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Abstract

Despite committees and elections being widespread in the
real-world, the design of agents for operating in human-
computer committees has received far less attention than the
theoretical analysis of voting strategies. We address this gap
by providing an agent design that outperforms other voters in
groups comprising both people and computer agents. In our
setting participants vote by simultaneously submitting a rank-
ing over a set of candidates and the election system uses a so-
cial welfare rule to select a ranking that minimizes disagree-
ments with participants’ votes. We ran an extensive study
in which hundreds of people participated in repeated voting
rounds with other people as well as computer agents that dif-
fered in how they employ strategic reasoning in their voting
behavior. Our results show that over time, people learn to
deviate from truthful voting strategies, and use heuristics to
guide their play, such as repeating their vote from the pre-
vious round. We show that a computer agent using a best
response voting strategy was able to outperform people in the
game. Our study has implication for agent designers, high-
lighting the types of strategies that enable agents to succeed
in committees comprising both human and computer partic-
ipants. This is the first work to study the role of computer
agents in voting settings involving both human and agent par-
ticipants.

Introduction
Voting systems have been used by people for centuries
as tools for group decision making (Riker and Ordeshook
1968; Cox 1997; Palfrey 2009). More recently, voting
and aggregation methods have been utilized by comput-
ers for tasks such as aggregating search results from the
web (Dwork et al. 2001), collaborative filtering (Pennock
et al. 2000) and planning (Ephrati, Rosenschein, and others
1993).

In virtually all electoral systems, participants can affect
the result of the election by manipulating their vote, and such
strategic voting behavior has been studied from both a theo-
retical and psychological perspective. As computers become
ubiquitous in people’s lives, heterogeneous group activities
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of computer systems and people are becoming more preva-
lent. As a result, opportunities arise for computer agents to
participate in voting systems, whether as autonomous agents
or proxies for individual people. As an example, consider a
recent on-line poll for ranking the world’s seven wonders.1
Suppose a user prefers the Golden Gate Bridge to Yellow-
stone Park. However, the user’s most preferred choice—
the Big Sur—is in close competition with the Golden Gate
Bridge. Based on its beliefs about others’ rankings, the
proxy agent may reverse this preference in the user’s ranking
in order to ensure that Big Sur is chosen.

The contribution of this paper is an agent-design that
outperforms other voters in mixed network settings involv-
ing both human and computer participants. In our set-
ting all participants are assigned a preferred ranking over
a set of candidates prior to commencing a series of vot-
ing rounds. At each round participants vote by simultane-
ously submitting a ranking over the set of candidates. The
election system adapts the Kemeny-Young method (1978;
1959) that minimizes the sum of conflicts with the votes that
are submitted by the participants. The utility of participants
is proportional to the extent to which the chosen ranking
agrees with their preferences. Such settings are analogous
to real-world voting scenarios such as rating grant proposals
and ranking applicants for positions in academia, industry or
competitions.

We designed a three-player game that implements the vot-
ing system described above using a budget allocation anal-
ogy. The preferences of participants over the various sec-
tors were chosen such that players could potentially improve
their score in the game if they deviated from their truthful
vote. We formalized several voting strategies for the game
that differ in the extent to which they reason strategically
about other’s voting behavior. We conducted an extensive
empirical study in which hundreds of human subjects played
this game repeatedly with other people as well as computer
agents that varied in the extent to which they voted strate-
gically. We hypothesized that over time, people would vote
less truthfully, and that computer agents using various levels
of strategic voting would be able to outperform people.

Our results show that people deviate more from their

1http://world.n7w.com/. Other examples exist, like sites for
ranking Time Magazine’s 100 most influential people.



truthful votes in later rounds than in earlier rounds, but that
this deviation does not necessarily result in an improvement
in performance. Although people’s behavior was erratic,
about 40% of the time their actions corresponded to voting
their true preferences or repeating their vote in the previous
round. A computer agent using a best-response strategy to
people’s voting actions in the previous round was able to
outperform people, as well as a baseline agent that consis-
tently voted according to its true preferences. The efficacy
of the best-response agent is highlighted by the fact that its
performance was not significantly different than that of an
oracle strategy that used the optimal vote in retrospect. The
significance of this work is in demonstrating the success of
using computational voting strategies when interacting with
people. It is the first work to study the performance of agents
using different voting strategies in mixed networks involving
people and other computer agents.

Related Work
Voting systems and their convergence have been studied
extensively in computer science (Meir et al. 2010; Rei-
jngoud and Endriss 2012) and economics (Gohar 2012;
Dhillon and Lockwood 2004). The most widely used vot-
ing rule is the plurality rule, in which each voter has one
vote and the winner is determined as the candidate that re-
ceives the highest number of votes. Other popular voting
rules, such as the Borda rule, allow voters to order the can-
didates, and the winner is determined by the candidate that
receives the most points (relative to its positions in all of the
voters’ rankings). However, all voting rules are susceptible
to manipulation, that is, self-interested players have an in-
centive to vote strategically against their true preferences in
certain situations (Gibbard 1977; Satterthwaite 1975). Con-
sequently, studies in behavioral economics emerged which
studied the effect of these voting rules on people’s voting
strategies (Regenwetter and Rykhlevskaia 2007). Specifi-
cally, Forsythe et al. (1996) studied the effect of different
voting rules on people’s voting strategies in three-candidate
elections in which a single candidate is elected and there was
full information about voters’ preferences. They showed
that people generally diverge from truthful voting, and that
over time, they learn to cast votes that are consistent with
a single equilibrium. In a follow-up study, Bassi (2008)
showed that people invoked different voting strategies de-
pending on the voting rule implemented by the system. In
particular, incorporating a simple plurality voting rule led
people to adopt more strategic voting than when incorporat-
ing the Borda rule which was based on ranking the candi-
dates. Our research extends these studies in two ways. First,
we consider more complex settings in which the voting sys-
tem outputs a ranking over the candidates, rather than a sin-
gle winning candidate. Such settings occur frequently in the
real world, yet people’s behavior in such voting systems has
not been studied. We hypothesized that people do not play
equilibrium strategies in these settings, and thus computer
agents will need to adopt other types of voting strategies
in order to succeed. Second, it provides a first study that
compares the performance of computational strategies with
people’s voting behavior.

There is significant work in economics on the design of
voting systems in which agents submit total rankings over
candidates (Dokow and Holzman 2010). However, there is
scant work about modeling people’s behavior in such set-
tings. A notable exception is the work by Mao et. al (2012)
that compared the performance of several voting strategies
for aggregating people’s ranking of solutions to optimization
problems. They did not study the effect of computer agents
using different voting strategies on people’s behavior.

Social Rankings
In this section, we describe how we adapted a popular voting
system from the economics literature to be used in commit-
tees that include both humans and computer agents. We first
provide the following definitions. Let N be a set of agents
and C be a set of candidates. A ranking of C is a total order
over the set C. Let L denote the set of all possible rank-
ings of C. Each agent i has a preferred ranking pi ∈ L over
C. A profile pN ∈ LN is the set of preferred rankings for
each agent in N . A vote of agent i is a ranking vi ∈ L, and
vN ∈ LN denotes a set of votes for all agents in N . A social
welfare function f : LN → L provides a ranking f(vn) ∈ L
for any vN ∈ LN .

A candidate pair a, b ∈ C (w.l.o.g) is called an issue. Fol-
lowing notation introduced by Wilson (1975) we represent a
ranking using a binary vector {0, 1}K , where K =

(|C|
2

)
is

the number of issues (all possible pairs in C). There exists
a single corresponding entry in the vector for each issue that
equals “1” if a � b in the ranking and “0” if b � a. For
example, consider a committee with N agents that needs to
prioritize the following candidates for a budget: education
(e), defense (d) and health (h). The first entry in the vec-
tor representing a ranking over the candidates will specify
whether e � d; the second entry will specify whether d � h;
and the third entry will specify whether h � e. For example,
the vector (110) represents the ranking e � d, d � h, e � h.

The distance between two vectors v1 and v2, denoted
d(v1, v2), is the Hamming distance between v1 and v2. We
extend this notion to provide a distance metric between a set
of vectors vN and vector v.

d(vN , v) =
∑
i∈N

d(vi, v) (1)

Social Welfare Rules
Let f(vN ) represent the ranking that is chosen by applying
the social welfare rule f to the set of votes vN . We define the
utility for agent i given f(vN ) as reversely proportional to
the distance between f(vN ) and the agent’s preferred rank-
ing pi. We add a constant that is equal to the number of
issues K to ensure that utilities are greater or equal to zero.

ui(f(v
N )) = K − d(pi, f(v

N )) (2)

The set of all possible rankings for three candidates is
L = {(001), (010), (100), (110), (101), (011)}. Impor-
tantly, any ranking of C can be represented as a vector
of order K, but not all vectors of order K are rankings.
Specifically, for the 3-candidate example described above,
(111) and (000) are the only vectors describing the cycles



e � d � h � e and h � d � e � h, respectively. They do
not represent valid rankings and therefore are not in L.

A natural candidate for designing social welfare rules for
human-computer settings is the majority method: choosing
the value that agrees with the majority of agents’ votes for
each issue. There are several advantages to this rule: It ful-
fills canonical conditions of voting systems from the social
choice literature, namely non-dictatorship, independence of
irrelevant alternatives and pareto optimality (May 1952); it
is the unique vector that maximizes agents’ utilities; it is
natural and intuitive to explain to people in the lab. How-
ever, the majority method may not produce a valid ranking
for some voting profiles. For example, for the voting profile
vN = {(110), (011), (101)} the majority method will pro-
duce the ranking (111) /∈ L which as we have shown above
is not a valid ranking.

We therefore need an alternative method for combining
agents’ votes that preserves as many qualities of the majority
method as possible, while still producing a valid voting rule.
To this end, we will define the following set:

MINvN = {v ∈ L | ∀v′ ∈ L, d(vN , v) ≤ d(vN , v′)} (3)

Intuitively, the set MINvN includes those rankings in L
that minimize the total distance to agents’ votes vN . For
the voting profile vN given in the above example, the set
MINvN = {(110), (101), (011)} (this is because the dis-
tance between each of these rankings and vN is 4, whereas
the distance between the other rankings in L and vN is 5).

Our Social Welfare Rule
We can now define a social welfare rule for our setting as a
function f̃ such that f̃(vN ) ∈ MINvN for any vN ∈ LN .
This rule, called Kemeny-Young (1978; 1959), is a primary
method for choosing a valid ranking given that agents’ sub-
mits rankings over candidates. Computing the Kemeny-
Young rule is an NP-Hard problem (Dwork et al. 2001) and
recent work has proposed algorithms for computing bounds
on this computation using search techniques (Conitzer, Dav-
enport, and Kalagnanam 2006).2 A particular advantage
of using this method is that when the majority method
outputs a valid ranking in L, MINvN is a singleton and
f̃(vN ) reduces to the majority method. For the case where
|MINvN | ≥ 2, we define f̃(vN ) to equal the ranking in
MINvN that is first according to lexicographical order.3 For
the set of agents’ votes vN in our example this social welfare
rule will produce the ranking f̃(vN ) = (011).

Voting Strategies
In this section we present and formalize several voting
strategies. The most intuitive voting strategy for agents is to
vote according to their preferred rankings. We say that a vote

2In practice, the computation of a Kemeny-Young rule was fea-
sible for our setting, which included 4 candidates and 3 partici-
pants. For 3 participants, the Kemeny-Young rule is equivalent to
using the Slater aggregation rule (Conitzer 2006).

3Other possibilities exist, like random. We chose an intuitive
deterministic option.

vi of agent i is truthful if vi is equal to the agent’s preferred
ranking pi. To illustrate, we extend the three-candidate ex-
ample to include an additional candidate t (transportation).
This is shown in Table 1, which lists the rankings of three
voters over four candidates. (This was one of the preference
profiles used in our empirical study that is described in the
following section). When all agents vote truthfully, we have
vN = pN and the chosen ranking f̃(vN ) assigns utilities
4, 4, 3 to agents 1,2 and 3 (shown in the right-most column
of the table).

It can be shown that for three candidates, no agent can
do better than to vote according to its true preferences un-
der this voting rule (Dokow and Holzman 2010). However,
this is not the case in general. In fact, even for four can-
didates, players may be able to improve their outcome by
deviating from their truthful vote. The situation in which an
agent deviates from its true vote, that is vi 6= pi, is called
manipulation. For the social welfare rule f̃ , when |C| = 4,
there exists a set of preferred rankings for which agents can
improve their utility by manipulating their vote (Dokow and
Holzman 2010). We illustrate using our example. Suppose
agent 1 changes the value of issue (d, e) from 1 to 0 (with
the values for all other issues staying the same) and agents 2
and 3 vote truthfully. (This manipulation is shown in paren-
theses in the first line of Table 1). In this case, the resulting
rank f̃ changes to the one shown in the last line of the table.
As a result, agent 1 improves its utility to 5, while the other
agents’ utilities reduce to 3 and 2 (shown in parentheses in
the last column of the table).

We now formalize an interesting set of voting behavior
that differ in the “sophistication” of agents’ reasoning about
how other agents. Recall that vN−i denotes the set of votes
for all agents other than i. Given the social welfare rule f ,
and the set of votes vN−i for all agents other than i, we
define a set of best-response votes for agent i as follows:

BRi(v
N−i) = argmaxv′∈Lui(f(v

N−i, v′)) (4)

Importantly, the best-response vote for agent i depends on
the votes of all other agents N \ {−i}. We say that that a
vote for agent i is Level-0, denoted vl0i if it is a best-response
for agent i given that all other agents vote truthfully, that is,
vl0i ∈ BRi(p

N−i). The manipulative vote d � e � h � t
for agent 1 in the first line of Table 1 is level-0, because it
maximizes its utility given that the other agents vote truth-
fully. Similarly, we say that a vote for agent i is Level-1,
denoted vl1i , if it is the best-response vote for i given that the

other agents vote level-0, that is, vi ∈ BRi((v
l0
i )

N−i
). For

example, the level-1 vote for agent 3 is h � d � t � e.
Lastly, a set of votes vN ∈ LN is a Nash equilibrium for a
social welfare rule f if-and-only-if for each agent i, it holds
that

∀v′ ∈ L, ui(f(v
N−i, vi)) ≥ ui(f(v

N−i, v′)) (5)

In our example, the case in which agent 1 submits a truth-
ful vote (e � d � h � t), agent 2 submits a level-0 vote
(t � e � d � h), and agent 3 submits a truthful vote
(h � t � d � e) is Nash equilibrium for the social wel-
fare rule f̃ in which the chosen ranking is t � e � d � h.



e � d d � h h � e e � t d � t h � t ui(f̃(v
N ))

v1 = p1 (v
l0
1 ) e � d � h � t (d � e � h � t) 1 (0) 1 0 1 1 1 4 (5)

v2 = p2 e � t � d � h 1 1 0 1 0 0 4 (3)
v3 = p3 h � t � d � e 0 0 1 0 0 1 3 (2)
f̃(vN ) e � h � t � d (d � e � h � t) 1 (0) 0 (1) 0 1 0 (1) 1

Table 1: Truthful and strategic voting example for 3 agents and 4 candidates

Figure 1: Snapshot of the Budget Allocation Game

This profile incurs utilities of three points for agent 1, five
points for agent 2 and two points for agent 3.

Having defined the set of voting strategies above, the nat-
ural question to ask is how agents should vote in mixed
human-computer settings where the possibility of manipu-
lation may increase participants’ performance. We explore
this question in the next section.

Empirical Methodology
To study people’s voting behavior we designed a “budget al-
location” game in which N agents vote to allocate a budget
among a set of candidates C. Each agent is assigned a pre-
ferred ranking over the four candidates, and this information
is common knowledge among all agents. The game com-
prises a finite number of rounds. In each round, all agents
simultaneously submit a set of votes vN . Each of these votes
is a ranking over C (players do not actually propose a split
of a monetary budget). The chosen ranking f̃(vN ) is com-
puted using the process defined in the previous section. Each
agent’s score is computed using Equation 2. Players can ob-
serve each other’s votes for past rounds, as well as the cho-
sen ranking and their respective scores. Agents’ preferred
ranking remain constant across rounds.

We implemented a version of the budget allocation game
in which there are three players and four candidates: educa-
tion, transportation, health and defense. A snapshot of the
main game board is shown in Figure 1 from the point of
view of “Player 1”. The board shows the preferences of the
three players in the game, as well as an editable ranking that
player can modify and submit as its vote.

Rules of the Game
The budget allocation game is played repeatedly for five
rounds. At the onset of the game, each player i is assigned
a preference pi over the candidates C. This information is

common knowledge (all players can see each other’s prefer-
ences as shown in Figure 1), and stays constant throughout
the game. At each round, the three players simultaneously
submit their votes vN = {v1, v2, v3}. The chosen ranking
is computed according to f̃ and each player incurs a score
that is equal to its utility ui(f̃(v

N )). Players have three min-
utes in which to submit their votes at each round (in practice,
all subjects took well below 3 minutes to vote). If no vote
is submitted, then a default vote is selected as follows. In
the first round, the default vote for each player i is simply
its preferred vote pi. The default vote for each consecutive
round is the ranking that the player submitted in the previous
round. Once all players have submitted their rankings, the
chosen ranking and scores are displayed to all of the play-
ers. In particular, all players can see each other’s choices
and incurred utilities. The bottom panel of Figure 1 shows
the chosen ranking given that all players voted according to
their preferred rankings. As shown by the Figure, the chosen
ranking f̃(vN ) is e � h � t � d.

There are two arguments for using this game to study hu-
man and computational voting strategies. First, four candi-
dates is the smallest number for which manipulation may
be beneficial, as we have described in the previous section.
Second,the fact that players vote repeatedly allows them to
adapt their voting behavior over time, and reflects real-world
settings such as annual budget decisions and recurring elec-
tions.

Preference Profiles
As described above, players’ scores for each round of vot-
ing depend on the extent to which the chosen ranking agrees
with their preferred ranking that is assigned to them at the
onset of the interactions. In real world voting scenarios,
some players may be in better positions than others to af-
fect the voting outcome. To reflect this we defined differ-
ent power conditions between committee players by varying
their assigned preference profile. Specifically, we used two
preference profiles in the study that differed in the extent
to which they allowed players to affect the voting result by
deviating from their truthful vote.

In the profile called “symmetric”, the preferred ranking
of player1 1 was e � d � h � t; the preferred ranking of
player 2 was e � t � d � h; the preferred ranking of player
3 was h � t � d � e. These rankings are the same as the
ones shown in Table 1, and are manifested in the game board
in Figure 1. If all players vote truthfully (we call this the
“naive” voting baseline), player 3 is at a disadvantage, be-
cause the chosen ranking will be e � h � t � d, incurring a
score of 4, 4, and 3 for players 1, 2 and 3, respectively. (the



outcome is “symmetric” from the point of view of players 1
and 2). Moreover, the naive voting baseline is not stable, in
the sense that player 1 and 2 can improve their score by vot-
ing strategically. Specifically, player 1 can improve its score
by voting its level-0 strategy of d � e � h � t, given that
other players vote truthfully. In this case, the scores will be
5, 3 and 2 for players 1, 2 and 3, respectively. In a similar
way, player 2 can improve its score over the naive baseline
by voting its level-0 strategy of t � e � d � h, given that
the other players vote truthfully. In this case, the scores will
be 4, 5 and 3 for players 1, 2 and 3, respectively. In fact,
this voting profile in which player 2 deviates from its truth-
ful vote, while player 1 and player 3 vote truthfully, is the
Nash Equilibrium for this preference profile. We also used
a profile called “asymmetric” in which the score of player 1
was higher than the score of player 2 and the score of player
3 if all players vote truthfully, but player 1 loses this advan-
tage if player 2 votes level 0 and other agents vote truthfully.
In our empirical study, this profile achieved similar results
to the symmetric profile, which we omit for brevity.

Empirical Methodology and Results
We recruited 335 human subjects from the U.S. to play the
game using Amazon Mechanical Turk. All participants were
provided with an identical tutorial of how to play the bud-
get allocation game, and their participation in the study was
contingent on passing a quiz which tested their knowledge
of the rules of the game. Participants were paid in a man-
ner that was consistent with their performance, measured by
accumulating their scores over five rounds of voting.

The subjects were randomly divided into three different
groups. The first group consisted of people playing the bud-
get allocation game with other people. The second group
consisted of two people playing the game with another com-
puter agent. The third group consisted of one person play-
ing the game with two other computer agents. As a baseline,
we also included a fourth group comprising solely computer
agents. Each participant (both people and computers) played
five rounds of the game. We hypothesized that (1) people
will be less likely to vote truthfully, and more likely to play
more sophisticated strategies; (2) that computer agents using
best-response strategies (Equation 4) would be more suc-
cessful when playing against people than computer agents
that vote truthfully. All reported results in the upcoming
section are significant in the p < 0.05 range using Analysis
of Variance (ANOVA) tests.

Analysis of Human Behavior
We first present an analysis of people’s behavior in the game
when playing with other people. In general, people’s strat-
egy significantly deviated from the Nash equilibrium voting
strategy. For example, in the symmetric profile, there were
only 7 out of 80 rounds played in the 3-person group con-
figuration in which a Nash equilibrium strategy was played,
which is not significantly different than random. As a group,
people’s voting behavior was noisy. Out of 80 rounds of
the budget allocation game that were played by three peo-
ple, 64 rounds included a unique set of vote combinations

Figure 2: Difference in people’s Naive (TR) and Best-
Response votes (BR) between earlier and later rounds in the
game.

(vN = 〈v1, v2, v3〉) that appeared only once. However, we
did find two interesting trends in people’s behavior as in-
dividuals. Specifically, 40% of people’s votes were “naive”
(votes that are truthful and consistent with their preferences),
while 44% of people’s votes repeated their vote in the previ-
ous round. As we describe later in the section, this behavior
was key in explaining the success of our computer agents.

To understand how people’s voting behavior evolved over
time, we compared between the number of naive votes (TR)
and best-response (BR) votes (best response to the votes of
the other participants in the previous round) for different
rounds of the game. Figure 2 shows the difference in the
average number of naive and best-response votes for each
role between rounds 4-5 and rounds 1-2 for games that in-
cluded three people or two people and one computer agent.
As shown in the figure, there was a drop in the number of
naive votes for all players between earlier and later rounds
in the game, confirming our hypothesis. In addition, the fig-
ure also shows an increase in the number of best-response
votes between earlier and later rounds in the game. We con-
jecture that this is because participants learned to be more
strategic about their voting behavior. However, this did not
lead to improved performance, as there was no significant
increase in people’s scores as rounds progressed. A possible
reason for this is the large strategy space in each round (64
possible ranking profiles), making it challenging for people
to predict others’ rankings when reasoning about how to ma-
nipulate. Interestingly, (and not shown by the figure) there
was no increase in the number of best-response votes for
people playing the role of Player 3 in the symmetric prefer-
ence profile. We attribute this to the inherent disadvantage
of this role in the game, in that it has a limited number of
voting strategies that can improve its score (as we described
in the previous section).

Agent-Design and Performance
We designed two types of computer agents playing deter-
ministic voting strategies. The first agent, called Previous
Round Best Response (PRBR), used the best-response vote
of Equation 4 to rank the candidates, given that all other



PRBR TR People
2 People 3.9 3.78 3.40
Agents 3.79 3.12 3.09

Table 2: Performance of computer agents and people for dif-
ferent group structures

Type Player 1 Player 2 Player 3
People 4.56 3.69 1.28
PRBR 4.87 4.04 2.78

TR 4.33 4.18 2.82

Table 3: Performance for different player roles in the sym-
metric preference profile

players repeat their vote in the previous round. That is,
vi ∈ BRi(v

N−i) where vN−i is the other agents’ votes in
the prior round. In the first round, it is assumed that vN−i
equals pN−i for all agents. The second agent, called truthful
(TR), provided a baseline voting strategy that ranked all can-
didates according to its assigned preferences, that is vi = pi
at each round t given that i is a TR agent. We did not use a
level-0 agent despite the fact that people were also likely to
vote truthfully. This is because this voting strategy is static
and easy to learn by people.

We first compare the performance of these computer
agents and people in groups comprising two other people
(that is, each game included a person or a computer agent
voting with two other people). The first row in Table 2
shows the average performance of people and agents across
all roles in the game for both preference profiles. As shown
in the table, the PRBR agent was able to outperform the TR
agent, and both PRBR and TR agents were able to outper-
form people. The second row of Table 2 shows the perfor-
mance of computer agents and people in groups comprising
two other computer agents (that is, each game included a
person or computer agent voting with two other agents). As
shown in the table, the PRBR agent also outperformed peo-
ple and the TR agent in this additional group configuration.
This demonstrates that the success of the best-response strat-
egy was independent of the group structure.

To compare performance for different roles, we present
Table 3 which compares performance for each role in groups
comprising a computer or person interacting with two other
people for the symmetric preference profile. As shown by
the Table, the PRBR agent was significantly more successful
than people in all player roles. In the role of Player 1, the
PRBR agent was significantly more successful than the TR
agent. Although the TR agent scored higher than the PRBR
agent in both Player 2 and Player 3 roles, this difference was
not statistically significant. We conclude that among the two
agent strategies we evaluated, the PRBR agent was the best
agent-design to play with people in our setting.

To induce an upper-bound on performance in the game,
we computed a strategy for an oracle agent that could ob-
serve people’s actual votes in the game prior to submitting
its own vote. The oracle strategy provides an upper bound
for agents’ actual performance in the game. We found no

Player Role Prev. round true
distance distance

1 0.86 1.1
2 1.18 1.51
3 1.51 1.70

avg. 1.18 1.43

Table 4: Distances between people’s votes in the game, their
votes in the previous round, and their preferred rankings.

significant difference between the performance of the PRBR
agent and the oracle, for the data that we obtained of peo-
ple’s behavior.

Lastly, we explain the success of the PRBR agent by com-
puting the Hamming distance between people’s votes in con-
secutive rounds of the game (termed “Prev. round distance”)
and the distance between their vote and the truthful vote
(termed “true distance”). The distance for different play-
ers’ roles is shown in Table 4. (This distance can take values
from 0 to 6, the number of possible issues.) As shown by the
table, for all roles, participants’ previous round distance was
smaller than their true distance. Because of this proximity,
playing a BR to people’s votes in the previous round was a
successful strategy for the agent.

To conclude, our results have implications for agent de-
signers, suggesting that the PRBR strategy is sufficient to-
wards enabling agents to perform well in voting systems
which aggregate people’s rankings over candidates. More
generally, they demonstrate the advantage of including com-
puter agents as autonomous actors in voting systems that in-
clude people.

Conclusion

This paper described a first study comparing people’s vot-
ing strategies to that of computer agents in heterogeneous
human-computer committees. In our setting participants
vote by simultaneously submitting a ranking over the set of
candidates and the election system uses the Kemeny-Young
voting system to select a ranking that minimizes disagree-
ments with participants’ votes. Our results show that over
time, people learned to deviate from truthful voting strate-
gies, and use more sophisticated voting strategies. A com-
puter agent using a best response voting strategy to people’s
actions in the previous round was able to outperform people
in the game. In future work, we intend to design computer
agents that adapt to people’s play in settings of incomplete
information.
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