
A Socially Aware Reinforcement Learning Agent for The Single Track Road
Problem

Ido Shapira and Amos Azaria
Computer Science Department, Ariel University, Israel

Abstract

We present the single track road problem. In this problem
two agents face each-other at opposite positions of a road
that can only have one agent pass at a time. We focus on
the scenario in which one agent is human, while the other is
an autonomous agent. We run experiments with human sub-
jects in a simple grid domain, which simulates the single track
road problem. We show that when data is limited, building an
accurate human model is very challenging, and that a rein-
forcement learning agent, which is based on this data, does
not perform well in practice. However, we show that an agent
that tries to maximize a linear combination of the human’s
utility and its own utility, achieves a high score, and signif-
icantly outperforms other baselines, including an agent that
tries to maximize only its own utility.

Introduction
While humans can cope with new situations quite easily,
even state-of-the-art algorithms struggle with new situations
that they haven’t been trained on. Unfortunately, when it
comes to autonomous vehicles the results may be devas-
tating. One example for an uncommon, yet important sce-
nario for autonomous vehicles is the problem of a single
track road. In this problem two vehicles in opposite direc-
tions must cross a narrow road, which is not wide enough to
allow both vehicles to pass at the same time. Therefore, one
vehicle must deviate from the road and let the other vehicle
cross. However, if both vehicles deviate to the margins, they
might both return to the road, and may either end-up deviat-
ing to the margins again or even colliding with each-other.
Despite only a small portion of the roads being single track
roads, autonomous vehicles must be able to function prop-
erly in these types of roads. Furthermore, some more com-
mon situations resemble the single track road problem, for
example, if cars park where they shouldn’t and block one of
the lanes or if one lane is blocked for any other reason (e.g.,
a falling tree), the traffic in both ways must operate with a
single lane.

In this paper we model the single track road problem as
a sequential two player game on a two row grid (see Figure
1). The upper row represents a road that allows both play-
ers to advance. However, the lower row can only be used
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Figure 1: The initial state of the single road game board. The
red circle is controlled by the human player and the blue cir-
cle is controlled by the autonomous agent. Both players must
reach the opposite side of the board without colliding. The
players may travel freely on the upper row, but they cannot
advance when located on the lower row.

for allowing the other player to pass, as the players cannot
advance when placed in the lower row. We find several equi-
libria of the game, which should determine how a perfectly
rational agent should behave in such a game. However, peo-
ple tend to deviate from what is considered rational behav-
ior, since they are influenced by different effects including
anchoring, inconsistency of utility and a lack of understand-
ing of other agent’s behavior (Tversky and Kahneman 1981;
Ariely, Loewenstein, and Prelec 2003; Camerer 2003). In-
deed, as we later show, while some people tend to follow the
game theoretic solution, many others do not follow it, and
behave unexpectedly. Due to non-perfectly rational behav-
ior of humans, algorithmic approaches that assume rational
behavior tend to perform poorly with humans (Bitan et al.
2013; Azaria et al. 2015; Nay and Vorobeychik 2016).

Therefore, a common approach for developing an agent
that can proficiently interact with humans is composed of
several stages (Azaria et al. 2011; Nguyen et al. 2013;
Rosenfeld et al. 2015). The first stage includes the collection
of a data-set of humans interacting in the environment. Next,
based on the collected data-set a human behavior model
is developed, usually by applying machine-learning tech-
niques. Finally, the human model is used by the agent to
determine the actions that are the most beneficial for it. In
this paper we attempt to follow this common practice for the
single track road game. Therefore, we collect human data in
this game and use it to compose a human model. Then, we
model the agent’s problem as a reinforcement learning envi-
ronment by an MDP with the human model being a part of
the environment. Finally, we use value iteration, a dynamic
programming based method, to find the supposedly optimal
action for the agent. We note that the solution provided by



value iteration is guaranteed to be optimal under the assump-
tion that the MDP models the environment perfectly, which
includes the human model.

However, composing a human behavior model based on
a relatively small data-set may be inaccurate, as people are
many times unpredictable and different humans tend to be-
have very differently from one another, despite a game being
relatively simple (Shvartzon et al. 2016; Azaria, Richard-
son, and Rosenfeld 2016). Therefore, we introduce a novel
method for solving an MDP that is based on a non-perfect
human behavior model. Namely, instead of solving the MDP
with an attempt to maximize the agent’s outcome, we pro-
pose to maximize a linear combination of the agent’s out-
come and the human’s outcome. We expect that optimizing
toward a linear combination will be beneficial for the agent,
since the humans are likely to try and optimize their own
utility function, so they are likely to deviate from the hu-
man model in a way that will indeed maximize their util-
ity function. By optimizing toward a linear combination, the
agent acts as if it already accounts for these deviations and is
therefore more likely to adapt to them. We provide a formula
for determining the proposed linear combination, which is
based on the similarity of the agents’ utility functions.

We introduce our Socially Aware Reinforcement Learn-
ing agent (SARL), an agent that attempts to maximize the
linear combination of the two utility functions, using our
proposed formula. We show that SARL significantly outper-
forms all other baselines in the single track road game when
interacting with humans, in terms of the agent’s final out-
come. Somewhat less surprisingly, humans interacting with
SARL also achieve the highest outcome. Therefore, SARL
not only perform better with respect to its own outcome, but
also with respect to social welfare.

To summarize, the contributions of this paper are three-
fold:

1. We present the single track road problem, model it as a
sequential game, and present the equilibria of the game.
We show that people do not follow strategies that are in
equilibrium.

2. We model the problem as an MDP in which the human’s
actions are modeled as a part of the environment. The
model uses data from humans interacting with simple
agents to determine the probability of the human taking
each action at a given state.

3. We present SARL, a socially aware reinforcement
learner, that uses a linear combination of the rewards of
both agents. We provide a formula for finding the pa-
rameter to be used in this linear combination. Finally, we
show that our method significantly outperforms all other
baselines.

Related Work
Trajectory prediction of surrounding vehicles and pedestri-
ans is very important for the development of autonomous
vehicles, as such knowledge can prevent accidents. Indeed,
trajectory prediction is challenging due to the unexpected
nature of human behavior. Therefore, many works attempt

to find a sufficient solution to overcome this challenge (Leon
and Gavrilescu 2021).

According to Houenou et al. (Houenou et al. 2013) tra-
jectory prediction can be based on a deterministic method
that selects the current maneuver from a predefined set us-
ing kinematic measurements and road geometry detection.
The authors state that their model cannot be applied to very
low speed scenarios and therefore is not applicable to our
scenario.

Deo and Trivedi (Deo and Trivedi 2018) estimate a proba-
bility distribution of future positions of a vehicle conditioned
on its track history and the track histories of vehicles around
it, at a certain time. Using this information, they select one of
six possible maneuvers that have been defined. They use the
publicly available NGSIM US-101 and I-80 highway data-
sets for their experiments. Their model relies purely on ve-
hicle tracks to infer maneuver classes and ignores the lanes
and the map.

Ding at al. (Ding, Chen, and Shen 2019) use a recur-
rent neural network for composing an observation encoding.
Based on this encoding, they propose a Vehicle Behavior In-
teraction Network (VBIN) to capture the social effect of an-
other agent on the prediction target, based on their maneu-
ver features and relative dynamics (e.g., relative positions
and velocities). VBIN is an end-to-end trainable framework
and is suitable for dynamic driving scenarios where the dy-
namics of the agents affect their importance in social inter-
actions. They use data collected from highways US-101 and
I-80 as used in other work (Deo and Trivedi 2018); since
it deals only with highway roads with a large number of
agents, it is not applicable for our setting.

Kim et al. (Kim et al. 2017) propose a deep learning ap-
proach for trajectory prediction based on a Long Short Term
Memory (LSTM). Their model is used to analyze the tem-
poral behavior and predict the future coordinates of the sur-
rounding vehicles. Based on the coordinates and velocities
of the surrounding vehicles, the vehicle’s future location is
produced after a certain short amount of time. However, the
experiments were conducted using data collected from high-
way driving, which is again not suitable to our case.

Chandra at al. (Chandra et al. 2020) present an approach
for trajectory prediction in urban traffic scenarios using a
two-stream graph-LSTM network. The first stream predicts
the trajectories, while the second stream predicts the behav-
ior (i.e. overspeeding, underspeeding, or neutral) of road-
agents. It is based on the vehicle coordinates and a weighted
dynamic geometric graph (DGG) that represents the relative
proximity among road agents. They also present a rule-based
behavior prediction algorithm to forecast whether a road
agent is overspeeding (aggressive), underspeeding (conser-
vative), or neutral, based on the traffic behavior classifica-
tion from the psychology literature. They evaluate their ap-
proach on the Argoverse, Lyft, Apolloscape, and NGSIM
datasets and highlight the benefits over prior trajectory pre-
diction methods.

Elhenawy at al. (Elhenawy et al. 2015) introduce a real
time game-theory-based algorithm that is inspired by the
chicken-game for controlling autonomous vehicle move-
ments at uncontrolled intersections. They assume that all



vehicles communicate to a central management center in the
intersection to report their speed, location and direction. The
intersection management center uses the information from
all vehicles approaching the intersection and decides which
action each vehicle will take. They further assume that ve-
hicles obey the Nash-equilibrium solution of the game and
will take the action received from the management center.
Unfortunately, these assumptions are very strong and cannot
be applied to our setting.

Camara at al. (Camara et al. 2018) suggest a more real-
istic game-theory model based on the sequential chicken-
game. The model assumes both agents share the same pa-
rameters Ucrash and Utime, both know this is the case, and
both play optimally from their state. It assumes that no lat-
eral motion is permitted, and that there is no communication
between the agents other than seeing each other’s positions.
The sequential chicken-game can be viewed as a sequence
of one-shot (sub-)games, which can be solved similarly. The
sub-game at time t can be written as a standard game theory
matrix, which can be solved using recursion, game theory,
and equilibrium selection to give values and optimal strate-
gies at every state. While they handle the case of a junction
by finding a Nash equilibrium and assuming that humans
obey it, we deal with the single track road and give not only
a game-theory analysis but also provide a novel Reinforce-
ment Learning solution that does not require assumptions
about humans and Nash equilibria.

There have been several previous works attempting to
model human behavior in normal form games (Wright
and Leyton-Brown 2010, 2014). Wright and Leyton-Brown
(Wright and Leyton-Brown 2010) collected the results of
multiple experiments from normal form games studied in
the literature, and showed how the human action distribution
can be modeled with high accuracy. However, our problem
is clearly more complex and cannot be modeled as a simple
normal form game.

Azaria el al. (Azaria et al. 2012, 2016) introduce SAP, a
social agent for advice provision. They show that humans
tend to ignore advice provided by a selfish agent. Therefore,
they suggest using some linear combination of the user’s
and the agent’s preferences. The exact ratio is determined
by simulating human behavior and selecting the ratio that
achieve the highest performance for the agent in simula-
tion. Therefore, both SAP and our work attempt to maxi-
mize agent performance and consider a linear combination
of both the user and the agent, however, the environment and
settings are completely different, as SAP is an agent for ad-
vice provision, and we use a grid environment. In addition,
the purpose of the linear combination used by SAP is to ad-
dress the issue of human trust, while in our work, it is used
to mitigate the uncertainty we have in our human model.
Furthermore, we propose a formula for obtaining our pro-
posed ratio, rather than running a simulation for obtaining
that value.

The Single Track Road Game
We now provide a formal definition for the single track road
game, which is the main focus of this paper. Two agents A
and B are placed on a 2 × n grid at both ends on the upper

row, where agent A is positioned at the upper right corner,
with coordinates (1, n), and agent B is positioned at the up-
per left corner, with coordinates (1, 1), each agent’s goal is
to maximize u(W ), their future outcome where W refers
to the agent. Each agent’s goal is to reach the other side in
a minimal number of steps, and without colliding with the
other agent. The set of actions available for each agent de-
pends on its location. In the upper row each agent can per-
form the following actions:
• Advance: move toward the other side.
• Stay: remain in current position.
• Down, move to the bottom row.

In the bottom row each agent can perform one of the follow-
ing actions:
• Stay: remain in current position.
• Up: return to the top row.

Both agents take actions synchronously, and do not observe
the other’s action before they take their own action. We de-
fine the reward function as follows:
• Collusion: if both agents collide, each agent loses 100

points, and the game ends.
• Arrived at destination: an agent that arrives at its destina-

tion receives a reward of 30 points. The game ends only
for the agent that has reached its destination, i.e., the sec-
ond agent continues to play until it reaches its destina-
tion, in which case it will receive a reward of 30 points
as well.

• Time loss: any agent that is still in the game (did not reach
its destination or collided with the other agent) loses 1
point each time-step.

Game Theoretical Analysis
In this section we present the game-theory analysis for the
single track road problem. Let x(W ) be the x coordinate
(column) of agent W and let y(W ) bet its y coordinate
(row). Let d(A,B) = x(A) − x(B). Note that if agent B
has passed agent A, d(A,B) will be negative.
Theorem. For two agents A,B in the 2×n grid of the single
track road game. The following strategies are in a sub-game
perfect Nash equilibrium:
• Agent A uses the following strategy:

– If y(A) = 1 (it is in the upper row) it takes action
Advance.

– If y(A) = 2 (it is in the lower row) it takes action Up.
• Agent B uses the following strategy:

– If y(B) = 1 (the agent is in the upper row):

* If d(A,B) ≥ 3 or d(A,B) < 0, it takes action Ad-
vance.

* If y(A) = 1 and d(A,B) = 1 it takes action Down.
* If y(A) = 1 and d(A,B) = 2, it may either take

action Stay or Down (or any mixed strategy of the
two).

– If y(B) = 2 (the agent is in the lower row):

* If d(A,B) ≤ 0 it takes action Up.



* If y(A) = 1 and d(A,B) = 1 it takes action Stay.
* If y(A) = 1 and d(A,B) ≥ 4 it takes action Up.
* If y(A) = 2 and d(A,B) ≥ 3 it takes action Up.
* Otherwise, it may either take action Stay or Up (or

any mixed strategy of the two).

Proof. The proof handles each of the agents separately and
shows that no agent should deviate from its determined strat-
egy under the assumption that the other agent remains with
its strategy. This is true also for any sub-game. Given agent
B’s strategy, agent A should not deviate, as deviation will
either cause it longer to reach its destination (resulting in a
lower reward), or to collide with agent B (if it decides to take
action Down when agent B is directly below it), resulting in
a much lower reward. Similarly, given agent A’s strategy,
agent B should not deviate, due to the following:

• If y(B) = 1 (the agent is in the upper row):
– If y(A) = 1 and d(A,B) = 1, under the assump-

tion that A would Advance, taking an action other than
Down would lead to a collision, which will result in a
very low reward.

– If d(A,B) ≥ 3 or d(A,B) < 0, so either agent A is
very far or it has already passed agent B. Therefore,
there is no risk of collision, and deviating and taking
action Down or Stay will result in arriving later at the
destination, which will result at a lower reward.

– If y(A) = 1 and d(A,B) = 2, deviating and taking
action Advance would result in a collision. Therefore,
agent B should take either action Down or Stay (or any
mixed strategy of the two).

• If y(B) = 2 (the agent is in the lower row):
– If d(A,B) < 0, there is no risk of a collision since

agent A already passed agent B. Therefore, deviating
and playing Stay delays B’s arrival at the destination.

– If y(A) = 1 and d(A,B) = 1, playing action Up (in-
stead of Stay) will lead to a collision, resulting in a
lower reward.

– If y(A) = 1 and d(A,B) ≥ 4, since there is no risk
of collision, taking action Up will yield the greatest
reward, and any other action will cause it to reach the
destination later.

– If y(A) = 2 and d(A,B) ≥ 3, similarly, any action
other than Up will cause a delay in arriving at the des-
tination.

– Otherwise, agent B can choose whether to take action
Stay or Up because there is no risk of a collision and it
will not affect the arrival time. We note that if it takes
action Up and agent A follows its strategy, agent B’s
next action will be Down.

Clearly, due to the symmetry of the game, agents A and
B may switch policies and the resulting set of strategies will
be in equilibrium. However, since both sets of policies and
equilibria are symmetrical, we cannot predetermine which
equilibrium to select. Furthermore, as we will show in the

experiments, human agents, in most cases, do not follow any
of the above strategies (see section ).

Socially Aware Reinforcement Learning
(SARL)

To solve the single track road problem, we introduce the
Socially Aware Reinforcement Learning agent (SARL). For
SARL, we model the problem as an MDP, in which the hu-
man is a part of the environment. A state is composed of
the current location of both agents, as well as the location
of both agents in the previous timestep, which serves as a
model of the velocity. In order to model human behavior,
we use a data-set of humans interacting in the single track
road problem, and for each state we compute the fraction of
humans that were in that state and took each of the possi-
ble actions. We apply the Laplace rule of succession (Zabell
1989). Given state s, let

As = {a ∈ A : apermitted froms}

where A is the set of all actions. For a ∈ As let |as| be the
number of times in the dataset that action a was performed
from state s and let ns =

∑
a∈As

|as| be the total number
of actions performed from s. We assume that the probability
that the human will take action a at state s is

P(a|s) = |a|+ 1

ns + |As|
.

We use value iteration, an MDP planning algorithm,
which is based on dynamic programming, for solving the
MDP (Sutton and Barto 2018). The value iteration guaran-
tees to find the optimal policy, under the assumption that
the MDP model, which includes the human model, is accu-
rate. Clearly, policy iteration would have yield the same pol-
icy, and model free reinforcement learning methods, such
as q-learning (using a simulation), should also converge to
the same policy, if allowed enough running time. However,
since our human model is inaccurate, instead of using the
common approach for solving the MDP by trying to maxi-
mize the agent’s outcome directly, SARL uses a linear com-
bination of its own outcome and the human’s outcome. It
is important to note that SARL is still selfish, it consid-
ers the human’s outcome only because this is its way to
maximize its own outcome. It is interesting to note that it
has been shown in the field of psychology that people who
consider other people’s goals and show empathy, feel better
with themselves and are more likely to reach their own goals
(Carey, Tai, and Griffiths 2021). Furthermore, reciprocation
and cooperation may result in the human returning a favor.

However, since our human model is based on a limited
data-set size, we propose to incorporate our knowledge re-
lated to the human reward function into the optimization
problem. Yet, instead of trying to use the human reward
function as a part of the human model or the transition func-
tion of the MDP, we propose to add it to the objective func-
tion of the agent. To that end, we define the parameter β, a
value between 0 and 1, that quantifies the degree to which
the agent considers its own outcome and the human’s out-
come. Namely, the agent, A, instead of optimizing towards



u(A), optimizes towards βu(A)+(1−β)u(B). We note that
when β = 1 the agent optimizes towards its own outcome. A
β value of 0.5 denotes that the agent tries to optimize the so-
cial outcome (i.e., 0.5u(A) + 0.5u(B), which is identical to
optimizing simply towards u(A) + u(B)), and when β = 0
the agent only considers the human’s utility function.

In general, for a two player game, in which one of the
players is human, and given a data-set we propose a formula
for computing the β value as follows. Let the vectors RA

and RB , of length n, denote the final outcomes in the data-
set for players A and B, respectively for each episode. The
following formula provides the proposed β value to be used
by SARL:

β =
1− correl(RA, RB)

2
.

correl(RA, RB) is the correlation between RA and RB ,
which is computed by:

correl(X,Y ) =

∑
xi∈X,yi∈Y

(xi − x̄)(yi − ȳ)√ ∑
xi∈X

(xi − x̄)2
∑

yi∈Y

(yi − ȳ)2
.

For example, in a zero-sum game, the correlation between
the rewards of both players is −1; therefore, the agent will
ignore the human’s outcome and only maximize its own. On
the other hand, when the rewards of both players are inde-
pendent, the correlation will be 0. Therefore, β will be 0.5,
that is, the agent will consider both rewards equally. In a
game that is more cooperative the human’s utility function
is not as different from the agent’s, and therefore the value
of β is lower.

Problem Specification
We use a 2× 6 grid to model the single-road game problem,
and the reward functions described in Section (see Figure
1). We set the discount factor, γ, to 0.999, so that the overall
return is very close to the sum of the rewards.

We define a state as a pair (i, j) in which i is a position
of the autonomous agent, and j is a position of the human
agent. We refer to this state representation as a state with-
out velocity. We also use a more complex representation of a
state by considering also the previous locations of both play-
ers; this representation is referred to as a state with velocity.
That is, a state is a tuple of two pairs ((i, j), (l, k)), where
the first coordinate of each pair corresponds to the position
on the board of the autonomous agent, and the second coor-
dinate corresponds to the position of a human agent. The first
pair, (i, j), is the current state of the two agents, and the sec-
ond pair, (l, k), is their previous state. Accounting for both
players’ velocity allows the composition of a more accurate
human model, which is a part of the transition function.

Since the game ends only when both players reach their
destination (or collide with each other), in order to model
the problem as an MDP with an objective function that also
considers the human’s reward function we had to slightly
modify the reward function. This is because a standard MDP
only considers the agent’s point of view while the human is
considered a part of the environment. Given β and a state

s, let remainingSteps(s,X) be the number of remaining
steps from state s for agent X , where X is either the au-
tonomous agent or human player.
• If the two agents collide, the reward is

β · (−100) + (1− β) · (−100).

• If the autonomous agent has not yet reached the destina-
tion but the human agent has, the reward is

β·(30−remainingSteps(s, autonomous))+(1−β)·30.

• If the autonomous agent has reached the destination and
the human agent has not, the reward is

β · 30 + (1− β) · (30− remainingSteps(s, human)).

• For any other step, the reward is

β · (−1) + (1− β) · (−1).

Experimental Design
In order to compose the data-set and evaluate SARL’s per-
formance, we recruited 470 participants from Mechanical
Turk (Paolacci, Chandler, and Ipeirotis 2010) to play the
single road game. The participants first read the game in-
structions and were then required to answer three short and
simple questions, to ensure that they had read and under-
stood the instructions. The participants then played the game
only once. Upon completion (either by reaching the other
side, or if colliding with the other agent), the participants
provided demographic information including whether they
have a valid driving license, an expired driving license or no
driving license. In addition, the participants were asked to
state how much they agreed with each of the following five
statements:
1. The agent played aggressively.
2. The agent played generously.
3. The agent played wisely.
4. The agent was predictable.
5. I felt the agent was a computer.
We used a seven point Likert-like scale (Joshi et al. 2015)
for these statements, ranging from strongly disagree (1) to
strongly agree (7).
446 participants completed the game and answered the

survey. We used the following 4 different baseline agents
for the data gathering phase.
1. Careful: an agent that adheres to the strategy of agent B

in Theorem . That is, it tries to move left, but tries to avoid
colliding with the other agent as well, so if moving left
may risk colliding with the other agent it stays in place. If
staying in place also risks colliding with the other agent,
it moves down.

2. Aggressive: an agent that adheres to the strategy of agent
A in Theorem . That is, the agent always moves left.

3. Semi-aggressive: an agent that moves left unless the
other agent is already there, in which case it stays in place
until the other agent moves out of its way.

4. Random: an agent that moves randomly.



Results
In this section we present a comparison of all agents men-
tioned above and show that SARL significantly outperforms
all other agents. In addition, we consider the following
agents:

1. Non-Velocity VI: runs a value iteration on the MDP with-
out velocity using the appropriate human model.

2. Velocity VI: runs a value iteration on the MDP with ve-
locity using the appropriate human model.

3. Equal Social VI: uses value iteration to maximize the sum
of the agent’s and the human’s utilities (i.e., used a β
value of 0.5).

The agent’s score is calculated by averaging all its scores in
each game it plays. We begin by comparing the performance
of each of the agents. Figure 2 presents a comparison be-
tween the performance of all baseline agents, Velocity and
Non-Velocity Value Iteration (β = 1), Equal Social Value
Iteration (β = 0.5) and SARL (β = 0.13). As depicted by

Figure 2: A comparison between the performance of all
baseline agents, Velocity and Non-Velocity Value Iteration
(β = 1), Equal Social Value Iteration (β = 0.5) and SARL
(β = 0.13).

Figure 2, SARL significantly outperforms all other agents
(p < 0.01) in terms of the agent’s performance. Further-
more, it is the only agent that achieved a positive average re-
ward. We also note that the agent that uses the state represen-
tation with velocity obtained slightly better results than the
agent that used the non-velocity state representation, though
these differences are not statistically significant. We now
turn to evaluate the human’s score when playing with each
of the agents. Although the agents are designed to be selfish,
clearly, it is more beneficial if also the human player would
result with a better score. Table 1 presents the performance
of each of the agents along with the performance of the hu-
mans playing against them.

As shown in Table 1, SARL also significantly outper-
forms all other agents (p < 0.01) in terms of the human’s
performance.

In addition, we tested the performance of a velocity value
iteration agent with the β value set to 0. That is, an agent
that only considers the human reward. Interestingly, such an
agent simply moves down and remains there forever. This

Table 1: A comparison between the performance of each of
the agents along with the human player who played against
each of them.

Avg.
agent’s
score

Avg.
human’s
score

Avg.
social
welfare

Careful -2.29 -0.86 -3.15
Aggressive -16.27 -18.40 -34.67
Semi-aggressive -60.97 -62.11 -123.08
Random -59.40 -57.62 -117.02
Non-Velocity VI -6.34 -9.03 -15.37
Velocity VI -5.33 -6.03 -11.36
Eq. Social VI -2.35 -4.09 -6.44
SARL 15.87 17.12 32.99

is because this way it does not disturb the human. Unfortu-
nately, such an agent achieves a final outcome of −∞ (or
− 1

1−γ ) because it can never reach its destination, since the
when the human’s reaches her goal, the agent is directly be-
neath her.

Next, we evaluate the prediction of the policy evaluation
algorithm, using both forms of state representations (i.e.,
with and without velocity). Table 2 presents the prediction
compared with the actual score of every agent. As can be
seen in the table, the prediction that uses a state represen-
tation with velocity outperforms the prediction that uses a
state representation without velocity. However, both predic-
tions performed badly, and imply that our human model is
not accurate, as an accurate human model would have re-
sulted with an accurate prediction. This demonstrates that
it is not enough to rely on the dataset, and strengthens the
need for the socially aware approach, which also considers
the human’s rewards.

Table 2: The accuracy of the prediction of a policy evalu-
ation algorithm using a model with velocity and a model
without velocity.

True
score

Prediction
with velocity
(error)

Prediction
without ve-
locity (error)

Careful -2.29 -14.41 (12.12) -4.86 (2.57)
Aggressive -16.27 -6.21 (10.6) 1.14 (17.41)
Semi-aggressive -60.97 -56.47 (4.5) -47.81 (13.16)
Non-Velocity VI -6.34 0.51 (6.85) 13.63 (19.97)
Velocity VI -5.33 14.47 (20.02) N/A
Social VI -2.35 12.34 (14.69) N/A
SARL 15.87 7.55 (8.32) N/A

We now turn to analyze the survey results for each agent
(see Table 3). Each value in the table is the average of all
the scores of the measured values: Aggressively, Computer,
Generously, Wisely and Predictable. Note that the lower
the ‘Aggressively’ and ‘Computer’ parameters, the better
the performance. On the other hand, the higher the ‘Gener-
ously’, ‘Wisely’ and ‘Predictable’ parameters, the better the
performance. As can be seen in Table 3, SARL obtained the



Table 3: Survey results of all agents

Aggress. Comp. Generous Wise Pred.
Careful 3.94 5.70 4.23 4.92 4.28
Aggressive 5.04 5.83 3.28 4.59 4.97
Semi-aggressive 4.57 5.73 3.21 4.33 4.52
Random 3.51 5.64 4.01 3.72 3.57
Non-Velocity VI 4.88 6.20 3.27 4.65 4.82
Velocity VI 4.82 6.01 4.20 4.72 4.76
Social value iteration 4.78 5.60 3.69 4.92 4.98
SARL 3.30 5.58 5.14 5.01 4.00

best results compared to the other agents among all parame-
ters except its score on Predictable. These results entail that
SARL demonstrates a clear improvement over all the other
agents.

Next, we compare the performance of the humans ac-
cording to their demographic information. We did not find
any significant differences between male and female play-
ers, with female participants obtaining an average of −25.98
and male participants an average of −25.66. Similarly, ed-
ucation level did not seem to have any impact on the per-
formance of the participants. Most interestingly, participants
with a driving license that has expired obtained a much
lower average score (−60.15) than those with a valid driv-
ing license (−24.77) and those without a driving license. Al-
though these differences appear to be statistically significant
using a one-tail t-test (p < 0.05), this result requires deeper
investigation, as the number of participants whose driving
license has expired is only 13. Furthermore, an ANOVA test
(Rogan and Keselman 1977) does not show that these differ-
ences are statistically significant.

Finally, we present the number of human participants who
followed a strategy that could be in a Nash equilibrium. As
can seen in Figure 3, only a small portion of the participants
followed one of the two strategies that could be in equi-
librium: the ‘Careful’ strategy or the ‘Aggressive’ strategy.
Clearly, most of the participants did not follow a strategy
that could be in a Nash equilibrium.

Figure 3: The number and percentage of human participants
who followed a strategy that could be in a Nash equilibrium
as well as the number and percentage of them who did not
follow any strategy in equilibrium. The error bars present the
95% confidence interval.

Conclusions and Future Work

In this paper we present the single track road problem. In
this problem two agents face each-other at opposite posi-
tions of a road that can only have one agent pass at a time.
We focused on the scenario in which one agent is human,
while the other is an autonomous agent. We ran experiments
with human subjects in a simple grid domain, which simu-
lates the single track road problem. We showed that when
data is limited, building an accurate human model is very
challenging, and that a reinforcement learning agent, which
was based on this data, did not perform well in practice.
However, we showed that a social agent, i.e., an agent that
tried to maximize a linear combination of the human’s utility
and its own utility, achieved a high score, and significantly
outperformed other baselines, including an agent that tried
to maximize only its own utility. We provided a formula to
compute what we believe to be a good choice for the β pa-
rameter, i.e., the ratio between the human’s and the agent’s
utility when attempting to maximize the agent’s utility. In
addition, we showed that the human achieved highest utility
when interacting with SARL, a value that was significantly
higher than when interacting with any other baseline agent.
Furthermore, SARL was perceived by humans as less ag-
gressive, more generous and wiser than all other baselines.

In future work we intend to show that SARL performs
well also when considering other, possibly very different,
settings. One option for such a setting is a setting with
a continuous state space as well as a continuous action
space. We further intend to utilise the idea of using a so-
cial agent approach, learned in the grid game environment,
and to adapt SARL to a simulated autonomous vehicle envi-
ronment with human drivers controlling simulated vehicles.
Once we perform well in the simulated environment, we ex-
pect to run SARL in a real single-track-road scenario, with
an autonomous vehicle and human drivers. We hope to show
that SARL will perform well in the real-word environment,
and that a social agent approach will be useful in practice.
Another direction for future work is to focus on situations
in which the human reward function is not available apri-
ori. Such a situation would challenge the use of SARL, as it
uses the human reward function for computing its objective
function. One appealing option may be to use inverse rein-
forcement learning (Ng, Russell et al. 2000) to first learn the
human’s reward function, and then, to use this function to
compute the optimal policy for SARL.
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