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ABSTRACT
The computational problem of Influence maximization concerns
the selection of an initial set of nodes in a social network such
that, by sending this set a certain message, its exposure through the
network will be the highest. We propose to study this problem from
a utilitarian point of view. That is, we study a model where there are
two types of messages; one that is more likely to be propagated but
gives a lower utility per user obtaining this message, and another that
is less likely to be propagated but gives a higher utility. In our model
the utility from a user that receives both messages is not necessarily
the sum of the two utilities. The goal is to maximize the overall
utility.

Using an analysis based on bisubmodular functions, we show a
greedy algorithm with a tight approximation ratio of 1

2 . We develop
a dynamic programming based algorithm that is more suitable to our
setting and show through extensive simulations that it outperforms
the greedy algorithm both in terms of running time and achieved
utility.

1 INTRODUCTION
In recent years, social networks have surged in popularity, enabling
people to share information easily and interact with each other. One
of the main properties of social networks is the fast spread of mes-
sages; due to the multiple links of the networks, when a user receives
a message, she may transfer it to a subset of her neighbors in the
network, which may, in turn, transfer the message to their neighbors,
and so on. This phenomenon was used by several stakeholders to
promote their goods, agendas or ideas. For example, marketing com-
panies advertise by social networks [19], social movements reach
the public in order to get their support [6], and politicians run several
social network pages [16, 18]. Naturally, the research in this field is
thriving.

One natural problem that arises is the Influence Maximization
(IM) problem. In this problem one needs to select an initial set of
users (of a given size), to receive a message, such that the message
will reach the largest number of users in the network. Most of the
research on the IM problem concentrates on measuring a spread
of a messages by counting the number of users that received that
message, and this measure is used even where there are multiple
types of messages. However, in many setting the effect of a message
depends on its type, and thus counting the number of users that
received any message is not the appropriate objective. For example,
suppose there is an association that is promoting anti-smoking by
running a campaign on a social network. Assume that there are two
potential types of anti-smoking advertisements. One advertisement
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consists of humorous content1, and thus it has a high potential to
become viral and heavily spread throughout the network. However,
this message has a low potential of affecting users to quit smok-
ing. The second type of advertisement consists of harsh content2,
and it is thus more effective but less likely to spread. As another
example, consider two advertisements for vaccine promotion. One
advertisement includes graphic pictures of people who refused to
vaccinate, and the other advertisement includes fun facts regarding
the necessity of vaccination.

In this paper we propose to study the IM problem from a utilitarian
perspective. That is, we study a model where there are two types
of messages; one that is more likely to be propagated but gives a
lower utility per user obtaining this message, and another that is less
likely to be propagated but gives a higher utility. Clearly, whenever
a user receives the same message multiple times it does not affect
the resulting utility. However, when a user receives messages from
different types, it is natural to assume that the resulting utility should
be at least as high as the utility from each one of the messages. On
the other hand, the utility in this case should not be higher than the
sum of utilities. Overall, the Utility Based Influence Maximization
(UBIM) problem is to select two initial sets of users (with a given
total size), one for each type of message that is sent, such that the
sum of the resulting utilities will be maximized.

We first show that a greedy method for UBIM is guaranteed to
reach at least 50% of the optimal solution. The analysis is based on
the maximization of monotone and bisubmodular functions [15],
which is an extension of the traditional approach that maximizes
a submodular function [8]. We also prove that the approximation
ratio is tight. We note that the greedy algorithm has a drawback
in our setting. Specifically, since there are two types of messages,
if the greedy algorithm decides to send one type of message to a
specific user, this commitment may harm its performance later on,
as it may turn out that the other type of message is more valuable at
later stages. We thus introduce our Efficient Table-based Algorithm
for Bisubmodular functions (ETAB), which does not commit to a
specific type of message at early stages.

For the evaluation of our algorithms, we built a large graph based
on a known social network (Digg). We compared the performance
of ETAB with the greedy algorithm and with additional baseline
heuristics, in terms of running time and achieved utility. Our results
demonstrate that ETAB outperforms the greedy algorithm in the
achieved utility, while maintaining a practical running time. Specifi-
cally, while we were able to run the greedy algorithm with an initial
sets size of at most 40 users, ETAB could run with an initial sets size
of 200 users.

The contribution of this paper is threefold:

• We study the influence maximization problem from a utili-
tarian perspective. This is a natural extension, which allows
to study the trade-off between sending viral and effective

1See for example https://www.youtube.com/watch?v=IKbxMIWCto0
2See for example https://www.youtube.com/watch?v=AIyqcST29wQ
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messages. To the best of our knowledge, this model has not
been investigated yet.
• We prove that a greedy algorithm achieves a tight approxima-

tion ratio of 1
2 , since the function in our model is bisubmodu-

lar.
• We introduce an Efficient Table-based Algorithm for Bisub-

modular functions (ETAB) and show through simulation that
it outperforms the greedy algorithm, as well as additional
baselines, on a graph that is based on a real social network.

2 RELATED WORK
The problem of influence maximization was introduced by Domin-
gos and Richardson [7]. Motivated by application of marketing, they
point out that a satisfied customer is likely to recommend the prod-
uct to her friends, which raises the probability for them to buy the
product as well. Naturally, a good marketing strategy will be to filter
the users of a certain network in order to find the most influential
users. Domingos and Richardson model the problem as a Markov
random field, and provide heuristics for choosing costumers with a
large overall effect.

The seminal work of Kempe et al. [8] is the first to analyze the
influence maximization as a discrete optimization problem. They
show that the IM problem is NP-hard, but it can be analyzed as
a maximization of a monotone and submodular set function. This
problem was studied by [14], and shown to admit an approximation
of 1 − 1/e ≈ 63%. Thus, the IM problem has the same approxima-
tion ratio. However, unlike the problem studied by [14], in the IM
problem the underlying set function cannot be evaluated exactly (in
polynomial time) but it can be approximated by sampling, and thus
the approximation ratio is slightly lower. Since the work of Kempe
et al., the IM problem received a high amount of attention, see the
recent surveys [1, 11].

An important generalization of the IM problem, derives from the
observation that many products are being promoted through a social
network simultaneously. Some of them are complementary to each
other and others are competitive. For example, buying a cellphone
increases the probability of buying a cellphone case, but decreases
the probability of buying a different type of cellphone. Therefore,
there are several works that generalizes the IM problem such that
there are multiple messages.

Specifically, Borodin et al. [3] discuss competitive IM. That is,
they analyze several models where the goal is to maximize the spread
of technology A while there is a different competitive technology
B that is also spread in the network. They show that the greedy
approach of [8] is applicable only for a subset of their models.

Datta et al. model viral marketing of multiple products [5]. They
assume that the products are independent of each other. That is, a
user’s decision to buy a product is independent of her decision to
buy other products. They also assume that multiple messages can be
initially sent to each user, but the number of such messages is limited.
The objective of this work is to maximize the number of products
that the users buy, since all products are equally counted. Datta et al.
show a greedy algorithm for their problem with a 1/3−approximation
ratio.

Narayanam and Nanavati study a model where cross-sell among
products is possible [13]. That is, in their model when a user buys

the first product it increases the probability that she will buy a
second product. While they define a utility for the objective, it is a
simple sum over the utilities from buying the products separately. In
addition, they study the IM problem according to the linear threshold
model while we study the IM problem according to the independent
cascade model (see Section 3.1 for details).

In our work we show that a greedy algorithm obtains an ap-
proximation ration of 1

2 . This result is obtained by proving that the
utility function in UBIM is monotone and bisubmodular. Ohsaka
and Yoshida [15] were the first to show that a greedy algorithm on a
k−submodular and monotone set function achieves an approxima-
tion ratio of 1

2 . They further show that their solution can be applied
to the IM problem with multiple messages. Their objective function
is to maximize the sum of users receiving these messages. Overall,
none of these works extend the IM problem to the setting in which
every message has its own (different) utility while a user receiving
multiple messages might yield a value that is different from the sum
of utilities.

Another related extension of the IM problem is the topic-aware
influence maximization problem, which was introduced by Barbieri
et al. [2] and Chen et al. [4]. In this model the influence between
a pair of users may differ depending on the topic. Barbieri et al.
introduce the model, and provide methods for learning the diffusion
probabilities from data of past diffusion. Chen et al. study efficient
algorithms for the IM problem in this setting. Note that the objective
function is identical to that of the standard IM problem, and the exis-
tence of multiple topics affects only the probabilities of influences
among the users.

A different perspective is studied by Li et al. [10]. They consider
multiple types of messages, and use an agent-based modelling to
study the diffusion process of the different influences.

3 PRELIMINARIES
3.1 The independent cascade model
The research on the IM problem has considered two main models of
diffusion: the linear threshold model, and the independent cascade
model. We focus on the independent cascade model and generalize
it to our setting. The independent cascade model works as follows.
The social network is represented by a directed graph G = (V ,E),
where each user of the network is represented by a node and every
connection between two users is an edge. The process of diffusion
consists of a message that is propagated thorough the network. Dur-
ing this process each node can either become active or inactive,
where an active node indicates that the associated user is influenced
by the message. For every edge u → v ∈ E, let puv ∈ [0, 1] be the
probability of the influence of u on v. That is, puv is the probability
for v to become active after she received the message from u. The
process starts with an initial seed set S ⊆ V , such that all the nodes
of S are initialized with the message, and thus they become active.
The process then unfolds in discrete steps according to the following
rule. Every node v ∈ V that becomes active, activates each currently
inactive neighbour w with probability pvw . Moreover, if multiple
neighbors of a vertex w try to activate it at the same time, their
attempts are considered in an arbitrary order. v does not attempt
to activate its neighbours again. The process runs until no more
activations occur.
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As shown by Kempe et al. [8], the diffusion process is equivalent
to first selecting the participating edges according to their probabili-
ties, (by a series of flipping coins with the corresponding probability)
obtaining a graph of connections G ′ = (V ,E ′). Then, every node
v ∈ V of the graph that has a directed path starting from one of the
nodes of the seed and ending at v is assumed to be active. We note
that in G ′ all edges, E ′, have a fixed probability of 1.0.

3.2 Monotone and submodular set functions
We now provide the basic definitions of a bisubmodular function.
This function is later used to model the utility in our setting.

LetU be a set of n nodes. 3U is the set of all possible tuples of two
disjoint subsets of U . That is, X = (X1,X2) ∈ 3U if X1,X2 ⊆ U and
X1 ∩X2 = ∅. Note that every such tuple can be viewed as a vector of
size n over {0, 1, 2}. Let f : 3U → R+ be a function that takes two
disjoint subsets of U and outputs a non negative real number.

For every tuple X = (X1,X2) ∈ 3U and e ∈ U \ (X1 ∪ X2), let
∆e,1(X1,X2) = f (X1∪{e},X2)− f (X1,X2). That is, the contribution
of adding e to X1, as measured by f . Similarly, let ∆e,2(X1,X2) =
f (X1,X2 ∪ {e}) − f (X1,X2).

Definition 3.1. A function f : 3U → R+ is monotone if for every
tuple X = (X1,X2) ∈ 3U and every e ∈ U \ (X1 ∪ X2), it holds that
∆e,1(X1,X2) ≥ 0, and ∆e,2(X1,X2) ≥ 0. That is, adding nodes does
not reduce the value of f .

For completeness, we first provide the definition of a submodular
function. Note that submodular functions receive a single set as their
input.

Definition 3.2. A function f : 2U → R+ is submodular if for
every two subsets X ,Y ⊆ U it holds that:

f (X ) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y )

Definition 3.3. A function f : 3U → R+ is bisubmodular if for
every two tuples X = (X1,X2) ∈ 3U and Y = (Y1,Y2) ∈ 3U it holds
that:

f (X ) + f (Y ) ≥ f (X ⊔ Y ) + f (X ⊓ Y )

where,

• f (X ⊔ Y ) = f (X1 ∪ Y1 \ (X2 ∪ Y2),X2 ∪ Y2 \ (X1 ∪ Y1)).
• f (X ⊓ Y ) = f (X1 ∩ Y1,X2 ∩ Y2).

An equivalent definition for bisubmodularity (see [17]), is when
both properties of orthant submodularity and pairwise monotonicity
hold.

Definition 3.4. A function f : 3U → R is orthant submodular
if for every tuples X = (X1,X2) and Y = (Y1,Y2) such that X1 ⊆ Y1
and X2 ⊆ Y2, and every item e ∈ U \ (Y1 ∪ Y2):
∆e,1(X ) ≥ ∆e,1(Y ) and similarly: ∆e,2(X ) ≥ ∆e,2(Y ).

Definition 3.5. A function f : 3U → R is pairwise monotone if
for every tuple X = (X1,X2) and every e ∈ U \ (X1 ∪X2), ∆e,1(X )+
∆e,2(X ) ≥ 0.

Note that monotonicity implies pairwise monotonicity.

4 OUR MODEL
In our work we consider the diffusion process of two types of mes-
sages M1 and M2 in a social network. The social network is repre-
sented by a directed graph G = (V ,E), where each v ∈ V represents
a user in the social network, and each edge u → v ∈ E represents the
influence of u on v. Each user can be activated by each of the two
messages. Thus, there are four possible combinations for activeness;
a user can be active with regard to only M1, only M2, active with
both the messages or inactive. For every edge u → v we define
puv1 ,p

uv
2 ∈ [0, 1] to be the influence probabilities. puv1 is the proba-

bility that user u activates user v with regard to M1. Similarly, puv2
is the influence probability with regard to M2.

For the diffusion process we consider a generalization of the
independent cascade model (see Section 3.1). Our process starts
with two initial seed sets S1, S2 ⊆ V , S1 ∩ S2 = ϕ, such that all
the nodes of S1 are initialized with message M1 and all the nodes
of S2 are initialized with message M2. The process then unfolds in
discrete steps according to the following rule. Let i, j ∈ {1, 2}, i , j.
Every node v that became active with message Mi activates each
neighbour w not activated yet with message Mi , with probability
pvwi . In addition, if multiple neighbors of a vertexw try to activate it
at the same time, their attempts are considered in an arbitrary order.
v does not attempt to activate its neighbours with message mi again.
The process runs until no more activations are possible.

As mentioned in Section 3.1, the diffusion process of the IC model
is equivalent to first selecting the participating edges according to
their probabilities, then, every node of the graph that can be reached
by a directed path from a node in the seed is considered active.
For our model, we need to bring to consideration the fact that each
edge has two different diffusion parameters. For the selection of the
participating edges we use a series of 2|E | coin flips π , (Two for
each edge), obtaining a multi-graph Gπ = (V ,E1 ∪ E2) such that the
edges of E1 and E2 represents the connections of the nodes regarding
the messages M1 and M2 respectively. Every node v ∈ V that can
be reached by a directed path from a node in S1 is assumed to be
active with regard to M1. (Note that all the edges of this directed path
should be from E1). Similarly, every node v ∈ V that can be reached
by a directed path from a node in S2 is assumed to be active with
regard to M2. (Again, all the edges of this directed path are from
E2). We note that in Gπ all edges e ∈ E1, have a fixed probability
pe1 = 1.0 and all edges e ∈ E2, have a fixed probability pe2 = 1.0.

Given a siries of coinflips π and a graph Gπ , Let A1(S1) be the
set of all nodes that are active with M1 at the end of the process,
when S1 is the seed set for M1. Similarly, Let A2(S2) be the set of all
nodes that are active with M2 at the end of the process, when S2 is
the seed set for M2. Note that A1(S1) depends only on the set S1 and
A2(S2) depends only on the set S2. Further note that A1(S1) ∩A2(S2)
consist of nodes that are active with both messages, A1(S1) \A2(S2)
consist of nodes that are active with M1 and are inactive with M2,
and A2(S2) \A1(S1) consist of nodes that are active with M2 and are
inactive with M1.

We assume that each active node is associated with some utility.
Let u1 ≥ 0 be the utility for nodes that are active only with M1.
Similarly, let u2 ≥ 0 be the utility for each node that is active only
with M2, and let u1,2 be the utility for nodes that are active with both
messages.
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We define the utility function σπ (S1, S2) to be the sum of every ac-
tive node at the end of the process multiplied with the corresponding
utility, i.e,

σπ (S1, S2) = u1 · |A1 \A2 | + u2 · |A2 \A1 | + u1,2 · |A1 ∩A2 |

Where we abbreviate A1(S1) and A2(S2) to A1 and A2 respectively.
Finally, the overall utility function is the weighted average of each
σπ (S1, S2) multiplied by the probability for π to occur, p(π ):

σ (S1, S2) =
∑
π

σπ (S1, S2) · p(π )

Definition 4.1 (UBIM). Given an integer B (the budget), the
Utility Based Influence Maximization problem is to find seed sets
X = (S1, S2) such that |S1 | + |S2 | ≤ B, that maximize the utility
σ (S1, S2).

5 ALGORITHMS
5.1 The greedy approach
We extend the greedy algorithm that was presented by Kempe et al. to
the UBIM problem. It runs as follows. First, two sets S1 = ∅, S2 = ∅
are initialized. At any step 1 ≤ i ≤ B the algorithm greedily chooses
a node e ∈ V \ (S1 ∪ S2) and a message type i ∈ {1, 2} such that
adding e to Si gives the largest marginal gain (see Algorithm 1).

Algorithm 1: Greedy
Input: A directed graph G = (V ,E) and an integer B.
Output: Two sets S1, S2 ∈ V , with |S1 | + |S2 | = B.
Initiate S1 ← ∅, S2 ← ∅;
for i = 1 to B do

u ′ ← argmaxu ∈V \(S1∪S2){∆e,1(S1, S2)};
u ′′ ← argmaxu ∈V \(S1∪S2){∆e,2(S1, S2)};
if u ′ ≥ u ′′ then

S1 ← S1 ∪ {u ′};
else

S2 ← S2 ∪ {u ′′};
end

end
return (S1, S2).

In this section, we show that if max(u1,u2) ≤ u1,2 ≤ u1 + u2,
then our utility function σ (·, ·), is monotone and bisubmodular, and
therefore the greedy algorithm guarantees at least 50% of the optimal
solution.

THEOREM 5.1. If max(u1,u2) ≤ u1,2 ≤ u1+u2 then the function
σ (·, ·) is monotone and bisubmodular.

PROOF. We start with monotonicity. We need to show that for
every tuple X = (X1,X2) ∈ 3U , and every node e ∈ U \ (X1 ∪ X2),

σ (X1 ∪ {e},X2) ≥ σ (X1,X2). (1)

σ (X1,X2 ∪ {e}) ≥ σ (X1,X2). (2)
We will show (1) by:

σ (X1 ∪ {e},X2) − σ (X1,X2) ≥ 0. (3)

For (2) the analysis is symmetric. For given series of coin flip π
and a corresponding graph Gπ , Fix a tuple X = (X1,X2) and a

vertex e ∈ U \ (X1 ∪ X2), Let A1 = A1(X1), A2 = A2(X2) and let
B1 = A1(X1 ∪ {e}). Note that A1 ⊆ B1 (see Figure 1). We get:

σπ (X1,X2) = u1 · |A1 \A2 | + u2 · |A2 \A1 | + u1,2 · |A1 ∩A2 |

After adding e to S1, we have:

σπ (X1 ∪ {e},X2) = u1 · |B1 \A2 | + u2 · |A2 \ B1 | + u1,2 · |B1 ∩A2 |

Let ∆π ,e,1(X ) = σπ (X1 ∪ {e},X2) − σπ (X1,X2). Observe that in
B1 \ (A1 ∪A2) there are nodes that where inactive for both messages
and became active with M1. Furthermore, in (B1 ∩A2) \A1 there are
nodes that where active only with M2 and became active with both
messages. Therefore:

∆π ,e,1(X ) = u1 · |B1 \ (A1 ∪A2)| + (u1,2 −u2) · |(B1 ∩A2) \A1 | ≥ 0

where the inequality is due to the assumption thatu1,2 ≥ max(u1,u2),
and that the sizes of the mentioned sets are non negative. We showed
that the for every π , the function σπ (·, ·) is monotone. Now, since
σ (·, ·) is a convex combination of monotone functions, it is monotone
as well.

B1

A1 A2

Figure 1: Venn’s diagram with 3 sets, such that A1 ⊆ B1

For the bisubmodularity; we need to show that the properties of
orthant submodularity and pairwise monotonicity hold (See Defi-
nitions 3.4 and 3.5 in Section 3.2). Since we showed monotonicity,
pairwise monotonicity stems. For the orthant submodularity, Let π
be a set of 2|E | coin flips, and let Gπ = (V ,E1 ∪ E2) be the corre-
sponding multigraph. Let X = (X1,X2) ∈ 3U and Y = (Y1,Y2) ∈ 3U
such that X1 ⊆ Y1 and X2 ⊆ Y2. Let A1 = A1(X1), A2 = A2(X2),
B1 = A1(Y1) and B2 = A2(Y2). note that A1 ⊆ B1 and A2 ⊆ B2. In
addition, Let e ∈ U \ (Y1 ∪ Y2). We will prove the claim for the case
of adding e to X1. The corresponding case (of adding e to X2) is
symmetric.

We label the nine3 different areas of those four sets as follows
(see Figure 2 for a Venn diagram):

3Note that a four set Venn diagram has 24 = 16 different areas, here since A1 ⊆ B1 and
A2 ⊆ B2 seven of thos areas are empty.
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B1 B2

A1 A2

w1

w2 w3 w4 w5 w6

w7

w8 w9

w′
1

w′
2 w′

3 w′
4 w′

5 w′
6

w′
7

w′
8 w′

9

Figure 2: Venn’s diagram with 4 sets such that A1 ⊆ B1 and
A2 ⊆ B2

• C1 = U \ (B1 ∪ B2)
• C2 = B1 \ (B2 ∪A1)
• C3 = A1 \ B2
• C4 = (B2 ∩A1) \A2
• C5 = A1 ∩A2

• C6 = (B1 ∩A2) \A1
• C7 = (B1 ∩ B2) \ (A1 ∪
A2)
• C8 = A2 \ B1
• C9 = B2 \ (A2 ∪ B1)

For every 1 ≤ k ≤ 9, let W ′k be the set of nodes in Ck that are
affected by e with regard to M1. In other words; for every node
w ∈W ′k , Gπ contains a directed path from e to w . (Note that all the
path edges are from E1). Moreover, letWk be the set of nodes in Ck
that are not affected by e. We denote be w ′k and wk the number of
nodes inW ′k andWk respectively.

We need to show that ∆e,1σ (X ) − ∆e,1σ (Y ) ≥ 0. Since we focus
on the graphGπ , let ∆π ,e,1(X ) = σπ (X1∪{e},X2)−σπ (X1,X2) and
Let ∆π ,e,1(Y ) = σπ (Y1 ∪ {e},Y2) − σπ (Y1,Y2). We first note that:

σπ (X1,X2) = u1 · (w3 +w
′
3 +w4 +w

′
4)+u2 · (w6 +w

′
6 +w8 +w

′
8)

+ u1,2 · (w5 +w
′
5) (4)

After adding e to X1, the nodes ofW ′1 ,W ′2 ,W ′7 andW ′9 , which where
inactive, became active with M1, the nodes ofW ′3 ,W ′4 andW ′5 did
not change, and the nodes ofW ′6 andW ′8 , which where active only
with M2, became active with both messages. Thus:

σπ (X1∪{e},X2) = u1 · (w3+w
′
3+w4+w

′
4+w

′
1+w

′
2+w

′
7+w

′
9)+

u2 · (w6 +w8) + u1,2 · (w5 +w
′
5 +w

′
8 +w

′
6) (5)

We get,

∆π ,e,1σ (X ) = u1 · (w
′
1 +w

′
2 +w

′
7 +w

′
9) − u2 · (w

′
6 +w

′
8)

+ u1,2 · (w
′
6 +w

′
8) (6)

Similarly, the analysis for ∆π ,e,1σ (Y ) gives:

σπ (Y1,Y2) = u1 · (w2 +w
′
2 +w3 +w

′
3)+u2 · (w8 +w

′
8 +w9 +w

′
9)

+ u1,2 · (w4 +w
′
4 +w5 +w

′
5 +w6 +w

′
6 +w7 +w

′
7) (7)

After adding e toY1, all nodes inW ′1 , which were inactive, became
active with M1. the nodes in W ′8 and W ′6 , which were active only
with M2, became active with both messages. This gives us:

σπ (Y1 ∪ {e},Y2) = u1 · (w3 +w
′
3 +w2 +w

′
2 +w

′
1)+u2 · (w8 +w9)

+ u1,2 · (w4 +w
′
4 +w5 +w

′
5 +w6 +w

′
6 +w7 +w

′
7 +w

′
8 +w

′
9)

(8)

Therefore:

∆π ,e,1σ (Y ) = u1 · (w
′
1) − u2 · (w

′
8 +w

′
9) + u1,2 · (w

′
8 +w

′
9) (9)

Finally, let us now show that (6)−(9)≥ 0:

∆π ,e,1σ (X ) − ∆π ,e,1σ (Y ) =

u1 · (w
′
2 +w

′
7 +w

′
9) −u2 · (w

′
6) +u2(w

′
9) +u1,2 · (w

′
6) −u1,2 · (w

′
9) =

u1 · (w
′
2 +w

′
7) + (−u2 + u1,2) · (w

′
6) + (u1 + u2 − u1,2) · (w

′
9) ≥ 0

(10)

where the inequality is due to assumption that max(u1,u2) ≤ u1,2 ≤
u1 + u2, and that all the w’s are non negative integers. We get that
σπ (·, ·) is bisubmodular. Finally, σ (·, ·) is a convex combination of
bisubmodular functions, therefore it is also a bisubmodular function.

□

An important improvement to the time complexity of the greedy
algorithm is the Celf algorithm, which is an extension of the algo-
rithm introduced by [12] and [9] to UBIM. For each node the algo-
rithm calculates a tuple T = (n,a1,a2,valid), such that T [n] is the
node name, T (a1),T (a2) ∈ R are the expected addition to the overall
utility when adding n to S1 or S2 respectively, and T (valid) ∈ N is
the index of the iteration of the last evaluation of a1 and a2. The
algorithm uses a queue that sorts the tuples by the value max(a1,a2)
of each tuple. At every iteration, a tuple T is pulled from the queue;
if its valid value is equal to the current iteration, thenT (n) is added to
S1 or S2 (according to max(a1,a2)). Otherwise, u’s utility is sampled
again, T (a1), T (a2) and T (valid) are updated and T is inserted back
into the queue.

5.2 The dynamic programming approach
One major drawback of the greedy algorithm (and Celf) is that,
since there are two types of messages, if it decides to send one
type of message to a specific user, this commitment may harm its
performance later on, as it may turn out that the other type of message
is more valuable at later stages. For example, consider Figure 3. The
red arrows correspond to message 1, and the blue arrows correspond
to message 2. Note that the influence probability is 1.0. For this
example assume that u1 = 1, u2 = 1.5, and u1,2 = 1.5, and that
B = 2. Clearly, at the first stage the greedy algorithm will select node
A and add it to S1; this will result in a utility of 5. In the second step,
the greedy algorithm will select node B and add it to S2; this will
result in an additional utility of 1.5, thus resulting in a total utility
of 6.5. However, an algorithm that would not commit to using the
message 1 in the first step, could add nodes B and C to S2 and yield a
utility of 7.5. To overcome this problem, we introduce our Efficient
Table-based Algorithm for Bisubmodular functions (ETAB), which
does not commit to a specific type of message at early stages. We
first describe a dynamic programming based algorithm (TAB), and
then describe a method for using insights from Celf to create the
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Figure 3: A graph demonstrating the problem with the greedy
algorithm committing to a specific message type at early stages.

Efficient version of TAB (i.e. ETAB). In order not to commit to a
specific type of message TAB builds its solution in two dimensions.

TAB uses the upper triangle of a table Mat of size (B + 1) ×
(B + 1). Each cell of Mat consists of a tuple T = (S1, S2), such
that T (S1),T (S2) ⊆ V are disjoint seed sets. In each (i, j) cell of the
table, it holds that |S1 | = i and |S2 | = j. TAB starts with the tuple
T = (∅, ∅) in cell (0, 0). The algorithm then fills in the first row; for
every 1 ≤ i ≤ B, let Ri−1 = (R1, ∅) be the tuple in cell (i − 1, 0).
The node n ∈ V \ R1, that maximizes the value of the marginal gain
to σ (R1, ∅), (i.e. the output of maxn∈V \R1 (∆n,1(R1, ∅))) is selected.
Next the tuple Ri = (R1 ∪ {n}, 0) is stored in cell (i, 0). Similarly,
TAB fills in the first column; for every 1 ≤ i ≤ B, let Ci−1 = (∅,C2)
be the tuple in cell (0, i − 1). The node n ∈ V \C2, that maximizes
the value of the marginal gain to σ (∅,C2) is selected, and the tuple
Ci = (0,C2 ∪ {n}) is stored in cell (0, i). The next phase is to fill in
the cells of the middle; For each cell (k, l) TAB builds two optional
tuples; T ′ is created by greedily adding an unselected node to seed
1 of the tuple in cell (k − 1, l). Similarly, T ′′ is created by greedily
adding an unselected node to seed 2 of the tuple in cell (k, l − 1).
TAB Then picks the tuple with the higher expected utility and store
it in the cell (k, l).

After filling up all the cells of the table with indexes (i, j) such
that i + j ≤ B, TAB outputs the tuple with the maximal expected
utility over the diagonal cells of the table (where i + j = B). see
Algorithm 2.

Reconsidering the example of the graph in Figure 3. We show in
Table 1 the outcome of applying TAB on those settings. TAB will
output the maximum utility of the tuples in the diagonal (light blue)
cells. Thus, the output utility of TAB is 7.5.

We believe that the approximation ratio of the TAB algorithm
is very close to 50%. Moreover, this algorithm cannot guarantee an
approximation ratio that is higher than 50%.

LEMMA 5.2. The approximation ratio of the TAB algorithm is at
most 50% + ε. In other words, there is a case in which the value of
the solution of TAB is less than 50% + ε of the optimal solution. I.e.:
f (STAB ) ≤ f (O) + ε.

PROOF. We present an example where TAB outputs a solution
that is just slightly higher then 50% of the optimal value. Let f be
a monotone and bisubmodular set function. Let U = {1, 2}, the
function values are represented in Table 2. Since we assume that f
is monotone and bisubmodular we get the following inequalities:

Algorithm 2: TAB

Mat ← a (B + 1) × (B + 1) matrix of tuples;
Mat[0][0] ← (∅, ∅);
for i = 1 to B do

S1 ← Mat[i − 1][0](S1);
n ← argmaxn∈V \S1 (∆n,1(S1, ∅));
Mat[i][0] ← (S1 ∪ {n}, ∅);

end
for i = 1 to B do

S2 ← Mat[0][i − 1](S2);
n ← argmaxn∈V \S2 (∆n,2(∅, S2));
Mat[0][i] ← (∅, S2 ∪ {n});

end
for i = 1 to B do

for j = 1 to (B − i) do
L1 ← Mat[i − 1][j](S1);
L2 ← Mat[i − 1][j](S2);
l ← argmaxn∈V \(L1∪L2)(∆n,1(L1,L2));
U1 ← Mat[i][j − 1](S1);
U2 ← Mat[i][j − 1](S2);
u ← argmaxn∈V \(U1∪U2)(∆n,2(U1,U2));
if σ (L1 ∪ {l},L2) > σ (U1,U2 ∪ {u}) then

Mat[i][j] ← (L1 ∪ {l},L2);
else

Mat[i][j] ← (U1,U2 ∪ {u});
end

end
end
(i, j) ← argmaxi+j=B (σ (Mat[i][j]));
return Mat[i][j];

|S1 |
|S2 | 0 1 2

0 5 5
0 (∅, ∅) ({A}, ∅) ({A,C}, ∅)

4.5 6.5 _
1 (∅, {B}) ({A}, {B})

7.5 _ _
2 (∅, {B,C})

Table 1: The table that TAB builds when running on the settings
of Figure 3. TAB’s output is (∅, {B,C}), and the corresponding
utility value is 7.5.

B = 0 f (∅, ∅) = 0
B = 1 f ({1}, ∅) = x1 f (∅, {1}) = y1

f ({2}, ∅) = x2 f (∅, {2}) = y2
B = 2 f ({1, 2}, ∅) = z1 f ({2}, {1}) = z3

f ({1}, {2}) = z2 f (∅, {1, 2}) = z4
Table 2: A monotone and bisubmodular function for the proof
of Lemma 5.2.
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|S1 |
|S2 | 0 1 2

0 x1 = p + ε z1 = p + ε
0 (∅, ∅) ({1}, ∅) ({1, 2}, ∅)

y2 = p + ε/3 z2 = p + ε _
1 (∅, {2}) ({1}, {2})

z4 = p + ε/3 _ _
2 (∅, {1, 2})

Table 3: The table that TAB builds when running on the settings
of the function given in Table 2.

• max(x1,x2) ≤ z1 ≤ x1 + x2
• max(x1,y2) ≤ z2 ≤ x1 + y2
• max(x2,y1) ≤ z3 ≤ x2 + y1
• max(y1,y2) ≤ z4 ≤ y1 + y2

Where for every 1 ≤ i ≤ 4, the lower bound of zi is due to the mono-
tonicity of f and the upper bound on zi is due to the bisubmodularity
of f .

Let p ∈ R+ and let ε > 0. We further assume that x1 = p + ε,
x2 = p + 2ε/3, y1 = p and y2 = p − ε/3. In addition, z3 = 2p + 2ε/3,
z1 = z2 = p + ε and z4 = p + ε/3. Note that z3 ≥ max(z1, z2, z4), i.e.
z3 is the optimal solution when B = 2. Table 3 shows the outcome
of running TAB on the settings of f with B = 2:

As we described the algorithm, TAB will output the tuple that
corresponds to max(z1, z2, z4), Thus the output will be z1 = p+ε . On
the other hand, 50% of the optimal solution is 1

2z3 =
1
2 (2p + 2ε/3) =

p + ε/3. Indeed, if we add ε to half the optimal solution we get
p + 4ε/3, which is greater than z1. □

COROLLARY 5.3. The approximation ratio of the greedy algo-
rithm is at most 50% + ε. I.e. the approximation ratio of the greedy
algorithm is tight.

PROOF. Observe that if the greedy algorithm is applied to the
settings of the function in the proof of Lemma 5.2, the greedy al-
gorithm will output the value of z1 or z2 which is p + ε, while the
optimum value is 2p + 2ε/3. □

Unfortunately, TAB is computationally expensive; However, as
in the greedy algorithm, we may use the queue method to order
the nodes and reduce the amount of evaluations. This brings us to
our final algorithm, the Efficient version of TAB (i.e. ETAB). The
general idea is similar to that of TAB except that every tuple contains
additional two queues Q1 and Q2. Each queue take the unselected
nodes of each cell and sorts them in decreasing order of the expected
contribution they might add to the overall utility (see Algorithm 3).

Like in TAB, ETAB uses the upper triangle of a table Mat
of size (B + 1) × (B + 1). Each cell of Mat consists of a tuple
T = (S1, S2,u,Q1,Q2), such that T (S1),T (S2) ⊆ V are disjoint seed
sets. T (u) ∈ R+ is the expected utility σ (T (S1),T (S2)). Moreover,
T (Q1) and T (Q2) are two priority queues that sort all the nodes in
V \ (T (S1) ∪T (S2)) in decreasing order of their expected contribu-
tions ∆T (n),1(T (S2),T (S2)) and ∆T (n),2(T (S2),T (S2)), respectively.
In addition, for each (i, j) cell of the table, it holds that |S1 | = i and
|S2 | = j. ETAB runs similarly to TAB, except that when ever it needs
to select a node in order to add it to a certain seed of a certain cell,

it uses the cell’s priority queue. Thus reducing the amount of the
function evaluations (see Algorithm 3).

Algorithm 3: ETAB (Efficient Table-based Algorithm for Bisub-
modular functions)
Mat ← a (B + 1) × (B + 1) matrix of queue tuples.
Q1 ← a priority order queue of nodes, sorted by ∆n,1(∅, ∅)
Q2 ← a priority order queue of nodes, sorted by ∆n,2(∅, ∅)
Mat[0][0] ← (∅, ∅, 0,Q1,Q2)
for i = 1 to B do

Mat[i][0] ← copy Mat[i − 1][0]
Add a node to Mat[i][0](S1) by using the queue
Mat[i][0](Q1)

Update Mat[i][0](Q1), Mat[i][0](Q2) and Mat[i][0](u)
end
for i = 1 to B do

Mat[0][i] ← copy Mat[0][i − 1]
Add a node to Mat[0][i](S2) by using the queue
Mat[0][i](Q2)

Update Mat[0][i](Q1), Mat[0][i](Q2) and Mat[0][i](u)
end
for i = 1 to B do

for j = 1 to B − i do
T ′ ← copy Mat[i − 1][j]
Add a node to T ′(S1) by using the queue T ′(Q1)
Update T ′(Q1), T ′(Q2) and T ′(u)
T ′′ ← copy Mat[i][j − 1]
Add a node to T ′′(S2) by using the queue T ′′(Q2)
Update T ′′(Q1), T ′′(Q2) and T ′′(u)
if T ′(u) > T ′′(u) then

Mat[i][j] ← T ′

else
Mat[i][j] ← T ′′

end
end

end
(i, j) ← argmaxi+j=B (Mat[i][j](u))
return (Mat[i][j](S1),Mat[i][j](S2))

We note that the space complexity of ETAB is very high since
we store many queues (each queue has space complexity of O(n)).
Each cell has two queues and we use (B + 1)2/2 = O(B2) cells. To
slightly reduce space complexity, after calculating the tuples T ′ and
T ′′ of the last loop, we can free the queues of the above cell, as we
do not use them again. Thus, the number of queues we store during
the running of the algorithm is at most 2(2B + 1) = O(B), therefore
the overall space complexity of ETAB is O(Bn).

6 EXPERIMENTS
For evaluating the performance of ETAB and comparing it to the
greedy algorithm, Celf and additional baselines, we built a graph that
includes diffusion parameters on its edges. Our graph is based on the
Digg2009 data-set4, a publicly available data-set that was obtained
from the Digg website. Digg is a social news website, that allows

4https://www.isi.edu/~lerman/downloads/digg2009.html

https://www.isi.edu/~lerman/downloads/digg2009.html


AAMAS’20, May 2020, Auckland, New Zealand Paper ID: 1500

people to vote on web content. The data-set contains friendship
connections between the users, and a list of votes for various stories;
each vote contains a story id, a vote date and user id. We applied
some filters on the data such as removing users who appear less
than 20 times. In addition, we removed one story that was voted too
many times, and caused the graph to be too highly connected. This
story was voted 24, 000 times, while the second most voted story
received approximately 8, 000 votes. In order to extract the diffusion
parameters we split the stories into “poor spreaders”, M1, and “well
spreaders”, M2, by using the median value of the number of times
a story was posted. A vote of user v is considered to be influenced
by her friend u if v voted for a story within one hour after u has
voted for it. For every edge u → v, and for every type i ∈ {1, 2}
we divided the number of stories from Mi which v voted for as an
influence of u by the overall number of stories from Mi that u voted
for. This value is then assigned to puvi . We deleted edges with both
p1 = 0 and p2 = 0 and removed all isolated nodes. At the end of this
process our graph contained 7, 217 nodes and 105, 832 edges. We ran
the algorithms that where presented in the previous sections: ETAB
,TAB, Greedy and Celf. In addition we ran the following baseline
heuristics:

• Degreecount : In this heuristic the nodes are selected in de-
scending order according to their degrees, and each node is
randomly assign either to S1 or to S2.
• Degreeexpected : The nodes and the message types are se-

lected in descending order according to the sums of their
diffusion parameters. That is, for each node x , and for each
type i, let dxi =

∑
xu ∈E(д) p

xu
i ; the nodes are selected accord-

ing to max(dx1 ,d
x
2 ) and are added to the seed corresponding

to the message type with the higher dxi .

We assigned the following utilities u1 = 2, u2 = 1 and u1,2 = 2.5.
The evaluations of the utility function was sampled 100 times during
execution of each of the algorithms, and was sampled 10, 000 times
for final evaluation of the algorithm output. In order for our results
to be less biased, we ran separate simulations for each Budget level;
therefore, there may be a slight drop in the utility achieved by an
algorithm when running it with some budget compared to the same
algorithm when using a lower budget. Simulations ran on an Intel
i7-7500U computer (clocked at 2.9GHz with 16GB RAM). The
budget was set to multiplies of 5, up-to a budget of 200 initial nodes.
Our results are presented in Figures 4 and 5. Note that due to the
extensive time required for computing TAB and Greedy, we could
only simulate TAB up-to a budget of 20 and Greedy up-to a budget
of 40.

As can be seen in Figure 4, TAB (up-to a budget of 20) and ETAB
achieve the highest utility at all budget levels, outperforming Greedy
and Celf, as well as Degreecount and Degreeexpected in terms of
utility achieved. Futhermore, as presented in Figure 5, ETAB scales
nicely as the budget grows, and therefore is very practical for use. As
expected, TAB requires the highest execution time, making it imprac-
tical for larger budgets amount; similarly, though less pronounced,
the running time of the Greedy algorithm becomes impractical as
the budget amount grows.

Interestingly, Celf achieves higher utility than the two heuristics,
only until B = 165, where the degreeexpected heuristic has a jump,
and achieves a utility that is similar to that of Celf. We hypothesize
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Figure 4: Utility achieved by ETAB, TAB, Greedy, Celf and the
two baseline heuristics.
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Figure 5: Run-time in seconds of all methods. The excessive run-
time of TAB and Greedy did not allow us to compute their val-
ues for higher budget amounts.

that this jump is because degreeexpected starts to assign nodes to
both S1 and S2 only when the budget is set to B = 165; this act
improves its performance.

Another interesting aspect, that has not been fully studied before,
is that the greedy algorithm gives a better solution than Celf. We
believe that this is because the stochastic nature of Celf, as it relies
on samples to estimate the addition of each node to the overall utility.
Since those samples are stochastic, there is an error rate that is
accumulated during Celf’s execution. Similar behavior is observed
when comparing TAB with ETAB.

7 CONCLUSION & FUTURE WORK
In this paper we introduce the utility based influence maximization
problem, which is a natural extension of the common influence maxi-
mization problem. We show that our utility function is monotone and
bisubmodular and thus we provide a greedy algorithm that achieves
an approximation ratio of 1

2 . We develop ETAB, which is a dynamic
programming based algorithm suitable to our setting, and show that
it outperforms the greedy algorithm while scaling well.

We note that ETAB is a general solution, as it is applicable for
any problem of maximization a monotone and bisubmodular func-
tion. For example, in the antennas placement problem one needs to
decide where to place antennas such that the overall reception will
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be maximized. Similar to our setting, it is possible that there are two
types of antennas: one that has a strong signal but a small bandwidth,
and the other has a weaker signal but a larger bandwidth. In this
setting the reception where there is an overlap between the antennas
is assumed to be at least as high as the reception from each type of
antenna, but no more than their sum. Therefore, ETAB can be used
to efficiently place the two types of antennas.

For future work there are several interesting directions. First, we
would like to apply ETAB to known problems in additional domains
such as the antennas placement problem. In addition, we would like
to extend our analysis to the setting where the utility function is not
bisubmodular or non-monotone. Finally, our model can be extended
to the case where different users yield different utilities form the
same message.
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