unique UI layouts and all the
alternative UI elements that are structurally in parallel with
the target UI element. After the demonstration, SUGILITE
will use these when parameterizing and generalizing the
script, as described earlier.

Execution Handler
The execution handler will be activated when an Accessi-
bilityEvent is sent from the background accessibility ser-
vice, which happens when the screen changes, or when the
user takes any action. The execution handler will try to
match the current UI layout to the stored one in the script,
then it tries to find the required target UI element on the
screen, and then it will try to perform the operation as spec-
ified in the current operation. In the SUGILITE UI, the float-
ing icon of a duck will also move to the target UI element
to signify the operation. If the current screen specified in
the AccessibilityEvent was not among the recorded ones for
the current operation, the error handling pop-up will be
shown, signifying that the state of the current app does not
match what was demonstrated for the operation.

If the current operation is successful, the execution handler
will then proceed to handle the next operation. The error
handling mechanism (described earlier) will be activated in
case of an error.

SUGILITE API
SUGILITE has an API that allows external apps to utilize its
recording, tracking and executing functionality. Scripts can
be exported for editing/sharing or imported for executing in
JSON format. Currently several research projects, both in-
ternal and external, are building upon or invoking SUGILITE.

Technical Limitations
Web-based Application: Because of the limitation of the
Android accessibility mechanism, SUGILITE cannot record

actions performed inside of browsers or in web-based ap-
plications. In the future, we can solve this by incorporating
techniques used to access the HTML document object mod-
el (DOM) in existing web automation tools (e.g. [7,23]).

Graphical Icons: While many major apps are adding alter-
native texts to the icons to be more accessible, the icons in
some popular apps remain unlabeled. For the icons with no
text label or accessibility alternative text, the only way
SUGILITE can identify them is by using the screen location,
which is unreliable and not consistent across devices. For
future work, we plan to use visual references similar to
SIKULI [43] to identify the graphical elements in the script.

Gestures, Sensory Inputs and Text Entry: Due to the
limitation of the Android accessibility mechanism,
SUGILITE cannot record gestures or inputs from phone sen-
sors (camera, accelerometer, gyroscope, etc.) during the
demonstration. We can get access to the raw touch events
and the raw sensor data with root permission of the phone,
but that would lose SUGILITE’s compatibility with unmodi-
fied phones. For the same reason, SUGILITE cannot record
text typed directly into third-party apps using the on-screen
keyboard. Instead, for text entry, users need to double tap
on the textbox and type into a popup shown by SUGILITE.

Semantics in the Demonstration: In the current generali-
zation mechanism of SUGILITE, we are treating the identify-
ing features of elements and the parameters as strings, but
SUGILITE does not attempt to understand their semantics or
meaning. This means that in order to have proper generali-
zation, the parameters in the user’s verbal command have to
match exactly the features of the target UI elements or the
arguments of the operations. For example, if the user says
“show me the flights to L.A. today” but demonstrates typ-
ing “Los Angeles” into the destination textbox in the Fly
Delta app, then the script will not be automatically general-
ized. To address this, we are collaborating with researchers
in natural language processing, who are working on under-
standing the semantics in verbal commands and smartphone
apps [10,41]. This will enable SUGILITE to perform better
script generalization from verbal commands.

EVALUATION
To assess how successfully users with various levels of
prior programming experience can use some features of
SUGILITE, we conducted a lab study where we asked the
participants to teach SUGILITE new tasks for four given sce-
narios. (These tasks focus on recording “straight-line”
scripts, and future work will evaluate the understandability
of error handling and other control structures.)

Participants
19 participants aged 20-30 (mean = 24.2, SD = 2.55) were
recruited from the local university community. The partici-
pants were required to be 18 or order, be active smartphone
users and be fluent in English. All recruited participants
were university students.

In the recruiting form, participants rated their own pro-
gramming experience on a five-point scale from “no expe-
rience” to “experienced programmer”. We specifically se-
lected participants across a range of prior programming
experience. In Table 1, we show the description used for
each category and the number of participants in each.

Tasks
We chose five tasks for the study based on the common
repetitive task scenarios from our motivating survey. The
first task was used as a tutorial, where the experimenter
showed the participant how to teach SUGILITE to complete
the example task and explained how to operate SUGILITE.
The other four tasks were given to the participants in ran-
dom order. All the participants used the same Nexus 6
phone with SUGILITE and relevant apps installed.

Before each task, the participants were given time to get
familiar with the involved apps (Uber, Starbucks, Yahoo!
Sports and Gmail), so they were all proficient at performing
the tasks using direct manipulation. We first asked the par-
ticipants to perform the task directly without SUGILITE, and
then asked them to teach SUGILITE the same task by demon-
stration. During the task, we would not answer questions on
how to use SUGILITE (but we responded to the requests for
clarification on the task specifications).

Below are the descriptions for each task, together with the
SUGILITE components and commands used.

Tutorial Task: Pizza Ordering
In this task, we demonstrated the procedure of ordering a
large pepperoni pizza for carryout at the nearest Papa
John’s store using the Papa John’s app. The script was then
automatically generalized so it can be used to order any of
the three basic pizzas (pepperoni, cheese and sausage).
There were one “SET_TEXT” and 9 “CLICK” operations
in the script. Among them, two “CLICK” operations re-
quired manual disambiguating of the identifying features.

Task1: Get an Uber
The specification given to the participants was “You should
teach the agent how to use the Uber app to request an Uber

X cab to the current location.” The standard procedure for
this task had two “CLICK” operations, none of which re-
quired manual disambiguation of the identifying features.
The participants were told to not confirm sending the Uber
request to avoid being charged.

Task2: Check Sports Score
The specification given to the participants was “You should
teach the agent how to use the Yahoo! Sports app to show
you the latest score of Pittsburgh Steelers.” The standard
procedure for this task had four “CLICK” operations and
one “SET_TEXT” operation, none of which required man-
ual disambiguation of the identifying features. The parame-
ter for the “SET_TEXT” operation is automatically general-
ized so the script can be used to check the score for any
football team in Yahoo! Sports.

Task3: Order Coffee
The specification given to the participants was “You should
teach the agent how to use the Starbucks app to order a cup
of Cappuccino.” The standard procedure for this task had
11 “CLICK” operations. Among them, one “CLICK” oper-
ation required manual disambiguation of the identifying
features. This script is automatically generalized so it can
be used to order any drink from the Starbucks app. The
participants were told to not submit the final order to avoid
being charged.

Task4: Send an Email
The specification given to the participants was “You should
teach the agent the command ‘Tell Joe that I will be late
because my car is broken.’ by demonstrating how to send a
new email to ‘joe@example.com’, with the subject ‘I will be
late’ and body ‘I will be late because my car is broken.”
The standard procedure for this task had four “CLICK”
operations and three “SET_TEXT” operations, none of
which required manual disambiguation of the identifying
features. This script is automatically generalized so it can
respond to “Tell [NAME] that [SOMETHING] because
[SOMETHING]”

Procedure
The study took about 1 hour per participant. After signing
the consent form, the participant received the tutorial
through the experimenter walking through the tutorial task.
The tutorial took about 5 minutes. Following the tutorial,
the experimenter gave the first task to the participant. Then
the participant began to do the tasks as specified in the pre-
vious section. After performing the tasks, the participant
filled out a usability questionnaire on their experiences in-
teracting with SUGILITE. Finally, the experimenter conduct-
ed a brief semi-structured interview with the participant
based on the questionnaire responses and the experiment-
er’s observations during the study. Participants were com-
pensated $15 for their time.

Results
Overall, 65 out of 76 (85.5%) scripts created by the partici-
pants ran and performed the intended task successfully. 8
out of the 19 (42.1%) participants succeed in all four tasks.

Group - Programming Experience #

1 – I’ve never done any computer programming 3

2 – I’ve done some light programming (e.g. Office
macros, excel functions, simple scripts) 4

3 – Beginner programmer (experience equivalent to 1-
2 college level computer science classes) 5

4 – Intermediate programmer (1-2 years of program-
ming experience) 3

5 – Experienced programmer (2+ years of program-
ming experience) 4

Total 19

Table 1. Number of participants (#) grouped by program-
ming experience

10 (52.6%) succeeded in three tasks and 1 (5.3%) succeed-
ed in only two tasks. All participants completed at least two
tasks successfully. A Pearson’s chi-squared test was per-
formed and no significant relationship was found between
task completion and the level of prior programming experi-
ence (𝑋"(4) = 4.15, p = 0.39).

For each successful task, we measured the task completion
time from when the voice command was successfully re-
ceived until the participant ended the recording. We then
used a one-way ANOVA to compare the task completion
time of each task for participants grouped by their pro-
gramming experience. No significant difference between
the five groups as described in Table 1 based on task com-
pletion time was found for any of the tasks. The average
task completion time of each task by group is shown in
Figure 2. All times are in seconds.

Task 1: All but one participant completed this task (94.7%).
That participant “double clicked” (i.e. clicked twice in a
row without waiting for the confirmation pop-up in be-
tween), which caused the system to fail to record the first
action.

Task 2: 15 participants out of 19 (78.9%) completed this
task. Four participants failed by entering the text directly
into textboxes (they were supposed to double tap on the
textbox and type into a pop-up due to the limitation dis-
cussed in the Technical Limitation section).

Task 3: 17 participants out of 19 (89.5%) completed this
task. A participant erroneously “double clicked” and anoth-
er participant recorded a click when the Starbucks app had
not finished loading, which would cause the execution to
block when this click is to be performed.

Task 4: 14 participants out of 19 (73.7%) completed this
task. Five participant failed by entering the text directly into
textboxes.

Time Trade-off
For each of the four tasks, we also calculated an average
“break-even” point at n, for which if a task needs to be per-
formed for at least n times, then the total time needed for
automating the task and executing the script for n times is
shorter than the time needed to do the tasks manually for n
times. We use n as a rough measure for the time trade-off of
using SUGILITE to automate tasks. In plain words, if a user
needs to perform a task for more than n times, then auto-
mating the task with SUGILITE can save her time.

Using the average time it took to create the automation (𝑡),
the average time it took to perform the task manually (𝑡$)
and the time it took to execute the automation (𝑡%), we cal-
culate the average break-even value of n for each task,
shown in Table 2.

Subjective Feedback
Overall, SUGILITE received positive feedback on both usa-
bility and usefulness from the participants.

On the post questionnaire, the participants were asked to
rate their agreement with statements related to their experi-
ence interacting with SUGILITE on a 7-point Likert scale
from “Strongly Disagree” to “Strongly Agree.” Table 3
shows the average score for the usability-related items on
the questionnaire. Table 4 shows the average score for the
usefulness-related questions.

Figure 2. The average task completion time for the partici-

pants grouped by their programming experience. Shorter bars
are better. Error bars show the standard deviations.

Task 𝑡̅ 𝑡$'''' 𝑡% 𝑛

Task 1 44.47s 13.71s 3.35s 5

Task 2 58.61s 15.15s 5.12s 6

Task 3 74.29s 26.47s 7.34s 4

Task 4 125.25s 50.25s 6.14s 3
Table 2. Average time to automate the task (𝒕̅), average time to

perform the task manually (𝒕𝒎''''), time to run the automation
(𝒕𝟎), and the “break-even” point (n) for the four tasks.

Statement Score

“It’s easy to learn how to use this system.” 6.17

“My interaction with the system is clear and under-
standable” 6.00

“I’m satisfied with my experience using this system.” 5.94

Table 3. Average scores on usability questions from the
post- questionnaire (on a 7-point scale).

Statement Score

“I find the system useful in helping me creating au-
tomation.” 6.39

“I find automating tasks with the system is efficient” 6.11

“I would use this system to automate my tasks.” 6.06

Table 4. Average scores on usefulness questions from the post-
questionnaire (on a 7-point scale).

In a semi-structured interview after the questionnaire, the
participants were asked whether they found anything un-
clear or confusing in their interaction with SUGILITE. Most
complaints were on the demonstration of text entry, where
the user needs to type into a SUGILITE popup instead of the
textbox in the original app. Participants found this to be
unnatural and easy-to-forget. Some also reported infor-
mation overload on the disambiguation panel (Figure 1c). It
contained too much information, which made it hard to
locate where they needed to read and make selections.

DISCUSSION
The outcome of the evaluation suggests no significant dif-
ference based on the level of programming experience of
participants for all four tasks in either task completion rate
or task completion time. The groups with no programming
experience (Group 1) and only light programming experi-
ence (Group 2) completed 25 out of 28 (89.3%) tasks. The
results indicate that end users with little or no programming
experience can successfully use SUGILITE to automate
smartphone tasks.

Looking at the “break-even” point for each task, we learn
that for the four example scenarios, the user can save time
with SUGILITE if they are to perform the tasks for more than
3 to 6 times. This implies that the efficiencies of many re-
petitive tasks could potentially benefit from automating
through SUGILITE, because the overhead of creating auto-
mation using SUGILITE is small.

After the study, we asked the participants to describe sce-
narios from their own smartphone usage where SUGILITE
would be helpful. Some of the scenarios involved using
apps that are not likely to ever be integrated into existing
agents, like the customized apps made for the university
community to check the shuttle location, dining menu,
meeting room availability, etc. Many organizations or
communities have made such apps to serve the information
needs of their members. Due to the limited engineering
resources available and the small user base for those apps,
they are unlikely to get integrated into the intelligent soft-
ware agents for automation without EUD. But for the users
of those apps, they often use the apps frequently and repeti-
tively, so they wish to have their common tasks automated.

The participants commented that although some apps have
already been integrated in the prevailing agents like Siri,
some specific tasks they want are not supported. An exam-
ple is that for the music player, users cannot change the
equalizer settings or download the current song using voice
commands. They also wished to incorporate personalized
settings into the automation (e.g., setting the volume before
playing a song).

They also proposed scenarios for creating SUGILITE auto-
mation beyond single apps. Users often perform a set of
tasks in a row (e.g. check the weather, the traffic infor-
mation and book a cab when waking up) so Sugilite can be
used to create a single voice command for multiple tasks.

Another example is a command “request an Uber to the
nearest (sushi restaurant, pharmacy, grocery store…)”,
SUGILITE can first use Google Maps to retrieve the address
of the nearest desired entity, then use the Uber app to re-
quest a cab with the destination filled in.

Besides the scenarios mentioned above, which SUGILITE is
already capable of handling, participants also inspired us on
potential directions for future work such as multi-device
interaction, cross-user script sharing, smart device integra-
tion and enhanced accessibility support.

FUTURE WORK
From our experiences in the lab study, SUGILITE has been
shown to be reliable and robust. For the next step, we plan
to conduct a longitudinal field study of SUGILITE usage to
help us understand how users use SUGILITE to help them on
tasks in real life contexts. We plan to monitor what tasks
they choose to automate, how they interact with SUGILITE
in different modalities in different contexts, how they han-
dle errors, and how much benefit SUGILITE can provide in
real smartphone usage. Eventually we plan to release
SUGILITE for general use by the public.

For future development, we plan to first solve the usability
issues in text entry and the disambiguation panel raised in
our lab study. We will develop a customized on-screen
keyboard with keystroke recording to replace the default
keyboard in the SUGILITE demonstration mode. This will
enable SUGILITE to record what users type during the
demonstration. We also plan to redesign the disambiguation
panel to only display the most relevant information to avoid
information overload. Finally, we hope to address the issues
described in the Technical Limitation section and through-
out this paper to expand the applicability of SUGILITE.

Two major concerns about our system are privacy and secu-
rity. While we have not particularly focused on them in this
paper, we do have plans for future work. In addition to the
common practices like encryption and authentication, we
are interested in detecting the “crucial steps” in a demon-
stration, such as the steps that are not undo-able (e.g. sub-
mit order, confirm deletion) or those that the user would
like to review to ensure correctness. Once SUGILITE can
successfully detect the crucial steps, it can then ask the user
for confirmation by voice or in the GUI during execution.

CONCLUSION
Even though there have been many years of research on
programming by demonstration and speech interfaces,
SUGILITE is the first PBD system to show how they can
successfully be put together on a smartphone to enhance the
capabilities of both. We look forward to future collabora-
tions between HCI and AI researchers for improved multi-
modal intelligent PBD user interfaces.

ACKNOWLEDGEMENTS
This work was supported in part by Yahoo! InMind project
and by Samsung under GRO grant #A017479.

REFERENCES
1. James Allen, Nathanael Chambers, George Ferguson, et

al. 2007. Plow: A collaborative task learning agent. In
Proceedings of the National Conference on Artificial In-
telligence, 1514.

2. V. Antila, J. Polet, A. Lämsä, and J. Liikka. 2012. Rou-
tineMaker: Towards end-user automation of daily rou-
tines using smartphones. In 2012 IEEE International
Conference on Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 399–402.
http://doi.org/10.1109/PerComW.2012.6197519

3. Brenna D. Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. 2009. A survey of robot learning
from demonstration. Robotics and autonomous systems
57, 5: 469–483.

4. Amos Azaria, Jayant Krishnamurthy, and Tom M.
Mitchell. 2016. Instructable intelligent personal agent. In
Proc. The 30th AAAI Conference on Artificial Intelli-
gence (AAAI).

5. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and
Daniel Oblinger. 2005. DocWizards: A System for Au-
thoring Follow-me Documentation Wizards. In Proceed-
ings of the 18th Annual ACM Symposium on User Inter-
face Software and Technology (UIST ’05), 191–200.
http://doi.org/10.1145/1095034.1095067

6. Aude Billard, Sylvain Calinon, Ruediger Dillmann, and
Stefan Schaal. 2008. Robot programming by demonstra-
tion. In Springer handbook of robotics. Springer, 1371–
1394.

7. Michael Bolin, Matthew Webber, Philip Rha, Tom Wil-
son, and Robert C. Miller. 2005. Automation and cus-
tomization of rendered web pages. In Proceedings of the
18th annual ACM symposium on User interface soft-
ware and technology, 163–172.

8. David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to Interpret Natural Language Navigation Instruc-
tions from Observations. In AAAI, 1–2.

9. Jiun-Hung Chen and Daniel S. Weld. 2008. Recovering
from Errors During Programming by Demonstration. In
Proceedings of the 13th International Conference on In-
telligent User Interfaces (IUI ’08), 159–168.
http://doi.org/10.1145/1378773.1378794

10. Yun-Nung Chen, Ming Sun, and Alexander I. Rudnicky.
2015. Matrix factorization with domain knowledge and
behavioral patterns for intent modeling. In NIPS Work-
shop on Machine Learning for SLU and Interaction.

11. Allen Cypher and Daniel Conrad Halbert. 1993. Watch
what I do: programming by demonstration. MIT press.

12. Martin R. Frank and James D. Foley. 1993. Model-
based User Interface Design by Example and by Inter-
view. In Proceedings of the 6th Annual ACM Symposi-
um on User Interface Software and Technology (UIST
’93), 129–137. http://doi.org/10.1145/168642.168655

13. Martin R. Frank and James D. Foley. 1994. A Pure Rea-
soning Engine for Programming by Demonstration. In
Proceedings of the 7th Annual ACM Symposium on User

Interface Software and Technology (UIST ’94), 95–101.
http://doi.org/10.1145/192426.192466

14. Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE:
automatically generating user interfaces. In Proceedings
of the 9th international conference on Intelligent user
interfaces, 93–100.

15. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating Photo
Manipulation Tutorials by Demonstration. In ACM
SIGGRAPH 2009 Papers (SIGGRAPH ’09), 66:1–66:9.
http://doi.org/10.1145/1576246.1531372

16. Ting-Hao Kenneth Huang, Amos Azaria, and Jeffrey P.
Bigham. 2016. InstructableCrowd: Creating IF-THEN
Rules via Conversations with the Crowd. 1555–1562.
http://doi.org/10.1145/2851581.2892502

17. IFTTT. IFTTT. IFTTT / Connect the apps you love.
18. Jiepu Jiang, Ahmed Hassan Awadallah, Rosie Jones, et

al. 2015. Automatic Online Evaluation of Intelligent As-
sistants. In Proceedings of the 24th International Con-
ference on World Wide Web (WWW ’15), 506–516.
http://doi.org/10.1145/2736277.2741669

19. Ken Kahn. 1996. Toontalk TM—an animated program-
ming environment for children. Journal of Visual Lan-
guages & Computing 7, 2: 197–217.

20. Simon Khalaf. Seven Years Into The Mobile Revolu-
tion: Content is King… Again. Yahoo Developer Net-
work.

21. Tessa Lau. 2009. Why Programming-By-Demonstration
Systems Fail: Lessons Learned for Usable AI. AI Maga-
zine 30, 4: 65.

22. Tessa A. Lau and Daniel S. Weld. 1999. Programming
by Demonstration: An Inductive Learning Formulation.
In Proceedings of the 4th International Conference on
Intelligent User Interfaces (IUI ’99), 145–152.
http://doi.org/10.1145/291080.291104

23. Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. 2008. CoScripter: Automating & Sharing
How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems (CHI ’08), 1719–1728.
http://doi.org/10.1145/1357054.1357323

24. Henry Lieberman. 2001. Your wish is my command:
Programming by example. Morgan Kaufmann.

25. Pattie Maes. 1994. Agents That Reduce Work and In-
formation Overload. Commun. ACM 37, 7: 30–40.
http://doi.org/10.1145/176789.176792

26. Rodrigo de A. Maués and Simone Diniz Junqueira Bar-
bosa. 2013. Keep Doing What I Just Did: Automating
Smartphones by Demonstration. In Proceedings of the
15th International Conference on Human-computer In-
teraction with Mobile Devices and Services (MobileHCI
’13), 295–303. http://doi.org/10.1145/2493190.2493216

27. Richard G. McDaniel and Brad A. Myers. 1997. Gamut:
Demonstrating Whole Applications. In Proceedings of
the 10th Annual ACM Symposium on User Interface
Software and Technology (UIST ’97), 81–82.
http://doi.org/10.1145/263407.263515

28. Richard G. McDaniel and Brad A. Myers. 1999. Getting
More out of Programming-by-demonstration. In Pro-
ceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’99), 442–449.
http://doi.org/10.1145/302979.303127

29. Francesmary Modugno and Brad A. Myers. 1994. Pur-
suit: Graphically Representing Programs in a Demon-
strational Visual Shell. In Conference Companion on
Human Factors in Computing Systems (CHI ’94), 455–
456. http://doi.org/10.1145/259963.260464

30. Brad. A. Myers. 1986. Visual Programming, Program-
ming by Example, and Program Visualization: A Tax-
onomy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’86), 59–
66. http://doi.org/10.1145/22627.22349

31. Brad A. Myers. 1990. Creating user interfaces using
programming by example, visual programming, and
constraints. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 12, 2: 143–177.

32. Brad A. Myers. 1991. Graphical techniques in a spread-
sheet for specifying user interfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Compu-
ting Systems, 243–249.

33. Brad A. Myers and Richard McDaniel. 2001. Sometimes
you need a little intelligence, sometimes you need a lot.
Your Wish is My Command: Programming by Example.
San Francisco, CA: Morgan Kaufmann Publishers: 45–
60.

34. Brad A. Myers, Brad Vandcr Zanden, and Roger B.
Dannenberg. 1989. Creating graphical interactive appli-
cation objects by demonstration. In Proceedings of the
2nd annual ACM SIGGRAPH symposium on User inter-
face software and technology, 95–104.

35. Shin ’ichiro Nakaoka, Atsushi Nakazawa, Fumio
Kanehiro, et al. 2007. Learning from observation para-
digm: Leg task models for enabling a biped humanoid
robot to imitate human dances. The International Jour-
nal of Robotics Research 26, 8: 829–844.

36. A. Namoun, A. Daskalopoulou, N. Mehandjiev, and Z.
Xun. 2016. Exploring Mobile End User Development:
Existing Use and Design Factors. IEEE Transactions on
Software Engineering PP, 99: 1–1.
http://doi.org/10.1109/TSE.2016.2532873

37. Nielsen. 2015. So Many Apps, So Much More Time for
Entertainment.

38. Lenin Ravindranath, Arvind Thiagarajan, Hari Bala-
krishnan, and Samuel Madden. 2012. Code in the Air:
Simplifying Sensing and Coordination Tasks on
Smartphones. In Proceedings of the Twelfth Workshop
on Mobile Computing Systems & Applications (HotMo-
bile ’12), 4:1–4:6.
http://doi.org/10.1145/2162081.2162087

39. André Rodrigues. 2015. Breaking Barriers with Assis-
tive Macros. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Acces-
sibility (ASSETS ’15), 351–352.
http://doi.org/10.1145/2700648.2811322

40. Ben Shneiderman, Catherine Plaisant, Maxine Cohen,
Steven Jacobs, Niklas Elmqvist, and Nicholas Dia-
kopoulos. 2016. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Pear-
son, Boston.

41. Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky.
2016. HELPR: A Framework to Break the Barrier across
Domains in Spoken Dialog Systems. In International
Workshop on Spoken Dialog Systems.

42. Jesse Thomason, Shiqi Zhang, Raymond Mooney, and
Peter Stone. 2015. Learning to interpret natural language
commands through human-robot dialog. In Proceedings
of the Twenty-Fourth international joint conference on
Artificial Intelligence (IJCAI).

43. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: Using GUI Screenshots for Search and Au-
tomation. In Proceedings of the 22Nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’09), 183–192.
http://doi.org/10.1145/1622176.1622213

44. Sha Zhao, Julian Ramos, Jianrong Tao, et al. 2016. Dis-
covering Different Kinds of Smartphone Users Through
Their Application Usage Behaviors. In Proceedings of
the 2016 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing (UbiComp ’16), 498–
509. http://doi.org/10.1145/2971648.2971696

45. SiriKit - Apple Developer.
https://developer.apple.com/sirikit/

46. Automate - everyday automation for Android. Llama-
Lab. http://llamalab.com/automate/

47. Workato - Connect your apps. Automate your work.
Workato. https://www.workato.com/

