

Ariel University

Deep learning methods solving

complex problems

A thesis submitted in partial fulfillment of the requirements for the degree

Doctor of Philosophy

By

Avigail Stekel

This work was prepared under the supervision of Professor Amos Azaria

Submitted to the Senate of Ariel University

03/07/2023

Type text here

Summary

 Deep learning has emerged as a powerful approach for solving complex problems in diverse

domains. Its ability to learn intricate patterns and representations directly from raw data

has transformed the field of artificial intelligence. In this work, we explore the application of

deep learning to address several distinct problems across different domains.

First, we investigate the Goldbach conjecture, a famous open problem in mathematics. The

conjecture states that every even number greater than two can be expressed as the sum of

two prime numbers. By developing a deep learning model, we aim to predict the number of

Goldbach partitions for a given even number. Surprisingly, our model outperforms existing

analytical estimations, without requiring prime factorization of the number. This

advancement brings us closer to solving one of the most prominent open problems in the

world of mathematics.

Next, we delve into the realm of privacy preservation. Our focus is on concealing personal

information from images while retaining other relevant features. To achieve this, we

propose a variational autoencoder (VAE) model trained on a dataset that includes labels of

the information to be concealed, such as gender or age. By directly adding these labels to

the VAE's sampled latent vector, we ensure that the model does not learn or access the

concealed information. Our method successfully conceals private information while

maintaining other image properties, as demonstrated through user studies. This approach

holds promise for privacy preservation and can mitigate bias in systems that rely on image

analysis.

Lastly, we explore the evolution of the Hebrew language, specifically the transition from

biconsonantal (2C) etymons to triconsonantal (3C) roots. Using the BHSA corpus, a manually

annotated dataset of the Hebrew Bible, and the Word2Vec method for semantic meaning

representation, we investigate the hypothesis of the evolution from 2C etymons to 3C roots

in biblical Hebrew. Our analysis reveals that words with different roots, likely originating

from the same 2C etymons, form denser clusters compared to random word sets. These

statistically significant findings strongly support the hypothesis and shed light on the

historical development of Semitic morphology.

By applying deep learning techniques to these distinct problems, we demonstrate the

versatility and effectiveness of this approach in tackling complex challenges. From

mathematical conjectures to privacy preservation and linguistic evolution, deep learning

offers a powerful framework for problem-solving and advancing our understanding across a

wide range of domains.

Extensive review

The papers provided cover several research fields, including mathematics, machine learning,

image processing, privacy preservation, and linguistics. Here is an extensive and up-to-date

overview of each field:

Deep learning

Deep learning is a subfield of machine learning that focuses on training deep neural

networks with multiple layers to learn complex patterns and representations directly from

raw data. Unlike traditional machine learning approaches that rely on manual feature

engineering, deep learning models automatically learn hierarchical representations of data

through a series of interconnected layers.

Deep neural networks, also known as artificial neural networks, are composed of input

layers, hidden layers, and an output layer. Each layer consists of multiple interconnected

nodes, called neurons, which perform computations and pass information to the next layer.

Deep learning models use a process called backpropagation to iteratively adjust the weights

and biases of the neurons, optimizing them to minimize the difference between predicted

outputs and the ground truth.

The key advantages of deep learning include:

Learning Complex Patterns: Deep learning models excel at learning intricate patterns and

representations from large and unstructured datasets. They can capture both low-level

features, such as edges and textures, and high-level abstract concepts, enabling them to

understand and interpret complex data.

End-to-End Learning: Deep learning models can learn end-to-end mappings directly from

raw input to output without requiring manual feature extraction. This reduces the need for

human expertise and domain knowledge, making deep learning more accessible and

applicable to a wide range of tasks.

Scalability: Deep learning models can scale effectively with large amounts of data and

compute resources. They can handle massive datasets and take advantage of parallel

computing on GPUs or specialized hardware like TPUs, allowing for efficient training and

inference on complex models.

Transfer Learning: Deep learning models can leverage knowledge learned from one task or

domain and apply it to another related task or domain. Transfer learning enables faster and

more effective training by transferring learned representations or weights, reducing the

need for extensive labelled data.

Wide Range of Applications: Deep learning has shown exceptional performance across

various domains, including computer vision, natural language processing, speech

recognition, recommendation systems, and autonomous driving. It has achieved

groundbreaking results in tasks such as image classification, object detection, machine

translation, and voice synthesis.

Despite its successes, deep learning also presents challenges, including the need for large

labelled datasets, computational resources, and potential overfitting. Researchers are

continuously exploring techniques to address these challenges, such as data augmentation,

regularization, and model architecture improvements.

Deep learning has revolutionized many fields by pushing the boundaries of what is possible

with machine learning. It has led to significant advancements in technology and has the

potential to drive innovation in areas like healthcare, finance, autonomous systems, and

scientific research. As research in deep learning continues, it promises to unlock new

capabilities, improve decision-making processes, and shape the future of artificial

intelligence.

Mathematics:

The field of mathematics encompasses a wide range of topics, including number theory,

which deals with properties and relationships of numbers. The Goldbach conjecture,

mentioned in the first two texts, is a famous unsolved problem in number theory. It states

that every even number greater than two can be expressed as the sum of two prime

numbers. Despite being proposed over two centuries ago, the conjecture remains

unproven.

Predicting on a new region:

When predicting using a Deep Neural Network (DNN) on a new region, there are several

challenges that can arise. One significant issue is the problem of generalization. DNNs are

trained on a specific dataset, and their performance may degrade when applied to data

from a different region with distinct characteristics. This is known as the problem of domain

adaptation or transfer learning. The differences in language, culture, or context between

regions can lead to variations in the data distribution, making it difficult for the DNN to

generalize well.

Another challenge is the availability of labeled data for the new region. DNNs typically

require large amounts of labeled data to train effectively. If labeled data for the new region

is scarce or unavailable, it becomes challenging to adapt the DNN to make accurate

predictions. In such cases, techniques like unsupervised or semi-supervised learning, where

the model leverages unlabeled data or limited labeled data, respectively, may be explored.

Furthermore, the linguistic nuances and variations across different regions can impact the

performance of DNNs. The model may struggle with understanding regional dialects, slang,

or specific cultural references, leading to inaccurate predictions. Addressing this challenge

may require region-specific data augmentation techniques, incorporating regional lexicons

or leveraging pre-training models that are specifically trained on diverse regional data.

In summary, when using DNNs for prediction in a new region, challenges related to

generalization, availability of labeled data, and regional linguistic variations need to be

carefully considered and addressed to ensure the model performs effectively in the new

context.

Image Processing and Privacy Preservation:

Privacy preservation refers to the protection of sensitive and personally identifiable

information (PII) from unauthorized access, use, or disclosure. With the increasing

collection, storage, and analysis of vast amounts of data in various domains, privacy

preservation has become a critical concern to ensure the confidentiality and security of

individuals' personal information. There are several important aspects and techniques

related to privacy preservation:

Anonymization: Anonymization techniques aim to remove or obfuscate personally

identifiable information from datasets. This can be achieved through methods such as data

aggregation, generalization, or suppression of identifying attributes. Anonymized datasets

protect the privacy of individuals by preventing the direct identification of specific

individuals from the data.

Differential Privacy: Differential privacy is a mathematical framework that provides a

rigorous privacy guarantee for data analysis. It ensures that the presence or absence of an

individual's data does not significantly affect the output of a computation or analysis,

thereby preserving privacy. Differential privacy techniques add noise or perturbation to the

data to achieve privacy guarantees while maintaining data utility.

Encryption: Encryption is a widely used technique to protect data privacy. It involves

encoding data in a way that can only be decrypted by authorized parties with the

appropriate decryption key. Encryption ensures that even if the data is intercepted or

accessed without authorization, it remains unreadable and confidential.

Secure Multi-Party Computation (MPC): Secure MPC allows multiple parties to jointly

compute a function or perform analysis on their combined datasets without disclosing their

individual data to each other. It ensures that each party's data remains private throughout

the computation process, enabling collaboration while preserving privacy.

Federated Learning: Federated learning is a distributed machine learning approach that

trains models on decentralized data sources while keeping the data itself on local devices or

servers. This approach allows for collaborative model training without the need to share the

raw data, thus preserving data privacy.

Homomorphic Encryption: Homomorphic encryption is a cryptographic technique that

enables computations to be performed directly on encrypted data without decrypting it.

This allows for secure data processing and analysis while maintaining the confidentiality of

the underlying data.

Privacy-Preserving Data Publishing: Privacy-preserving data publishing methods aim to

release data for public use while minimizing the risk of re-identification. Techniques like k-

anonymity, l-diversity, and t-closeness provide privacy guarantees by modifying or adding

noise to the published data to protect individuals' privacy.

Privacy preservation is crucial in various domains, including healthcare, finance,

telecommunications, and e-commerce. It ensures compliance with privacy regulations,

builds trust among individuals, and mitigates the risks of data breaches and misuse. As

technology advances, research and development in privacy-preserving techniques continue

to evolve to address emerging privacy challenges and strike a balance between data utility

and individual privacy rights.

It is important for organizations and individuals to prioritize privacy preservation by

implementing appropriate technical and organizational measures, adopting privacy-by-

design principles, and staying informed about evolving privacy regulations and best

practices.

Image processing involves manipulating and analyzing images to enhance or extract useful

information. Privacy preservation in image processing refers to techniques that aim to

conceal or remove sensitive or personal information from images while retaining other

relevant information. The third text describes a method for concealing personal

information, such as gender, age, and ethnicity, from images using a variational

autoencoder (VAE). This approach allows for privacy-preserving image analysis and reduces

bias by removing sensitive information while preserving other properties like smile,

hairstyle, and brightness. Such techniques can be valuable for privacy-conscious applications

and mitigating biases in machine learning systems.

Linguistics and Historical Evolution:

Linguistics is the scientific study of language and its structure, including how languages

change over time. The final text discusses the hypothesis of historical evolution in Semitic

morphology from biconsonantal (2C) etymons to triconsonantal (3C) roots. Semitic

languages, including Hebrew and Arabic, exhibit patterns where three-consonant roots form

the basis of word formation. The study utilizes a manually annotated corpus of the Hebrew

Bible and employs techniques like Word2Vec, a word representation method, to explore the

hypothesis. The findings support the idea that words with different roots may have

originated from the same two-consonant etymons, providing insights into the historical

development of Semitic languages.

Overall, these research fields showcase the interdisciplinary nature of scientific inquiry, with

mathematics, machine learning, image processing, privacy preservation, and linguistics

intersecting to address important problems and advance our understanding in various

domains. Ongoing research in these fields continues to push the boundaries of knowledge

and drive innovation in numerous applications.

The provided papers discuss various topics in mathematics and machine learning. The first

paper focuses on the Goldbach conjecture, which states that every even number greater

than two can be expressed as the sum of two prime numbers. We present a deep learning

model that predicts the number of Goldbach partitions for a given even number. The model

outperforms existing estimations and does not require prime factorization. We believe that

this approach brings us closer to solving this famous open problem.

The second paper discusses the development of a model to predict Goldbach's function,

which determines the number of ways an even number can be expressed as an unordered

sum of two prime numbers. We initially use a simple multilayer perceptron but find that its

performance deteriorates when tested on larger numbers. To overcome this, we introduce

two novel deep learning architectures that significantly outperform the initial model. We

also incorporate an analytically derived estimation to improve the models' performance.

The third paper introduces a learning model that can conceal personal information, such as

gender, age, and ethnicity, from an image while preserving other information like smile,

hair-style, and brightness. The model, a variational autoencoder (VAE), is trained on a

dataset that includes labels of the information to be concealed. The VAE avoids learning the

relation between the images and labels, resulting in encoded images that lack the concealed

information. The method successfully conceals private information, as demonstrated by a

convolutional neural network's inability to restore the original information. However, other

properties of the original image remain intact in the concealed image. This architecture can

be used for privacy preservation and reduce bias in systems.

The final paper explores the hypothesis of the historical evolution of Semitic morphology

from biconsonantal (2C) etymons to triconsonantal (3C) roots. We use a manually annotated

corpus of the Hebrew Bible and Word2Vec, a method for semantic word representation, to

study this hypothesis in biblical Hebrew. We find that words with different roots that may

have originated from the same 2C etymons form denser clusters than random sets of words

of the same size. These statistically significant differences strongly support the hypothesis of

evolution from 2C etymons to 3C roots in biblical Hebrew and other Semitic languages.

Goldbach’s Function Approximation Using Deep
Learning

1st Avigail Stekel
Department of Computer Science

Ariel University
Ariel, Israel

avigail.st@gmail.com

2nd Merav Chkroun
Department of Computer Science

Ariel University
Ariel, Israel

meravgu@gmail.com

3rd Amos Azaria
Department of Computer Science

Ariel University
Ariel, Israel

Carnegie Mellon University, Pittsburgh, PA

amos.azaria@ariel.ac.il

Abstract—Goldbach conjecture is one of the most famous open
mathematical problems. It states that every even number, bigger
than two, can be presented as a sum of 2 prime numbers.
In this work we present a deep learning based model that
predicts the number of Goldbach partitions for a given even
number. Surprisingly, our model outperforms all state-of-the-art
analytically derived estimations for the number of couples, while
not requiring prime factorization of the given number. We believe
that building a model that can accurately predict the number
of couples brings us one step closer to solving one of the world
most famous open problems. To the best of our knowledge, this is
the first attempt to consider machine learning based data-driven
methods to approximate open mathematical problems in the field
of number theory, and hope that this work will encourage such
attempts.

I. INTRODUCTION

On June 1742, the mathematician Christian Goldbach wrote

a letter to his friend, Leonard Euler, describing his conjecture

that states that every even integer is a sum of two prime

numbers [Goldbach1742]. Since then expert mathematicians,

students and many others have tried to prove this conjecture

or disprove it. Even though more than two hundred and

fifty years have passed, the conjecture remains open. The

conjecture can be checked directly for limited sets of numbers.

To this date, Goldbach’s conjecture has been verified up-to

4×1018 [Oliveira e Silva et al.2014]. During the past centuries,
despite no actual proof being found, there has been some

important and significant progress related to this conjecture.

In this paper, we focus on approximation of the Goldbach’s

function, denoted by G(n). This function returns the number
of Goldbach partitions that a given number has [Fliegel and

Robertson1989]. Rephrasing Goldbach’s conjecture in terms of

Goldbach’s function would state that the value of Goldbach’s

function (for all even numbers greater than 4) is greater than or

equal to 1. For example, G(100) = 6, because 100 = 3+97 =
11+89 = 17+83 = 29+71 = 41+59 = 47+53. See Figure 2
for an illustration of Goldbach’s function on the first 100 even
numbers. The plot of the Goldbach function has a form of a

comet and is consequently called “Goldbach’s comet” [Fliegel

and Robertson1989] (See Figure 1 for Goldbach’s function

values for all even numbers between 4 and 4× 106.

Several works have suggested different approximations for

Goldbach’s function which they have derived analytically.

Unfortunately, some of these approximations are very far from

the actual values taken by Goldbach’s function, while others

require prime factorization (prime decomposition) which is

believed to be an intractable operation on large numbers.

In this paper we suggest a different approach to approxi-

mating Goldbach’s function, we propose using a deep learning

approach.

It may seem that deep learning is not a suitable approach

for this type of problems, as the input to the approximation

function is only a single number, and deep learning has shown

success in situations in which the input is composed of a

large vector or a matrix. We therefore propose a simple,

yet powerful concept of translating the number into different

bases. Surprisingly our approach outperforms current state-of-

the-art approximations of Goldbach’s function, resulting in an

error rate of only 3.0%. Furthermore, our method does not
require prime factorization of the number, which is intractable

for large numbers. We believe that our model may shed light

on the behavior of Goldbach’s function and may bring us one

step closer to proving or disproving Goldbach’s conjecture.

Furthermore, introducing deep learning to the field, may assist

in proving or disproving other similar open mathematical

problems.

II. BACKGROUND

Prime and natural numbers have always aroused mathemati-

cians’ interest. In 1900 Hillbert made his famous speech at

the 2nd International Congress of Mathematics held in Paris,

saying there are 23 unsolved problems for mathematicians of
the 20th century [Wang2002]. One of those math problems

was Goldbach’s conjecture.

A. Approximations for Goldbach’s Function

Goldbach’s Conjecture is divided into two conjectures:

1) The ‘weak’ Goldbach’s conjecture states that ‘Every odd

number greater than 5 can be expressed as a sum of three

primes’. For example, 11 is the sum of 3, 3 and 5. 21 is
the sum of 2, 2 and 17. The weak conjecture was finally
proved in 2013 [Helfgott2013].©2018 IEEE

502

2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)

978-1-5386-7325-6/18/$31.00 ©2018 IEEE
DOI 10.1109/WI.2018.00-46

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Goldbach function values for all even numbers between 4 and 4 × 106. This function is sometimes referred to as
Goldbach’s comet, due to its shape.

2) The ‘strong’ Goldbach’s conjectures which states that

‘Every even integer greater than 2 is a sum of two

primes’. The number 6 for example, can be presented
with only one pair of prime numbers , 3+3 . However,
when examining even numbers greater than 12 , there
are apparently, at least two pairs of prime numbers that

sum to each even number, for example, 14 = 7 + 7
and 14 = 3 + 11. One might assume that the greater
the even number, the more different pairs it has, yet

by observing different even numbers this assumption

turns out to not always hold. For example, while 34
and 36 have 4 Goldbach partitions each, 38 has only
2 Goldbach partitions as is shown in Figure 2. This
conjecture remains open until this date.

In this paper we focus on Goldbach’s function which

provides the number of Godlbach’s partitions an even number

has. More formally, Let n ∈ N, the Goldbach’s function is

given by:

G(n) =
∑

{p,q}∈P×P ∧ p≤q

�{p+ q = n} (1)

where, P is the set of all prime numbers, and � is the indicator

function that returns 1 if the expression is true and 0 otherwise.
Over the years there have been several attempts to find an

analytic approximation to Goldbach’s function. Hardy and Lit-

tlewood [Hardy and Littlewood1922] proposed the following

approximation:

G1(n) = 2 · C2
n

(ln(n))2

∏
p|n

(
p− 1

p− 2
) (2)

where C2 is their twin prime constant:

C2 =
∏
p≥3

(
1− 1

(p− 1)2

)
∼= 0.6601618158 (3)

n denotes an even number, and p denotes all the prime

factors of n. While this function was originally proposed as

an upper-bound, it is widely used as an approximation. Baker,

suggested multiplying G1(n) by
3
5 to yield a better approxi-

mation [Baker2007] (we will refer to Baker’s approximation

as G2(n)).
Note that this approximation requires factorizing n, which

is assumed to be a hard problem. Currently, best known prime

factorization algorithm (GNFS) [Buhler et al.1993] runs in
time complexity of:

O

(
exp

((
3

√
64

9
+ o(1)

)
3
√
log(n) 3

√
(loglog(n))2

))

where n is the number being factored. Note that the input size
is considered log(n), since the number of digits required to
represent n is log(n).
To overcome this prime factorization requirement, the fol-

lowing approximation was proposed [Provatidis et al.2013]:

G3(n) =
n

(ln(n))2
(4)

This approximation is derived from Gauss’ approximation

provided in 1793 for the probability of a number being prime.

According to Gauss, this probability is given by:

f(m) =
m

ln(m)

Therefore, for an even number n the following may be used
as an approximation for its number of Goldbach partitions:

n/2∑
m=3

m

ln(m)
· n−m

ln(n−m)
≈ n

2ln(n)2

Note that G3 is monotone, and thus cannot capture the

phenomenon that larger numbers may sometimes have less

Goldbach partitions than smaller numbers. The following

approximation, which is also monotone, was proposed by

Markakis et al. in [Markakis et al.2012]:

G4(n) =
n

(ln(n/2))2
(5)

503

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The number of Goldbach partitions of a couple of even numbers

B. Related Work
In addition to attempts for finding an approximation to

Goldbach’s function, there have been several attempts to find-

ing upper and lower-bound to it, that is, a function that limits

the number of Goldbach partitions from above or below. The

G1(n) function proposed by Hardy and Littlewood [Hardy and
Littlewood1922] was originally suggested as an upper bound.

One proposed lower-bound function provided by Provatidis et

al. [Provatidis et al.2013] is:

2/3 ∗G1(n) (6)

This lower-bound was derived analytically, and it is shown

that as n grows, the probability of it having less Goldbach
partitions than the lower bound approaches 0. However, prov-

ing this lower-bound as a strict lower-bound, would imply the

proof of Goldbach’s conjecture, since this lower-bound is at

least 1 for every even number.
Montgomery and Vaughan define another function related

to Goldbach’s conjecture, capturing non-Goldbach numbers,

that is, numbers that cannot be written as a sum of two prime

numbers [Montgomery and Vaughan1975]. Montgomery and

Vaughan’s function, E(n), denotes all even numbers smaller
than n that are not a Goldbach number. Montgomery and

Vaughan prove that there exists an absolute constant δ > 0
such that

E(N)� N1−δ. (7)

There are several fields lying in the intersect of artificial

intelligence and mathematical problems. Automated theorem

proving [Bibel2013] is a field in which machines use various

artificial intelligence based methods, such as heuristic search,

in an attempt to find a proof for a given conjecture. In

1956, Newell and Simon developed the “Logic Theorist”

[Newell and Simon1956]. The Logic Theorist was based on

heuristic search and successfully proved 38 of the 52 theorems
that appear in the second Chapter of Principia Mathematica

[Whitehead and Russell1912].
The ‘Automated Mathematician’ (AM for short) was created

by Douglas Lenat in Lisp. [Lenat1977]. AM used heuristic

search to find interesting properties in mathematics. AM de-

fined 250 various heuristics and tried to infer different mathe-
matical properties by applying these heuristics. AM discovered

the concept of natural numbers, prime numbers, it conjectured

(without proof) the unique prime factorization theory and

defined the concept of Goldbach partitions. Unfortunately, AM

was not able to discover any “new to mankind” mathematics,

and it turned out to be very hard for it to discover new

heuristics. One of the statements Lenat’s AM produced was

the Goldbach conjecture [Larson2005]. AM was more about

finding interesting problems than solving them. An improved

system named EURISKO was later developed by Lenat, with

an attempt to learn these heuristics by its own [Lenat1983],

[Lenat and Brown1984].

Colton et al. [Colton et al.2000] developed an artificial
intelligent system for identifying mathematical concepts, such

as, types of graphs, types of groups and types of numbers. For

example, their method can identify that a sequence such as 1,

4, 9, 16 etc. is a sequence of squared numbers. They state that

the state-of-the-art at their time for identifying these concepts

was just a data-base.

III. DEEP LEARNING BASED GOLDBACH’S FUNCTION

APPROXIMATION

In this section we present a deep learning based model to

approximate Goldbach’s function values.

A. Data Composition

In order to train and evaluate the different methods, we

composed a data-set consisting of the number of Goldbach

partitions that all even numbers from 4 to 4 × 106 have. To
that end, we first computed all prime numbers at that range,

and stored them as a list and as a hashmap. For each even

number, n, we iterated on all prime numbers (using the list of
all primes) that are smaller than or equal to n

2 . For each of

these prime numbers, p we test (using the hashmap) whether
n−p is a prime number itself. If so, we increment n’s counter
by one.

504

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

We shuffled the data and split it into a train set, (80% of the
data; 16 × 105 numbers), a validation-set, (10% of the data;

2 × 105 numbers), and the remaining 10% was reserved for

the test-set (2× 105 numbers).

B. Model Features

From each number we extracted 42 features. We converted
every number to its binary representation, ternary representa-

tion (base 3), quinary representation (base 5) and septenary
representation (base 7). The time complexity of computing
these base representations for a number n is O(log(n)). In
practice we computed those representations when composing

the data, so we simply incriminated the representation of

the previous number by 2 for all bases. We truncated these
representations and used the 10 least significant digits for
each representation. The intuition behind using these different

representations lies in the fact that these transformation are

computationally cheap to extract and that they might allow the

model to retrieve underlying information on the number. The

first 4 prime numbers (2, 3, 5, 7) were selected as the bases.
In addition to the representations in the different bases, we

added the number itself (normalized), and the logarithm of

that number.

C. Model Architecture

We used a fully connected neural network as our model. We

set the number of neurons to 200 on each hidden layer. We
used Adam optimizer [Kingma and Ba2014], with a learning

rate of 0.001. We used a mini-batch size of 1024 and trained
the model for approximately 200 epochs on the data. We
used early stopping [Prechelt1998], that is, we evaluated the

validation set every epoch and saved the variables which

obtained the lowest validation error. We varied the number

of hidden layers, starting at a simple linear regression model

(with no hidden layers), a model with 3 hidden layers, 5 hidden

layers, and 7 hidden layers. Each of these models was trained

on the training data and their performance was evaluated on

the validation set. See Table I for a summary of the validation

results. As can be seen in the table, the model with 5 hidden

layers performed best on the validation set, and was therefore

chosen as the model for our further analysis. For a given

number n, the time complexity of generating the features and
evaluating our model is O(log(n)), which is the best time
complexity one could expect from an algorithm that reads the

entire input (which requires O(log(n)) digits to represent).

Train MSE Validation MSE

Linear regression 960,400 1,016,064
3 hidden layers 92,933 107,223
5 hidden layers 89,764 103,457
7 hidden layers 88,446 105,903

TABLE I: Train and validation mean squared error (MSE)

according to the number of hidden layers. We select the model

with the lowest validation error (5-hidden layers).

D. Results

Table II presents the performance of our model in compar-

ison to the formulas that appear in the literature, in terms of

mean squared error (MSE), root mean squared error (RMSE)

and the error rate in comparison to the number of actual

pairs (that is, the RMSE divided by the mean of the number

of Goldbach partitions each number in the test-set has).

In addition to the analytically derived estimations, we also

considered K-Nearest Neighbors (KNN) as another baseline

(with the K set to 105 neighbors, as that value performed

best). As can be seen in the table, our model outperformed

all previous approximation attempts, achieving a new state-

of-the-art approximation model. Furthermore, our model does

not require factorizing the given number. Figure 3 compares

the approximation of the different methods on 20 randomly

sampled numbers from the test-set. As illustrated in the figure,

our approach achieves the best fit to the actual points. While

G3 and G4 follow the average value of Goldbach’s function,

they do not follow the ups and downs of it. G1 does follow

the ups and downs of Goldbach’s function but keeps a gap all

long the plot. While this gap is corrected nicely by G2, G2

(as well as G1) requires prime factorization to be computed.

Using our trained model, we tried to articulate what a num-

ber violating Goldbach’s conjecture may look like. We used a

hill climbing search method on the base representations of the

input features to the model. We set the number itself to 106

and its log value accordingly. Iteratively, we traversed each of

the digits of each of the base representations, searching for the

digit value that minimizes our model’s prediction. We repeated

this process until no digit was changed. Table III presents the

base representations of a hypothetical number found by the

search method. According to our model, this number violates

Goldbach’s conjecture, with a prediction of -192,886 Goldbach

partitions (note the negative value). This number is a factor of

14, has a remainder of 2 when divided by 3 and a remainder

of 4 when divided by 5. We performed a search on numbers

satisfying base 7 representation, that is, numbers of the form

m×710+6×79+78+6×72+4×71,m ∈ N, and tested whether

these numbers satisfy also the other bases representations.

While such numbers are likely to exist, our attempts for finding

such a number have failed, and we conclude that no such

number exists that is smaller than 1019. Furthermore, even if
we found such a number, once we plug-in the number to the

model, it might predict a value larger than 0, and even if our

model predicts a value less than 0, it is very well likely that our

model does not perform that well when considering numbers

so much larger than those it was trained on.

E. Feature Analysis

In this section we analyze the contribution each of the

features has on the performance of the model. Table IV

presents the performance of the model (in mean squared error)

when trained without each of the following sets of features:

base 2, 3, 4, 5 and 7 representation, without the number itself

and without its log. As can be seen in the table, the base-

3 features seem to have the greatest impact on the model,

505

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

MSE on test RMSE on test Error rate

G1 [Hardy and Littlewood1922]* 89,059,989 9437.1 87.6%
G2 [Baker2007]* 221,437 470.6 4.4%

G3 [Provatidis et al.2013] 24,902,559 4990.3 46.3%
G4 [Markakis et al.2012] 22,517,117 4745.2 44.0%

KNN 22,155,849 4707.0 43.7%
Deep-learning based method 105,100 324.0 3.0%

TABLE II: error of the deep learning based method in comparison to the state-of-the-art approximations. Asterisk (*) denotes

models that require prime factorization of the given number.

Fig. 3: Prediction of the different methods on 20 randomly picked numbers from the test-set. The asterisk (*) denotes models

that require prime factorization of the given number.

Base 10 least significant digits

Base 2 0, 0, 1, 0, 1, 0, 0, 0, 0, 0
Base 3 2, 0, 2, 0, 2, 1, 2, 0, 0, 2
Base 5 0, 0, 0, 0, 0, 0, 0, 0, 1, 4
Base 7 6, 1, 0, 0, 0, 0, 0, 6, 4, 0

TABLE III: Base representations of a hypothetical even num-

ber violating Goldbach’s conjecture, with our model predicting

a negative value of Goldbach’s partitions for it.

as removing them results with the highest error. Next in

importance are the base-7 features. While, base-2 and base-5

seem to have a positive impact on the model, removing each

of them separately does not harm the model’s performance

that much. Interestingly, the number itself turned out to be

the least important feature. We also trained and evaluated the

model while using only the single least significant digit of

each of the bases; not surprisingly, this model did not perform

well.

IV. DISCUSSION

As stated in the introduction, Goldbach’s conjecture has

been verified up-to 4× 1018. This verification was performed
by using exhaustive search. Our approximation model may

allow a selective search method in which Goldbach’s conjec-

ture can be verified only for suspicious numbers according

Features used in model MSE

Without base 2 138,369
Without base 3 419,002
Without base 5 112,653
Without base 7 252,696
Without log 135,153

Without number 99,463
Least significant digits 391,707
Full model (all features) 89,764

TABLE IV: Mean squared error (MSE) of model trained on a

subset of the features.

to our model, that is, only numbers that our model predicts

will have a very low number of pairs. This approach can

also be used to find numbers that violate the lower-bound

proposed by [Provatidis et al.2013]. However, such selective
search may require retraining our model on data closer to the

target distribution (i.e., larger numbers), and adding additional

digits to the base representations.

The success of our method can be attributed, for the most

part, to the base representations added as features. In our work

we used based representations for the first 4 prime numbers

(2, 3, 5, 7), though it is likely that adding few additional base

representations with the following prime numbers (e.g. 11,

13, 17), would increase the model’s accuracy. However, it is

506

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

impractical to add more than a few additional representations

(adding all prime representations up to the given number

would require prime factorization, which is the exact problem

our method tries to avoid).

In this paper we do not attempt to use DNN for actually

proving a theorem (which is a completely different field),

but believe that DNN can be used to help solving open

mathematical problems in different ways, the first is by finding

counterexamples (e.g. using selective search, as mentioned in

the paper), the second is by analyzing the features that the

DNN considers when computing its values. In our example

we show that using different base representations (which can

be computed cheaply) is very useful for computing Goldbachs

Conjecture, (as opposed to the expensive prime factorization

computation which was previously known). Future advance-

ments in explainable neural networks, might help shedding

additional light on this problem when applied to our results.

One of the main requirements for machine learning based

methods to perform well is that the train and test data both

come from the same distribution. Therefore, if the test data

comes from a different distribution (e.g. higher numbers), it

is likely that our model will not perform that well. Neverthe-

less, while testing our model with higher numbers (between

4,000,000 and 5,000,000), our model (trained on numbers

between 4 and 4,000,000) resulted in a RMSE of 655.8, which

still significantly outperforms models G3 and G4 who obtained

RMSEs of 9088.8 and 8666.3 respectively. We do not compare

to G1 and G2 which both require prime factorization. Note

that our additional baseline of KNN is impractical when the

distributions of the train and test data do not match.

While deep learning has shown great success in many dif-

ferent fields [Lv et al.2015], [Cruz-Roa et al.2013], [Alipanahi
et al.2015], we believe that the success shown in this paper
related to an open mathematical problem in number theory,

is a big step and should not be disregarded as being merely

another deep learning application. Our work may lead to a

new paradigm of using deep learning (or machine learning

in general) to solve mathematical problems such as prime

factorization, friendly numbers, finding prime twins and many

similar problems, which may currently seem out of the scope

of deep learning methods.

V. CONCLUSIONS

Goldbach’s conjecture and Goldbach’s function have re-

mained open mathematical questions for over two and a

half centuries. There have been several analytic attempts

to approximate Goldbach’s function, but unfortunately, these

approximations either do not work well in practice or require

prime factorization (prime decomposition) which is a hard

problem. In this paper we present the first deep-learning

based approach to approximating Goldbach’s function. We

show that our approach outperforms current state-of-the-art

approximations while not requiring prime factorization. We

believe that our results can bring us one step closer to solving

one of the worlds most significant open mathematical question.

REFERENCES

[Alipanahi et al.2015] Babak Alipanahi, Andrew Delong, Matthew T
Weirauch, and Brendan J Frey. Predicting the sequence specificities of
dna-and rna-binding proteins by deep learning. Nature biotechnology,
33(8):831, 2015.

[Baker2007] John Baker. Excel and the goldbach comet. Spreadsheets in
Education (eJSiE), 2(2):2, 2007.

[Bibel2013] Wolfgang Bibel. Automated theorem proving. Springer Science
& Business Media, 2013.

[Buhler et al.1993] Joe P Buhler, Hendrik W Lenstra, and Carl Pomerance.
Factoring integers with the number field sieve. In The development of the
number field sieve, pages 50–94. Springer, 1993.

[Colton et al.2000] Simon Colton, Alan Bundy, and Toby Walsh. Automatic
identification of mathematical concepts. In ICML, pages 183–190, 2000.

[Cruz-Roa et al.2013] Angel Alfonso Cruz-Roa, John Edison Arevalo
Ovalle, Anant Madabhushi, and Fabio Augusto González Osorio. A deep
learning architecture for image representation, visual interpretability and
automated basal-cell carcinoma cancer detection. In International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention,
pages 403–410. Springer, 2013.

[Fliegel and Robertson1989] Henry F Fliegel and Douglas S Robertson.
Goldbach’s comet: the numbers related to goldbach’s conjecture. Journal
of Recreational Mathematics, 21(1):1–7, 1989.

[Goldbach1742] Christian Goldbach. Letter to l. Euler, June, 7, 1742.
[Hardy and Littlewood1922] Godfrey H Hardy and John E Littlewood. Some
problems of diophantine approximation: The lattice-points of a right-angled
triangle. Proceedings of the London Mathematical Society, 2(1):15–36,
1922.

[Helfgott2013] Harald A Helfgott. The ternary goldbach conjecture is true.
arXiv preprint arXiv:1312.7748, 2013.

[Kingma and Ba2014] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[Larson2005] Craig E Larson. A survey of research in automated mathe-
matical conjecture-making. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 69:297, 2005.

[Lenat and Brown1984] Douglas B Lenat and John Seely Brown. Why am
and eurisko appear to work. Artificial intelligence, 23(3):269–294, 1984.

[Lenat1977] Douglas B Lenat. Automated theory formation in mathematics.
In Proceedings of the 5th international joint conference on Artificial
intelligence-Volume 2, pages 833–842. Morgan Kaufmann Publishers Inc.,
1977.

[Lenat1983] Douglas B Lenat. Eurisko: a program that learns new heuristics
and domain concepts: the nature of heuristics iii: program design and
results. Artificial intelligence, 21(1-2):61–98, 1983.

[Lv et al.2015] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and
Fei-Yue Wang. Traffic flow prediction with big data: a deep learning
approach. IEEE Transactions on Intelligent Transportation Systems,
16(2):865–873, 2015.

[Markakis et al.2012] Emmanuel Markakis, Christopher Provatidis, and
Nikiforos Markakis. Some issues on goldbach conjecture. Number Theory,
29, 2012.

[Montgomery and Vaughan1975] H Montgomery and R Vaughan. The ex-
ceptional set of goldbach’s problem. Acta Arithmetica, 27(1):353–370,
1975.

[Newell and Simon1956] Allen Newell and Herbert Simon. The logic theory
machine–a complex information processing system. IRE Transactions on
information theory, 2(3):61–79, 1956.

[Oliveira e Silva et al.2014] Tomás Oliveira e Silva, Siegfried Herzog, and
Silvio Pardi. Empirical verification of the even goldbach conjecture and
computation of prime gaps up to 4 101. Mathematics of Computation,
83(288):2033–2060, 2014.

[Prechelt1998] Lutz Prechelt. Automatic early stopping using cross valida-
tion: quantifying the criteria. Neural Networks, 11(4):761–767, 1998.

[Provatidis et al.2013] Christopher Provatidis, Emmanuel Markakis, and
Nikiforos Markakis. Rule of thumb bounds in goldbachs conjecture.
American Journal of Mathematical Analysis, 1(1):8–13, 2013.

[Wang2002] Yuan Wang. The Goldbach Conjecture, volume 4. World
scientific, 2002.

[Whitehead and Russell1912] Alfred North Whitehead and Bertrand Russell.
Principia mathematica, volume 2. University Press, 1912.

507

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:45:32 UTC from IEEE Xplore. Restrictions apply.

1

Deep Learning Architectures for Approximating
Goldbach’s Function in New Regions

Avigail Stekel, Amos Azaria

Computer Science Dept., Ariel University, Israel

Abstract—Goldbach conjecture is one of the most famous open
mathematical problems. He asserts that: Every even number
greater than two is the sum of two prime numbers. The Goldbach
function receives an even number and returns the number of
different ways to write it as an unordered sum of two prime num-
bers. We developed a simple multi-layer perceptron that attempts
to predict Goldbach’s function. This simple model performs well
when trained and tested on numbers up to 4 million. However,
as expected, the model’s performance significantly deteriorates
when trained on smaller numbers (up to 4 million) but tested on
larger numbers (4− 10 million).

To overcome this problem, we present two novel deep learning
architectures. In these architectures we introduce two types of
multiplication layers, which we believe are more appropriate for
solving mathematical relations. We show that both architectures
significantly outperform the simple multi-layer perceptron when
trained on smaller numbers and tested on larger numbers.
We further improve the performance of the deep learning
architectures by using a known analytically derived estimation
that is used in order to normalize the model’s output.

Index Terms—Goldbach’s function; Deep learning; Out-of-
scope inference.

I. INTRODUCTION

In June 1742, the mathematician Christian Goldbach wrote
a letter to his friend, Leonard Euler, describing his conjecture
that states that every even integer larger than two is a sum
of two prime numbers [1]. Since then mathematicians have
tried to prove this conjecture or disprove it. Even though more
than two hundred and fifty years have passed, the conjecture
remains open. To this date, Goldbach’s conjecture has been
verified manually up to 4×1018 [2]. During the past centuries,
despite no actual proof being found, there has been some
important and significant progress related to this conjecture.

A more general problem is to determine the number of
different options there are for a given even number, n, to be
written as a sum of two prime numbers. Each such option is
called a Goldbach partition. That is, a Goldbach partition is
composed of three numbers: two primes, which sum to a given
even number, n. This problem is known as the Goldbach’s
function, denoted G(n) [3]. Rephrasing Goldbach’s conjecture
in terms of Goldbach’s function would state that the value of
Goldbach’s function (for all even numbers greater than 2) is
greater than or equal to 1. For example, G(100) = 6, because
100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 =
47 + 53 and there any other. The plot of the Goldbach’s
function has a form of a comet and is consequently called
“Goldbach’s comet” [3] (See Figure 1 for Goldbach’s function
values for all even numbers up to 4× 106.

Several works ([4], [5]) have suggested different approxima-
tions of Goldbach’s function, which they derived analytically.
Unfortunately, some of these approximations are very far from
the actual values taken by Goldbach’s function, while others
require prime factorization (prime decomposition), which is
believed to be an intractable operation on large numbers. In
this paper we suggest a different approach to approximate
Goldbach’s function, by utilizing unique architectures for
neural networks (i.e., deep learning).

Deep learning is a hierarchical based approach to ap-
proximate complex functions, which most commonly uses
neural network architectures that are composed of multiple
layers. Training the network is performed by executing grading
descent, which adjusts the weights of the network in order to
minimize a loss function. Indeed, deep learning has shown
success in many different fields [6]. However, it may seem
that deep learning is not a suitable approach for this type
of problems, as the input to the approximation function is
only a single number, and deep learning has shown success in
situations in which the input is composed of a large vector
or a matrix. We therefore propose a simple, yet powerful
concept of translating the number into different bases. Using
our approach, a simple multi-layer perceptron performs well
when trained on some numbers up to 4 million and tested on
other numbers up to 4 million as we show in [7]. However,
the simple multi-layer perceptron’s performance significantly
deteriorates when trained on smaller numbers (up-to 4 million)
but tested on larger numbers (4-10 million).

To overcome the problem of the multi-layer perceptron
model that does not perform well when tested on a new
distribution, we present two novel deep learning architectures.
In these architectures we introduce two types of multiplication
layers, which we believe are more appropriate for solving
mathematical relations. The first architecture includes a mul-
tiplication layer, in which some of the neurons are multiplied
before serving as an input for the next layer. In the second
architecture, an additional layer is included, in which all
inputs are activated using a logarithmic function, and then
all outputs are activated with an exponential function. This
allows the multiplication of any input neurons. We show that
both architectures significantly outperform the simple multi-
layer perceptron when trained on smaller numbers and tested
on larger numbers. We further improve the performance of
the deep learning architectures by using a known analytically
derived estimation (see Equation 6) that is used in order to
normalize the model’s output.

2

Fig. 1: Goldbach’s function values for all even numbers between 4 and 10 × 106. This function is sometimes referred to as
Goldbach’s comet, due to its shape.

II. BACKGROUND

Prime and natural numbers have always aroused mathemati-
cians’ interest. In 1900 Hillbert made his famous speech at
the 2nd International Congress of Mathematics held in Paris,
saying there are 23 unsolved problems for mathematicians
of the 20th century [8]. One of those math problems was
Goldbach’s conjecture.

A. Approximations of Goldbach’s Function

Goldbach’s Conjecture is divided into two conjectures:
1) The ‘weak’ Goldbach’s conjecture states that ‘every odd

number greater than 5 can be expressed as a sum of three
primes’. For example, 11 is the sum of 3, 3 and 5. 21 is
the sum of 2, 2 and 17. The weak conjecture was finally
proved in 2013 [9].

2) The ‘strong’ Goldbach’s conjecture, which states that
‘every even integer greater than 2 is a sum of two
primes’. The number 6 for example, can be presented
with only one pair of prime numbers, 3 + 3. However,
when examining even numbers greater than 12 , there
are apparently, at least two pairs of prime numbers that
sum to each number. One might assume that the greater
the even number, the more different pairs it has, yet by
observing different even numbers this assumption does
not always hold. For example, while 34 and 36 have
4 Goldbach partitions each, 38 has only 2 Goldbach
partitions. There have been multiple attempts to make
progress with respect to the strong Goldbach’s conjec-
ture, some of which were very recent [10], [11], [12].
However, this conjecture remains open to date.

In this paper we focus on Goldbach’s function, which
provides the number of Godlbach’s partitions an even number
has. More formally, let n ∈ N. Then, Goldbach’s function is
given by:

G(n) =
∑

{p,q}∈P×P ∧ p≤q

1{p+ q = n} (1)

where, P is the set of all prime numbers, and 1 is the indicator
function that returns 1 if the expression is true and otherwise
0.

Over the years there have been several attempts to find
an analytic approximation of Goldbach’s function. Hardy and
Littlewood [4] proposed the following approximation:

G1(n) = 2 · C2
n

(ln(n))2

∏
p|n

(
p− 1

p− 2
) (2)

where n is an even number, p denotes all the prime factors of
n. C2 is a number that they refer to as the twin prime constant,
which equals:

C2 =
∏
p≥3

(
1− 1

(p− 1)2

)
∼= 0.6601618158 (3)

where p denotes all prime numbers. We note that C2 is called
the twin prime constant because it was previously used in
formula developed to estimate the number of twin primes (i.e.,
two primes, p1 and p2 such that |p1−p2| = 2) that are smaller
than a given number.

While this function was originally proposed as an upper-
bound, it is widely used as an approximation. Baker suggested
multiplying G1(n) by 3

5 to yield a better approximation [5]
(we will refer to Baker’s approximation as G1′(n)). As stated
by Hardy & Littlewood [4] the G1(n) function can only be
used as a good approximation when approaching the limit (i.e.,
for very large numbers). Therefore, Granville [13] provides the
following function, which achieves a better approximation for
smaller numbers:

G2(n) = C2

∫ n−2

2

dt

ln(t) · ln(n− t)

∏
p|n

(
p− 1

p− 2
). (4)

Granville [13] shows that G′2(n) = G2(n) ·(
1− 4√

n

∏
p≥3(1−

n/p
p−2)

)
yields a better approximation.

Note that G1(n), G1′(n), G2(n) and G′2(n) require factor-
ing n, which is assumed to be a hard problem. Currently, the

3

best known prime factorization algorithm (GNFS) [14] runs
in a time complexity of:

O

(
exp

((
3

√
64

9
+ o(1)

)
3
√

log(n) 3
√

(loglog(n))2
))

where n is the number factored. Note that the input size is
considered log(n), since the number of digits required to
represent n is log(n). We therefore do not consider those
approximations in this paper (see [7] for a comparison of a
deep learning based method with these methods).

To overcome the factorization requirement, the following
approximation of Goldbach’s function was proposed [15]:

G3(n) =
n

(ln(n))2
(5)

This approximation is derived from Gauss’ approximation
provided in 1793 for the probability of a number being prime.
According to Gauss, this probability is given by:

f(m) =
m

ln(m)

Therefore, for an even number n the following may be used
as an approximation of its number of Goldbach partitions:

n/2∑
m=3

m

ln(m)
· n−m

ln(n−m)
≈ n

2ln(n)2

Note that G3 is monotone, and thus cannot capture the
phenomenon that larger numbers may sometimes have less
Goldbach partitions than smaller numbers. The following
approximation, which is also monotone, was proposed by
Markakis et al. in [16]:

G4(n) =
n

(ln(n/2))2
. (6)

We note that G4 was shown to outperform G3 (see [7]).

III. DEEP LEARNING BASED ARCHITECTURES FOR
GOLDBACH’S FUNCTION APPROXIMATION

In this section we present several deep learning based
models to approximate Goldbach’s function values. In previous
work we compared the simple deep learning based model (the
Multilayer perceptron Basic Model) to other baselines when
trained and tested on numbers up to 4M [7]. In this paper
we focus on the performance of our models when trained on
numbers up to 4M , but tested on larger numbers (4− 10M).

A. Data Composition
In order to train and evaluate the different methods, we

composed a dataset consisting of the number of Goldbach
partitions that all even numbers from 4 to 4 × 106 have. To
that end, we first computed all prime numbers at that range,
and stored them as a list and as a hashmap. For each even
number, n, we iterated on all prime numbers (using the list
of all primes) that are smaller than or equal to n

2 . For each
of these prime numbers, p, we tested (using the hashmap)
whether n− p is a prime number itself. If so, we incremented
n’s counter by one.

We shuffled the data and split it into a training-set, (90%
of the data; 18 × 105 numbers), and the remaining 10% was
reserved for the 0− 4M test-set (2× 105 numbers).

B. Model Features

From each number we extracted the following 26 features.
We converted every number to its binary representation,
ternary representation (base 3), quinary representation (base
5) and septenary representation (base 7). The time complexity
of computing these base representations for a number n is
O(log(n)). In practice we computed those representations
while composing the data. In order to compute the base-
representations, we iteratively divided the number by the
required base. We truncated the base representations and used
the 6 least significant digits for each representation. The
intuition behind using these different representations lies in
the fact that these transformations are computationally cheap
to extract and that they might allow the model to retrieve
underlying information on the number. The first 4 prime
numbers (2, 3, 5, 7) were selected as the bases. We used the
6 least significant digits because it is the largest number of
digits that allows the biggest base (base 7) to complete at least
two cycles with the training data. That is, 2 × 77 < 4 × 106,
but 78 > 4 × 106 (and therefore, we cannot use 7 digits). In
addition to the representations in the different bases, we added
the number itself (divided by 2,000,000, which is the average
of the training-set), and the logarithm of the number.

IV. MODEL ARCHITECTURES

We used 3 different model architectures:

A. Basic-MLP

This simple model uses a fully connected neural network.
The number of neurons was set to 200 on each hidden layer,
and the Adam optimizer [17] was used, with a learning rate
of 0.001. We used a mini-batch size of 1024 and trained the
model for approximately 200 epochs on the data. These values
are similar to those we used in previous work [7]. In previous
work, [7], we tested several options for finding the optimal
number of hidden layers; the model with 5 hidden layers
outperformed all other options. We therefore used 5 hidden
layers in this paper as well.

For a given number n, the time complexity of generating
the features and evaluating our model is O(log(n)), which is
the best time complexity one could expect from an algorithm
that reads the entire input (which requires O(log(n)) digits to
represent).

We now introduce our novel architectures that were de-
veloped for the Goldbach’s function approximation in new
regions.

B. Multiplication-Layer Model

The multiplication-layer model includes a layer that multi-
plies pairs of neurons (see Figure 2). Namely, after several
fully connected layers (in our case 2) a fraction of the
following layer is separated from the rest (in our case 40% of
the neurons were separated). The architecture includes random
connections between some of the separated neurons; these
neurons were multiplied by each other. In practice the model
shuffles the rows of an identity matrix, which we denote J .

4

The group of neurons that were separated, denoted V , is then
multiplied, on the right side, by J . The result, V × J , is
component-wise multiplied by the original group of separated
neurons, V . This process implies that each of the neurons
is paired exactly twice (each time with a different neuron).
It is possible however, that a neuron will multiply itself, or
multiply the same neuron twice.

The motivation behind this architecture was inspired by the
analytically derived approximations (G1 and G2 functions),
which perform relatively well but require prime factorization
and are therefore not practical for large numbers. As can be
seen, G1 and G2 are based on the multiplication of primary
factors. We believe that the real solution of the function must
include multiplication components. However, a standard neural
network cannot multiply two features by each other, but can
only approximate such an action. Unfortunately, while such
an approximation might perform well when tested on the
training-set scope, its performance significantly deteriorates
when tested on larger numbers. Therefore, by using the
multiplication-layer model there will be actual multiplications
between some neurons; this may improve the model perfor-
mance, especially when predicting numbers larger than the
scope of the training-set.

C. Ln-Layer Model

Another architecture introduced in this paper is the ln-layer
model (see Figure 3). Similar to the multiplication-layer
model, in the ln-Layer model after several fully connected
layers, the neurons are divided into two groups. The first
group of neurons is fully connected to the next layer (using
ReLU activation). The second group is activated first by
ReLU and then by the natural logarithm, and its output serves
as an input to a separate fully connected layer. That layer is
then activated by an exponential function. The two groups are
then concatenated and continue with a simple fully connected
architecture. Converting the neuron data to natural logarithm
and then back by an exponential function enables the network
to multiply multiple neurons by each-other.

In addition to the previously introduced architectures, we
consider an additional method that make use of Goldbach’s
function approximation formula developed by Markakis et al.
[16], G4 (see equation 6). This formula was selected because
it is the most accurate among the analytically derived formulas
that do not require prime factorization.

D. Normalization of the Result

We normalize the result by G4. To this end, each of
the previously presented models (basic model, multiplication-
layer model and ln-layer model), is trained to predict the
value of Goldbach’s function divided by G4 (rather than
simply predicting the value of the Goldbach’s function). In
addition to the obvious benefit from normalizing the prediction
value, dividing by G4 will likely improve the performance
of all models when tested on values that are not in the
same distribution area. This is because the model learns the

relation between Goldbach’s function and G4; we believe
that this relation is less prone to changes (than the actual
Goldbach’s function) as the number grows. We denote this
method by adding ‘+n’ to the original model (that is, the Basic-
MLP model with normalized result is denoted Basic-MLP+n,
and the Multiplication-layer and Ln-layer models are denoted
Multiplication-layer+n and Ln-layer+n, respectively).

E. Results

Test range Basic-MLP Multiplication-layer Ln-layer

4-5 0.4 0.2 0.29
5-6 1.58 1.19 1.58
6-7 7.65 4.67 6.43
7-8 32.53 12.6 18.49
8-9 96.42 23.8 46.3
9-10 178.88 38.71 107.75

TABLE I: MSE of the basic-MLP model, Multiplication-layer
model and the Ln-layer model. Note that all models were
trained on numbers up to 4 million and were tested on numbers
between 4 and 10 million. All the numbers are in millions

Table I presents the performance of our models in compari-
son to G4 (equation 6), in terms of mean squared error (MSE).
All models were trained on numbers up to 4 million, and
were tested on numbers up to 10 million. The numbers in the
overlapping part (i.e. up to 4 million) were carefully split into a
training-set (90% of the data) and a test-set (10% of the data).
As expected, the MSE grows as the numbers grow. As we
hypothesised, both the Multiplication-layer and the Ln-layer
models outperformed the basic-MLP. Somewhat surprisingly,
the Multiplication-layer outperformed the Ln-layer model.

Table II presents the MSE of the models normalized by G4.
As expected, the performance of all the methods significantly
improved (see Figure 4). Interestingly, the Ln-layer+n model,
gained the lead, and outperformed both basic-MLP+n and
multiplication-layer+n. However, we would like to note that
the derivation of the G4 formula is not trivial, and therefore,
the Multiplication-layer architecture may be used in different
domains, in which such an analytically derived function (such
as G4) is not available.

We compare the performance of the Multiplication-layer
and the Ln-layer+n models with the performance of the basic
MLP model and the G4 function (which does not require
factorization). As depicted by Table III, the Multiplcation and
the Ln-layer+n methods outperform the basic MLP and G4

at all ranges. The Multiplciation model, which does not use
any analytically derived formula, outperforms the Ln-layer+n
on the 0-4M range (on the test-set), and achieves very close
performance in the 4-5M range.

In addition, we test the performance of the Ln-Layer+n
model when trained on a subset of the training set. Recall
that the training set is composed of 90% of the even numbers
between 0 to four million. Table IV presents the performance
of the Ln-Layer+n when trained on 100%, 50%, 10% and 1%
of the training set. As expected, the performance of the model
is much better when trained on a larger data-set; however, even
with only 1% of the training set, the Ln-Layer+n performs

5

a1*a2

a6*a4

a5*a3

a6

a5

a4

a3

a2

a1

a3 ∗ a1

a2*a6

a4*a5

input

full connected layers
multiplication layer

a6

a5

a4

a3

a2

a1

Fig. 2: An illustration of the multiplication architecture. The arcs between the purple neurons (a1 − a6) demonstrate the
multiplication. Note that each of the neurons is paired exactly twice with another neuron. The other neurons (which appear in
blue) follow a standard fully connected architecture.

Test range Basic-MLP + n Multiplication-layer + n Ln-layer + n
4-5 0.17 0.21 0.19
5-6 0.46 0.47 0.37
6-7 1.47 2.08 1.41
7-8 4.15 8.5 3.72
8-9 10.54 20.95 6.54
9-10 23 35.16 10.79

TABLE II: MSE of models normalized by G4. All numbers are in millions

Test range Multiplication Ln-layer + n basic MLP G4

0-4 (test-set) 0.034 0.052 0.1 22.5
4-5 0.2 0.19 0.4 73
5-6 1.19 0.37 1.58 105.6
6-7 4.67 1.41 7.65 140.69
7-8 12.6 3.72 32.53 180.14
8-9 23.8 6.54 96.42 223.55
9-10 38.71 10.79 178.88 270.89

TABLE III: MSE of the Multiplication-layer model and the Ln-layer+n model compared to the MSE of G4. All the numbers
are in millions.

Test range 100% of training set 50% of training set 10% of training set 1% of training set G4

0-4 (test-set) 0.052 0.13 0.2 1.8 22.5
4-5 0.19 0.28 0.4 7.1 73
5-6 0.37 0.76 1.2 11.3 105.6
6-7 1.41 2.1 3.7 20.1 140.6
7-8 3.72 5.13 8.18 29.6 180.1
8-9 6.54 10.4 15.2 48.8 223.5
9-10 10.79 17.96 23.6 67.3 270.8

TABLE IV: MSE of the Ln-layer+n model when trained on 100%, 10%, and 1% of the training set, which is composed of
90% of the even numbers between 0-4 million, compared to the MSE of G4.

significantly better than G4 at all ranges. Finally, Table V
presents the average number of Goldbach partitions for each
of the ranges, the mean absolute error (MAE) values of our
selected model (ln-layer+n) along with the MAE of G4, and
the error rate of our selected model. We note that the error

rate is less than 5% also in the higher ranges.

V. DISCUSSION

As stated in the introduction, Goldbach’s conjecture was
verified up to 4 × 1018. This verification was performed by

6

Test range Average no. Ln-layer + n Ln-layer + n G4

of partitions MAE error rate
0-4 (test-set) 10.7 0.13 1.2% 3.4
4-5 22.0 0.25 1.1% 7.1
5-6 26.2 0.4 1.5% 8.5
6-7 30.3 0.7 2.4% 9.8
7-8 34.3 1.1 3.3% 11.1
8-9 38.2 1.4 3.8% 12.4
9-10 42.1 1.9 4.5% 13.6

TABLE V: The average number of Goldbach partitions for each of the ranges in thousands, the mean absolute error (MAE)
values of our selected model (ln-layer+n) along with the MAE of G4 in thousands, and the error rate of our selected model.

fully connected

log
activation

exp
activation

fully connected

fully
connected

Fig. 3: An illustration of the ln-layer architecture. One of the
layers is divided into two sets of neurons. The green set is
fully connected to the next layer, while the blue set is first
activated by the natural logarithm, then fully connected and
activated by an exponent.

using an exhaustive search (see also [18] for an implemen-
tation requiring minimal space). Our approximation model
may allow a selective search method in which Goldbach’s
conjecture can be verified only for suspicious numbers ac-
cording to our model. In other words, only numbers that our
model predicts will have a very low number of partitions. This
approach can also be used to find numbers that violate the
lower-bound proposed by [15]. The methods presented in this
paper may allow training on smaller numbers while performing
the selective search on larger numbers.

In previous work [7], we used the 10 least significant digits
of each base presentation. This model performed well when
trained and tested on numbers up to 4 million. However, when
this model was tested on large numbers we observed a large
gap between its error on 5 − 6 million and 6 − 7 million.
Namely, when tested on numbers between 4 and 5 million
the error was 0.35 million, when tested on 5 − 6 million it
was 0.77 million, but when tested on 6 − 7 million, it rose
to 128.68 million. This gap is attributed to the fact that in
the 0 − 4 million region (the training data), the 9th and 10th
digits in septenary (base-7) were constantly 0, and the 8th
digit in septenary increased monotonically. This is because
the number 4, 000, 000 is written as 45, 666, 544 in septenary
(with 0 in the 9th and 10th digits). This caused the weights
associated with the 9th and 10th septenary digits to remain
with their initial assigned values (noise). Furthermore, since

the 8th digit of base-7 increased monotonically, the trained
model usually assigned higher values to numbers that had a
higher value in the 8th septenary digit. That is, the model
did not see any large numbers with a low value, or a 0, in
the 8th septenary digit. Therefore, when tested on numbers
with 0 in the 8th septenary digit, the model predicted a small
value (despite the given number being large). For example, 6.5
million is written as 106, 151, 303 in septenary, and therefore
has a 0 in the 8th digit location. To overcome this problem and
avoid this type of over-fitting, in this paper, we used only the
6 least significant bits. Therefore, in all models presented in
this paper, the error rose gradually. For example, in the basic-
MLP model presented in this paper, which has an architecture
similar to the model presented in [7], the MSE was 0.4 for
4−5 million, 1.58 for 5−6 million, and 7.65 for 6−7 million.

In this paper though we do not attempt to use a deep
neural network (DNN) to actually prove a theorem (which is a
completely different field), we believe that DNN can be used
to help solving open mathematical problems in different ways.
The first method is by finding counterexamples (e.g. using
selective search) and the second by analyzing the features that
the DNN considers when computing its values. In our example
we show that using different base representations (which can
be computed inexpensively) is very useful for approximating
Goldbach’s function, (as opposed to the expensive prime fac-
torization computation which was previously known). Future
advancements in explainable neural networks, might help shed
additional light on this problem when applied to our results.
While deep learning has shown great success in many different
fields [19], [20], [21], we believe that the success shown in
this paper related to an open mathematical problem in number
theory, is a big step and should not be disregarded as being
merely another deep learning application. Our work may lead
to a new paradigm of using deep learning (or machine learning
in general) to solve mathematical problems such as prime
factorization, friendly numbers, finding prime twins and many
similar problems, which may currently seem out of the scope
of deep learning methods.

VI. CONCLUSIONS

Goldbach’s conjecture and Goldbach’s function have re-
mained open mathematical questions for over two and a
half centuries. There have been several analytic attempts
to approximate Goldbach’s function, but unfortunately, these
approximations either do not work well in practice or require
prime factorization (prime decomposition) which is a hard

7

Fig. 4: This plot compares the MSE of the three models (Basic-MLP, Multiplication-layer and Ln-layer) with the MSE of their
normalized versions (lower is better). As depicted in the figure, all models gain from this normalization.

problem. In previous work, we developed a basic multi-
layer perceptron and show that this simple model performs
well when trained and tested on numbers up to 4 million.
However, the model’s performance significantly deteriorates
when trained on smaller numbers (up-to 4 million) but tested
on larger numbers (4− 10 million).

To overcome this problem, in this work we presented two
novel deep learning architectures. In these architectures we
introduced two types of multiplication layers; in the first archi-
tecture some of the neurons of a specific layer are multiplied
by each-other (the Multiplication-layer model). In the second
architecture a log activation is performed at the output of a
set of neurons that is followed by a fully connected layer with
an exponential activation (the Ln-layer model). We showed
that both architectures significantly outperform the basic multi-
layer perceptron when trained on smaller numbers and tested
on larger numbers. We further improved the performance of
the deep learning architectures by normalizing the model’s
output by a known analytically derived estimation (G4).

REFERENCES

[1] C. Goldbach, Letter to L, Euler 7 (1742) 1.
[2] T. Oliveira e Silva, S. Herzog, S. Pardi, Empirical verification of the even

Goldbach conjecture and computation of prime gaps up to 4 × 1018,
Mathematics of Computation 83 (288) (2014) 2033–2060.

[3] H. F. Fliegel, D. S. Robertson, Goldbach’s comet: the numbers related
to Goldbach’s conjecture, Journal of Recreational Mathematics 21 (1)
(1989) 1–7.

[4] G. H. Hardy, J. E. Littlewood, Some problems of diophantine approxi-
mation: The lattice-points of a right-angled triangle, Proceedings of the
London Mathematical Society 2 (1) (1922) 15–36.

[5] J. Baker, Excel and the Goldbach comet, Spreadsheets in Education
(eJSiE) 2 (2) (2007) 2.

[6] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1,
MIT press Cambridge, 2016.

[7] A. Stekel, M. Shukrun, A. Azaria, Goldbach’s function approximation
using deep learning, in: 2018 IEEE/WIC/ACM International Conference
on Web Intelligence (WI), IEEE, 2018, pp. 502–507.

[8] Y. Wang, The Goldbach Conjecture, Vol. 4, World scientific, 2002.
[9] H. A. Helfgott, The ternary Goldbach conjecture is true, arXiv preprint

arXiv:1312.7748 (2013) 1–79.

[10] I. O. Bado, New discovery on goldbach, International Journal of
Progressive Sciences and Technologies 13 (2) (2019) 216–221.

[11] C. Liu, A study of relationship among goldbach conjecture, twin prime
and fibonacci number., IJ Network Security 19 (3) (2017) 406–412.

[12] A. Berdondini, The importance of finding the upper bounds for prime
gaps in order to solve the twin primes conjecture and the goldbach
conjecture, arXiv preprint arXiv:2002.07174 (2020) 1–10.

[13] A. Granville, Refinements of goldbach’s conjecture, and the generalized
riemann hypothesis, Functiones et Approximatio Commentarii Mathe-
matici 37 (1) (2007) 159–173.

[14] J. P. Buhler, H. W. Lenstra, C. Pomerance, Factoring integers with the
number field sieve, in: The development of the number field sieve,
Springer, 1993, pp. 50–94.

[15] C. Provatidis, E. Markakis, N. Markakis, Rule of thumb bounds in
Goldbach’s conjecture, American Journal of Mathematical Analysis 1 (1)
(2013) 8–13.

[16] E. Markakis, C. Provatidis, N. Markakis, Some issues on Goldbach
conjecture, Number Theory 29 (2012) 1–30.

[17] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
Proceedings of the 3rd International Conference on Learning Repre-
sentations (ICLR) (2014) 1–15.

[18] J. Richstein, Computing the number of goldbach partitions up to 5 10
8, in: International Algorithmic Number Theory Symposium, Springer,
2000, pp. 475–490.

[19] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang, Traffic flow prediction with
big data: a deep learning approach, IEEE Transactions on Intelligent
Transportation Systems 16 (2) (2015) 865–873.

[20] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, F. A. G. Osorio, A deep
learning architecture for image representation, visual interpretability
and automated basal-cell carcinoma cancer detection, in: International
Conference on Medical Image Computing and Computer-Assisted In-
tervention, Springer, 2013, pp. 403–410.

[21] B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning,
Nature biotechnology 33 (8) (2015) 831.

Learning to Conceal: A Method for Preserving
Privacy and Avoiding Prejudice in Images

Avigail Stekel, Moshe Hanukoglu, Aviv Rovshitz, Nissan Goldberg, and Amos Azaria
Computer Science Department and Data Science Center

Ariel University, Israel

Abstract—We introduce a learning model able to conceal
personal information (e.g. gender, age, ethnicity, etc.) from an
image while maintaining any additional information present in
the image (e.g. smile, hair-style, brightness). Our trained model
is not provided the information that it is concealing, and does
not try learning it either. Namely, we created a variational
autoencoder (VAE) model that is trained on a dataset including
labels of the information one would like to conceal (e.g. gender,
ethnicity, age). These labels are directly added to the VAE’s
sampled latent vector. Due to the limited number of neurons in
the latent vector and its appended noise, the VAE avoids learning
any relation between the given images and the given labels, as
those are given directly. Therefore, the encoded image lacks any
of the information one wishes to conceal. The encoding may be
decoded back into an image according to any provided properties
(e.g. a 40-year old woman).

Our method successfully conceals the private information; a
convolutional neural network trained on the concealed images
cannot restore the original private information. In contrast to
the private information, a user study shows that the remaining
properties of the original image carry-on to the concealed image.
The proposed architecture can be used as a mean for privacy
preserving and can serve as an input to systems, which will
become unbiased and not suffer from prejudice.

I. INTRODUCTION

There are many implications of user privacy with respect

to user data; foremost is the fear of exposing personal infor-

mation over a social network. As indicated by Almadhoun

et al. [2] 75.8% of the respondents do not believe that they

would feel totally safe when providing sensitive information

about themselves over the social networks. Indeed, several

network attacks exist that allow strangers to extract personal

information from a victim [14]. Therefore, any personal data

uploaded to the internet might be exposed by a third party

who should not be permitted to view it. Surveillance cameras,

which record public locations 24/7, may be perceived as highly

privacy invaders. Furthermore, with the rise of miniature

particle accelerators, and the use of terahertz waves, which

allow to “see through” clothes, surveillance cameras may

become much more invasive.

In addition, user-privacy also relates to research communi-

ties. Rothstein [10] states that the current regulatory frame-

works of the Common Rule and Privacy Rule emphasize

privacy interests, but they overlook the privacy interests of

individuals whose health information and biological specimens

are used in research without their knowledge, consent, or

authorization. Methods for data anonymization would allow

faster and more effective research, including life-saving and

Figure 1. General architecture of The Blind Autonencoder for Fairness and
Objectiveness (BAFO).

medical research, as people are more likely to be willing to

share truly anonymized data.

To overcome the issues of privacy and prejudice in images,

we introduce the Blind Autonencoder For Fairness and Ob-

jectiveness (BAFO), a novel deep learning architecture that is

based on a variation autoencoder (VAE) [9]. Namely, BAFO

is trained on a dataset including labels of the information

one would like to conceal (e.g. gender, ethnicity, age). These

labels are directly added to the VAE’s sampled latent vector

(see Figure 1). Due to the limited number of neurons in the

latent vector and its appended noise, the VAE avoids learning

any relation between the given images and the given labels,

as those are given directly. Therefore, the encoded image

lacks any of the information one wishes to conceal; BAFO

is practically blind to all this information. The encoding may

be decoded back into an image according to any provided

properties (e.g. a 40-year old woman).

It might seem unintuitive that during training BAFO is

given the information that it should later conceal. However,

BAFO’s behavior might be similar to a child that is asked to

use a calculator from the very beginning of preschool. The

child might focus on acquiring complex mathematical skills

but is not likely to know how to add or multiply numbers

by herself, because she learns to trust the calculator instead.

Furthermore, if that child will later use a different calculator

that uses different functions, the computation results will

become different. Another similar example is the autopilot,

which may cause pilots to not be able to fly an airplane

themselves, because they learn to trust the autopilot [4].

761

2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/20/$31.00 ©2020 IEEE
DOI 10.1109/ICTAI50040.2020.00121

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

Using BAFO, security offices may monitor concealed

surveillance footage, that is, surveillance footage in which all

information required to be concealed (e.g. gender, race) is not

present. It is important to note that this information is not only

removed, but explicitly not learned by BAFO.

The general idea behind BAFO is to explicitly provide the

model, during its learning process, with the information that

it should conceal during the inference phase, in which this

information will not be provided. We believe that this idea

is not limited to images and videos, but is more general and

can easily adapted to be used for concealing one’s voice, and

text. Concealing voice may be used by the press or by court

when the identity of the speaker needs to remain unknown.

Concealed text may be used when applying for education

or job openings. A candidate may fear to fall for prejudice,

and may therefore wish to hide her gender or race from the

curriculum vitae (CV), in a way that this information cannot

be deduced. Text concealing can be used also for robustly

anonymizing data. This is because BAFO would remove not

only any explicit identifiers (e.g. name and country of birth),

but also from any implicit ones (e.g. specific expressions used

by some group of people). In addition, users knowing that their

data is totally anonymizing are more likely to share their data.

Data sharing is especially important in any medical related

system, which may literally save people’s life.

It is very important to note that the idea behind BAFO is

very different than other tools that may be used to convert

one type of image to another (e.g. showing an older version

of one-self) [1]. Such technologies apply a smart filter that

converts some type of image to another, this filter is applied

regardless of the original image. Therefore, in such systems

if a feminine filter is applied on a woman, she would seem

even more feminine. Unlike with BAFO, if trained to remove

gender, in which all gender related aspects of any image are

totally removed, and are later explicitly added in order to

produce a new image.

We show that BAFO successfully conceals the private

information; a convolutional neural network trained on the

concealed images cannot restore the original private informa-

tion. We further show that the concealed image does match

the additional information provided. That is, for example, a

male image concealed as a female, is usually classified as a

female. A user study shows that the remaining properties of

the original image carry-on to the concealed image; in 90% of

the images, the participants could identify the original image

that was concealed by BAFO to a given concealed image.

II. RELATED WORK

In recent years there have been a number of popular ap-

proaches for creating artificial images: Generative Adversarial

Network (GAN) [6] is a Generative model for creating new

information such as creating fake high quality images. GANs

are trained to output images that look real, and are therefore

sharp and have high contrast. GANs include a discriminator

and a generator; both components compete with each-other.

The discriminator identifies whether each image is original or

has been created by the generator, while the generator’s goal

is to create images that will seem real to the discriminator.

That is, the generator tries to deceive the discriminator into

thinking that the the images created by the generator are

original. Baek et al. [3] created a face editing tool that is

based on GANs. However, GANs are not appropriate for our

goal, since we do not intend to produce an image that looks

as real as possible, but to preserve the original image while

concealing the intended properties.

Another deep learning based approach for generating im-

ages is the Variational AutoEncoder (VAE) [5]. Similar to a

standard AutoEncoder, a VAE architecture includes a bottle-

neck and, during training, it attempts to restore a given image.

The representation in the bottleneck is, in fact, a compressed

representation of the given image. However, a VAE learns two

vectors, a mean vector and a standard deviation vector; the

latent vector is sampled using the mean and standard deviation

vectors. VAEs have been used for denoising and generating

images that are similar to the training-set [7]. In this paper we

propose a novel concept in which the VAE that is trained on

the given data, but the labels are appended directly to the latent

vector (see Figre 1). The VAE, therefore, does not attempt to

learn any information that is directly provided, and becomes

blind to these properties. While not being the primary intention

of our VAE architecture, we note that it can also be used to

generate images with specific attributes (e.g. only images of a

40-year-old female).

Several fair machine learning methods have been developed

recently including some based on deep learning. Louizo et

al. [8] develop a classifier that is based on a variational

autoencoder, VFAE. This classifier obtains a sensitive variable

along with additional insensitive data and outputs a prediction

of a class for each input. The authors apply VFAE to four

datasets. For example, one of the datasets the authors apply

VFAE to is the Adult income dataset. In this domain, VFAE

obtains the age of an individual along with 14 additional

attributes, and outputs a prediction as to whether the individual

has an annual income of over 50, 000 or not. This work differs

from ours in several aspects. First, VFAE does not output

any intermediate value that is human interpretable. Secondly,

VFAE is trained for a specific classification task. Finally,

VFAE requires the sensitive information at inference, while

BAFO uses the sensitive information only at training, and can

therefore conceal this sensitive information without obtaining

it. We also note that VFAE is limited to a binary classification

task, that is, a task with only two classes. This limitation was

later relaxed by [11] who improved their method and extended

it to a classifier with multiple classes.

Zemel et al. [12] introduced a measure, yDiscrim, of

discrimination for a classification problem. yDiscrim is the

difference between the ratio of the positive predictions in a

specific set and the ratio of the positive predictions in the rest

of the examples in the data. Formally:

yDiscrim =
∣
∣

∑
n:sn=1 ŷn∑
n:sn=1 1

−
∑

n:sn=0 ŷn∑
n:sn=0 1

∣
∣ (1)

762

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

where S is a binary variable representing whether a given

individual is a member of a specific set, and ŷ is the prediction

for y. We note that this measure is only applicable to a scenario

in which the overall goal of a system is to classify individuals

to different classes. Furthermore, this measure is not relevant

for cases in which different groups must have different ratios.

For example, a medical system predicting whether a subject

is suffering from a specific illness. While in such cases we

might wish to conceal private information, the system should

still provide the correct ratio for each group. However, in our

work, the overall goal of the system is to produce an output

that conceals some information while remaining interpretable

to humans.

III. DATASET

We use the UTKFace dataset [13], which contains approxi-

mately 23,000 headshot images. The images in the dataset are

labeled with the age (ages range from 0 to 116), gender (male

and female) and ethnic origin which is divided into five types.

The dataset was split into 85% training-set and 15% test-set.

All our software is available at: https://github.com/avigailst/

Learning to Conceal.

IV. METHOD

In this section we introduce the Blind Autonencoder For

Fairness and Objectiveness (BAFO).
The general architecture of the model is depicted in Figure

2. In the training phase, a labeled image is inserted as an

input to BAFO. In the UTKFace dataset the images size is

56x56x3 (RGB), and the images are tagged by age, gender,

and ethnicity. We note that the labels include the information

that we intend to later conceal. The image is then compressed

by the encoder into two vectors representing the parameters

that describe the image, one vector for the mean and the other

for the standard deviation. After sampling the latent vector

from the mean and the standard deviation, it is concatenated

to the the information BAFO is concealing, the age, the gender

and the ethnicity. The latent vector is then decoded back to an

image with a size similar to the input image.
The motivation behind this architecture is that, since the

information to be concealed is provided without noise, the

system will be able to devote all of its efforts to learning only

the additional parameters that affect the image, and not the

information that is explicitly provided.
1) Latent Vector Size: We consider two different sizes

for the latent vector, 48 and 100. In order to evaluate the

performance of BAFO and determine which vector size to use,

we concealed the test data and decoded it into females and

males in 5 age groups: 1-year-old, 20-year-old, 40-year-old,

60-year-old and 80-year-old. In order to evaluate the decoded

concealed images with respect to the age, we developed an

age classifier. We note that the age classifier itself had a

root mean squared error (RMSE) of 6.75. The root mean

squared error (RMSE) and mean absolute error (MAE) of

the decoded concealed images appear in Table I. As depicted

by the table, BAFO with a latent vector of size 48 seems to

slightly outperform BAFO with a latent vector of size 100.

Target RMSE RMSE MAE MAE

age 48-cells 100-cells 48-cells 100-cells

1 12.62 13.34 10.60 11.42

20 9.37 9.00 7.94 7.70

40 7.89 7.97 6.56 6.65

60 18.03 18.71 16.45 17.45

80 27.41 28.30 26.03 27.26

Average 15.06 15.47 13.52 14.10

Table I
THE ROOT MEAN SQUARED ERROR (RMSE) AND MEAN ABSOLUTE ERROR

(MAE) OF CONCEALED IMAGES DECODED AS 1 YEAR OLDS, 20, 40 60
AND 80 YEAR OLDS (LOWER IS BETTER).

V. RESULTS

Figure 3 presents 7 randomly picked images from the test-

set, and the output of BAFO when concealed as a 40-year old

woman, using 48 and 100 length latent vectors. The input

images appear in the first row; in the second row are the

images concealed by BAFO when using a 48 length latent

vector; and in the third row are the images concealed by

BAFO when using a 100 length latent vector. Note that the

facial features are smoother and delicate in the cheek and nose

areas, as well as the thinner eyebrows in pictures 1,4 and 6, as

shown in Figure 3. Note the way the system conceals only the

age and gender of the given image, but preserves the smile,

including the presence of teach, hair-style, light conditions,

brightness of the images and the background.

Figure 4 presents the same images when concealed as a 40-

year-old male. The male’s facial features became more coarse

in the center of the face, accompanied by wrinkles at the sides

of her eyes and mouth, as can be seen in the second, fifth and

seventh images. Note the smile, the length of the eyebrows

and the structure of the nose are preserved in the second row

after the process is completed.

In Figure 5, we used a single image as the input and

concealed it as a male and a female with ages varying from a

one-year-old to an 80-year-old person. As seen in the figure,

BAFO can conceal any image at any range of ages and both

as a male and a female. This result may resemble common

image editor tools (especially when making an image look

older or younger) [1], which are mainly used for entertainment.

However it is very important to note that BAFO is very

different than those tools as it is not trained to convert images

from one demographic group to another (or making an image

older or younger), but is totally blind to the demographic

group. Other image editor tools are either directly trained to

convert from one demographic group to another, or to add (and

remove) specific features (such as aging features, feminine

features, smile features etc.). Very importantly, BAFO is not

provided the age, gender or ethnicity of the original image,

nor does it learn it itself, as BAFO is not required to know

whether the image should be converted to a younger image

763

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

Figure 2. The Architecture of the VAE.

Figure 3. Images concealed by BAFO as a woman 40-year-old. In the first row
are the input images; in the second row are the images concealed by BAFO
when using a 48 length latent vector; and in the third row are the images
concealed by BAFO when using a 100 length latent vector. Note the way the
system conceals only the age and gender of the given image, but preserves the
smile, including the presence of teach, hair-style, light conditions, brightness
of the images and the background.

Figure 4. Concealing images as a 40-year-old male. In the first row are the
input images and in the second row are the images concealed by BAFO when
using a 48 length latent vector.

or an older image. Therefore, BAFO is truly unbiased and the

demographic group is explicitly added to the image encoding

only in order to produce a meaningful image.

VI. EVALUATION

There are three dimensions for the evaluation of BAFO.

The first is an evaluation of the quality of output with respect

to the demographic information provided. That is, if a male

image was concealed as a female, the output image should

be classified as a female. The second is the evaluation of

BAFO’s ability to conceal information. That is, determining

to what extent the concealed information can be retrieved

from the generated image. The third dimension for evaluating

Figure 5. Concealing a single image as a man and a woman at different
ages. This may resemble common image editor tools, however BAFO is very
different than those tools as it is not trained to convert images from one
demographic group to another, but is totally blind to the demographic group.
The demographic group is explicitly added to the image encoding in order to
produce a meaningful image.

BAFO is its ability to construct an image that is similar to

all properties of the original image, excluding the concealed

information. The former two dimensions were evaluated by us-

ing a convolutional neural network, while the later dimension

was evaluated by human judges.

A. Evaluation with a Convolutional Neural Network

To evaluate the first and the second dimensions, we de-

veloped a classifier with two convolution layers and two fully

connected neural network layers. The classifier was trained and

tested on different datasets according to its evaluation goal. We

focus on the evaluation of the gender property of the image.

For that end we identified four different data groups (as shown

in Figure 6):

• The images of males from the original dataset (group A).

• The images of females from the original dataset (group

B).

• The images from groups A and B that were concealed as

males by BAFO (group C).

• The images from groups A and B that concealed as

females by BAFO (group D).

764

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

Male Female

Concealed as a male Conceales as a female

A B

C D

Figure 6. This figure illustrates the datasets that where used to evaluate
BAFO using a convolutional neural network. The blue circles represent the
male images and orange triangles represent female images. Group A and
group B represent the original images, A for the male images and B for the
female images. Groups C and D represent the images of A and B that were
concealed as males in group C and as females in group D.

All data groups were split into 90% training data and 10%
test data. The classifier was first trained on the training data in

groups A and B, with the label being the gender of the person

in the images. When tested on the test data (of groups A and

B) the classifier obtained an accuracy of 88.3%. A similar

accuracy (86.5%) was obtained when tested on the images in

groups C and D. Where in group C the classifier had to predict

the value for male and in group D, female. This implies that

BAFO’s output matches the required gender. That is, BAFO

succeeded in the evaluation of the first dimension.

In order to evaluate the second dimension, the classifier was

then trained separately on groups C and D, with an attempt

to recover the concealed information. That is, the images in

groups C and D were labeled according to the gender in the

original images. The classifier was tested on the test-set from

groups C and D. In this evaluation lower accuracy means that

the classifier could not recover the concealed information.

That is, lower accuracy implies that BAFO had succeeded

in concealing the private information. Indeed, the accuracy

measured was very low (less than 50%, which could be

obtained by a random classifier). All results are shown in II.

B. Evaluation with Human Judges

In order to evaluate the third dimension we conducted a sur-

vey. The participants were asked ten questions: In the first set

of five questions the participants were shown an original image

from the dataset and two images that were transformed, by

BAFO, to a 40-year-old woman. The participants were asked

to choose the image which they believed was transformed

from the original given image. The structure of the second set

of five questions was reversed; we provided one transformed

image and two original images and the participants were asked

to pick an original image. There were 127 participants aged

between 17 and 72, 49 males and 80 females. The results

are presented in the Table III. The participants answered

correctly on 85.5% questions when the images that were in

the questions were of the same ethnic group and 92.4% on

Training Test

A+B → A+B 98% 88.3%

A+B → C +D −− 86.5%

C → C 86.5% 43.9%

D → D 88.5% 47.7%

Table II
THE RESULTS OF THE CLASSIFIER THAT WAS DEVELOPED FOR

EVALUATING BAFO BY THE FIRST AND THE SECOND DIMENSIONS. WHEN

THE CLASSIFIER WAS TRAINED ON A+B AND TESTED ON THE TEST-SET

OF A+B, ITS ACCURACY WAS 88.3%, WHICH IS VERY SIMILAR TO ITS

ACCURACY WHEN TESTED ON GROUPS C+D. THIS IMPLIES THAT BAFO’S

OUTPUTS MATCH THE REQUIRED GENDER. FURTHERMORE, THE

CLASSIFIER DID NOT SUCCEED IN IDENTIFYING WHETHER AN IMAGE

FROM GROUP C WAS CONCEALED FROM A MALE IMAGE OR A FEMALE

IMAGE (ACCURACY 43.9%). A SIMILAR RESULT WAS OBTAINED IN GROUP

D. THIS IMPLIES THAT BAFO CONCEALS THE GENDER PROPERTY VERY

WELL.

questions with images not in the same ethnic group. The

results show that BAFO’s outputs preserve their properties,

as humans successfully identify the original image even when

the ethnicity property is the same.

No. of queries Success rate

From the same ethnic 315 85.8%

From a different ethnic 916 92.4%

Identifying the original image 670 88.8%

Identifying the concealed image 597 92.4%

Total 1267 90.5%

Table III
THE RESULTS FROM THE HUMAN SURVEY. THE RESULTS SHOW THAT

BAFO’S OUTPUT PRESERVES THE IMAGE’S PROPERTIES AS HUMANS

SUCCESSFULLY IDENTIFY THE ORIGINAL IMAGE (AND VICE-VERSA).

VII. DISCUSSION

As depicted by Table I and Figure 3, when modifying the

latent vector size, there seems to be a trade-off between the

image quality and the concealing performance. That is, with a

large latent vector, the image decoded image quality is slightly

better, but the image is slightly not concealed as well. This is

expected, as the larger the latent vector, the more information

BAFO can be stored in it, and the less does it need to rely

on the additional information. On the other hand, the larger

the latent vector, the more features may BAFO store in it

and the higher the image quality. It is yet to be determine

what the optimal latent vector size is, this may depend not

only at the application, but also at the amount of labeled data

available. Another approach is to increase the latent vector

size, but also to modify the KL-divergence formula, so that

the standard deviation will receive higher penalty rates, and

therefore the data obtained from the mean-vector will be

765

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

very noisy. This will further encourage BAFO to rely on the

provided information, as much as possible.

In order to decode the concealed images, so that it is

understandable for humans, BAFO needs to be given some

demographic information (or any other information related to

the concealed information). However, it would be preferable

if BAFO could present the information using a neutral repre-

sentation. For example, by using an image that is not gender

associated. As a first approach to achieve such an image, we

simply provided a value of 0.5 (the mean of the values for

female and for male) as the gender value to BAFO. However,

this approach did not perform that well; this is not surprising,

since no image with the value of 0.5 was given to BAFO

during the training phase.

VIII. CONCLUSIONS & FUTURE WORK

In this paper we introduce BAFO, an image concealer that

receives as input an image and conceals unwanted properties

(such as gender, ethnic origin, and age). The concealed images

may be viewed by humans in a way that would remove

any prejudice related to the concealed properties. BAFO may

be embedded in smart glasses for security officers or other

law enforcers, such that some properties of people who they

interact with are concealed. These images can serve as input

to another machine learning system, which, due to the input

it receives from BAFO, will be unbiased. BAFO may also be

used as a mean for privacy preserving by social network users.

A user may conceal user private information in images (e.g.

age, gender, ethnic origin) before she uploads them to a social

network. Users who are familiar with that user and know the

private information, will be able to decode the image according

to the private information, and will view an image that is very

similar to the original image that was uploaded. Other people

will see the images, but will not be able to extract the private

information concealed in these images.

Extending the architecture described in this paper to con-

cealing one’s identity is straight-forward. Such concealed

images should preserve privacy and therefore could be used

by researchers in different fields. Future work will also in-

clude the extension of BAFO’s architecture to video, voice

and text. Such extensions may have major implications on

privacy preserving and unbiased systems, such as an unbiased
surveillance camera with automatic security threat detection.

IX. ACKNOWLEDGMENT

This research was supported in part by the Ministry of

Science, Technology & Space, Israel.

REFERENCES

[1] Zahid Akhtar, Dipankar Dasgupta, and Bonny Banerjee.

Face authenticity: An overview of face manipulation

generation, detection and recognition. In Nutan College
of Engineering & Research, International Conference
on Communication and Information Processing (ICCIP),
2019.

[2] Nour Mohammed Almadhoun, P Dhanapal Durai Do-

minic, and Lai Fong Woon. Perceived security, privacy,

and trust concerns within social networking sites: The

role of information sharing and relationships develop-

ment in the malaysian higher education institutions’

marketing. In 2011 IEEE International Conference on
Control System, Computing and Engineering, pages 426–

431. IEEE, 2011.

[3] Kyungjune Baek, Duhyeon Bang, and Hyunjung Shim.

Editable generative adversarial networks: Generating and

editing faces simultaneously. In Asian Conference on
Computer Vision, pages 39–55. Springer, 2018.

[4] Nicholas Carr. The glass cage: Automation and us. WW

Norton & Company, 2014.

[5] Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in neural information processing systems, pages

2672–2680, 2014.

[7] Huaibo Huang, Ran He, Zhenan Sun, Tieniu Tan, et al.

Introvae: Introspective variational autoencoders for pho-

tographic image synthesis. In Advances in Neural Infor-
mation Processing Systems, pages 52–63, 2018.

[8] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling,

and Richard Zemel. The variational fair autoencoder.

arXiv preprint arXiv:1511.00830, 2015.

[9] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chun-

yuan Li, Andrew Stevens, and Lawrence Carin. Varia-

tional autoencoder for deep learning of images, labels and

captions. In Advances in neural information processing
systems, pages 2352–2360, 2016.

[10] Mark A Rothstein. Is deidentification sufficient to protect

health privacy in research? The American Journal of
Bioethics, 10(9):3–11, 2010.

[11] Jiaming Song, Pratyusha Kalluri, Aditya Grover,

Shengjia Zhao, and Stefano Ermon. Learning

controllable fair representations. arXiv preprint
arXiv:1812.04218, 2018.

[12] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and

Cynthia Dwork. Learning fair representations. In Inter-
national Conference on Machine Learning, pages 325–

333, 2013.

[13] Zhifei Zhang, Yang Song, and Hairong Qi. Age progres-

sion/regression by conditional adversarial autoencoder. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5810–5818, 2017.

[14] Bin Zhou and Jian Pei. Preserving privacy in social net-

works against neighborhood attacks. In ICDE, volume 8,

pages 506–515. Citeseer, 2008.

766

Authorized licensed use limited to: Ariel University. Downloaded on May 16,2023 at 12:44:33 UTC from IEEE Xplore. Restrictions apply.

Evidence From Computational Linguistics for the Concept of Gates in Hebrew
Anonymous Submission

Abstract

Keywords:

Introduction
Natural languages evolve both through various processes not
supervised by people, growing from below, and through the
efforts of correction and normalization (standardization) car-
ried out by competent people and institutions.

An example of an uncontrolled process is the borrow-
ing of words or the assimilation of phonemes due to geo-
graphic proximity to another language. For example, Akka-
dian lost its guttural consonants due to the influence of the
non-Semitic Sumerians Huehnergard (2011), just as modern
Hebrew, which is spoken today in Israel, lost its guttural con-
sonants, being spoken by people born in Europe.

An example of s normalization process is the effort of Cyril
and Methodius to canonize the Russian language as well as
the recent effort of the Israel Academy of the Hebrew Lan-
guage to revive this ancient language.

The evolutionary paths of human language are not always
easy to trace back by reverse analysis. Many questions arise
in connection with this evolution, and the earlier the observed
stage of evolution is, the more questions stay without certain
answers,

Data science, and machine learning in particular, can help
language researchers through its ability to uncover traces of
evolutionary events hidden from the eyes of researchers by
the veil of history, statistically confirming their impact on the
word structures, sentence structures, concept proximity, etc.,
of a given natural language or group of languages.

Semitic languages represent a vast area of research on the
evolution of natural language. They are the dominant lan-
guages of some of the earliest known cultures. Many ancient
documents are written in Semitic languages. The morpho-
logical structures of the roots of Semitic words are raw and
primary, which indicates their relative proximity to the initial
processes of natural language evolution. Semitic languages
such as Akkadian, the language of the ancient Babylonian
Empire, Hebrew, which was spoken by most of the biblical
characters in the ancient kingdoms of Judah and Israel, and
Aramaic, which was the dominant language (lingua franca)
of the Persian Empire, were and continue to be of great inter-
est to linguists.

There is a debate among researchers about whether the de-
velopment of natural language occurred as an evolutionary
leap or as a gradual evolutionary process. Another contro-
versy, arising from the aforementioned debate, is whether
speech skills are developed in the human brain by imitation
(the Theory of Behaviorism) or universal structures already
exist in the human brain even before birth, and they only find

their channels of expression, which are specific to each par-
ticular language, making world grammars different from each
other, but preserving the deep system of innate concepts/in-
tents (the Theory of Nativism/Innatism).

We can reconcile Nativism and Behaviorism if we assume
that evolutionary processes in the development of morpho-
logical structures took place either during the metaphysical
formation of the human brain itself (implying that spiritual
abstractions also evolve from simple to complex) or during
the behavioral formation of natural languages. In any case,
evolutionary patterns are evident in natural languages.

If the formation of language is indeed a gradual evolution-
ary process, then it is reasonable to assume that this evolution
began among prehistoric people with the exchange of animal-
like sounds - individual phonemes or syllables, which were
enough to express few ideas and feelings. As people needed
more concepts, as their environment and business became
more diverse with different types of crops, farm animals, and
tools, the need for a richer system of terms increased. Thus,
people began to create new words by combining existing syl-
lables.

This paper deals with a morphological phenomenon in Bib-
lical Hebrew. Biblical Hebrew is a Semitic language, and as
such its roots consist only of consonants where the vowels
serve as the glue between the consonants and are not stable
when listing the different syntactic forms of the root. An il-
lustrative description of this situation is the metaphor of con-
sonants as the pegs of a tent, and vowels as the tent sheets. A
Semitic language first hammers the pegs and only then lays
out the different sheets that may change depending on the
weather (the context).

To illustrate this characteristic of the Semitic languages,
we review several words derived from the root KTB denot-
ing the English root ”write”: KoTeV = is writing, KaTaB =
wrote, KaTuB = written, KTiBa = writing. Even the highly
interconnected forms of the root show a high level of flexibil-
ity, if not total freedom, in selecting vowels along with high
adherence to the three consonants of the root.

In this paper, we show the high feasibility of a gradual
evolutionary process, and establish the evolution of Semitic
syllables, or more correctly biconsonant (2C) roots 1, also
known as “gates” 2 to triconsonant (3C) roots.

Most of the roots of Biblical Hebrew have three conso-
nants. There are several indicators both in Biblical Hebrew
and in its derivative, Modern Hebrew, that confirm the evolu-
tion of biconsonant gates into triconsonant roots. One indica-
tor is the presence of a minority of biconsonant roots along-
side the overwhelming majority of triconsonant roots in Bib-

1Vowels do not participate in the formation of Semitic roots
2The term ”gate” comes from the fact the two consonants are

seen as two jambs of a true gate

lical Hebrew. The next indicator is the presence of the ”hol-
low” and the ”disabled” subgroups of Hebrew roots in which
the third consonant is simply missing, and the root is made up
of two consonants and an auxiliary semi-consonant. Another
indicator is the presence of biconsonants gates that clearly do
not change their central meaning when a third consonant is
added to them to form a triconsonant root. An example of
such a gate is the Semitic gate PR whose primary meaning
is “fruitfulness”, a word that most succinctly describes a pro-
cess of multiplication and expansion, and the addition of a
third consonant does not harm this basic meaning and only
adds a shade to it (it is possible to assume that in ancient He-
brew predecessor language, these additional consonants were
added as suffixes). Figure 1 lists the various roots derived
from the PR gate and their meanings, expressing the various
shades of expansion: explosion, proliferation, exaggeration,
separation, etc.

• PR> = wild, savage (one who cannot control his instincts
and they explode out).

• PRG = a flower with many seeds, spread out by the wind.

• PRD = separate (from one to many)

• PRH = proliferate

• PRZ = erase boundaries, exaggerate

• PRX = flower, flourish, prosper

• PRV = break down into pieces

• PRK = break gradually

• PRM = unstitch

• PRS = cut into pieces

• PR< = ruffle

• PRY = burst

• PRQ = take to pieces, unpack

• PRR = crumble, granulate

• PRC = retire, secede

• PRT = detail

Figure 1: Various roots derived from the PR gate. Note that
the BHSA Hebrew to Latin transliteration is used.

This is a well-known example, demonstrating a high level
of internal statistical significance that can only confirm the
phenomenon for this single gate. More gates with lower but
still high levels of internal statistical significance are also
widely known, making the phenomenon statistically signif-
icant throughout the whole language. For example, gate
QC, which primarily means ”edge”, evolves into a group of

roots whose hues semantically converge to ”cut”: QCB=allot,
QCR=reap, QCC=chop, and more. Some gates hold proxim-
ity between them. For example, gate GZ is semantically close
to QC and its derivative roots just mean more shades of ”cut”
(imaginative people may even note the phonetic closeness be-
tween the Semitic ”QC” and the Latin ”CUT”, but this is not
the right scope to delve into such controversial reasoning).

Another indication of the evolutionary development of
Semitic roots is the presence of quadriconsonant(4C) roots
in the Hebrew Bible. The most famous Biblical quadriconso-
nant roots are:

• CM > L = left

• T > T > = sweep with a broom

• CXWH = bow.

To summarize, the main contribution of this work is ...

Related Work
An early source that expands on this “consonant-gate-root”
evolution is the Kabbalistic “Book of Creation” (tradition-
ally claimed to be authored by the patriarch Abraham). The
book, which describes the formation of language in the Pla-
tonic concepts of celestial abstraction, examines in detail the
formation of language in stages, starting from the stage of
the formation of letters, moving on to the stage of combining
pairs of letters into gates and ending with the stage of combin-
ing triplets of letters (or actually pairs of form (gate, letter) =
((letter, letter), letter)) into roots. Due to the mathematical
nature of the Hebrew paradigms, known to anyone who has
had the experience of learning this language, this combinato-
rial description just suggests itself.

A recent article closely related to our discussion is the work
of A. Zeldin Zeldin (2021), in which he discusses the evolu-
tion of Hebrew and other Semitic roots and presents many
interesting aspects of it.

The main idea of this article
The idea in a nutshell
The main idea of our experiment is to either prove or disprove
(or at least not prove) the hypothesis of the gate-root evolu-
tion, which is the second part of the whole hypothesis of the
phoneme-gate-root evolution, by using statistical means and,
in particular, advanced Machine Learning techniques. The
hypothesis of gate-to-root evolution would be confirmed if we
achieved a high level of statistical significance in finding high
intra-cluster semantic similarity when clustering the words of
the target corpus by their gates. We now list the steps of the
experiment.

1. Find the appropriate target corpus. The corpus must be
equipped with a word-to-root mapping (below corpus).

2. Find the appropriate word embedding algorithm for train-
ing a language model on the target corpus for measur-
ing semantic similarity between words. The algorithm

must be effective for small corpora (the Hebrew Bible is
a relatively small corpus, at least in terms of training ad-
vanced language models) and trainable in a reasonable time
by using computational resources available to us (below
word to embedding).

3. Find or develop a method for obtaining a gate given a root
(below root to gate).

4. Now, run Algorithm that picks a representative word
for every root, groups these representative words by their
gates, and calculates the intra-group mean of pairwise se-
mantic similarity for each group.

5. Compare the global ”mean of means” of the pairwise se-
mantic similarities from the previous bullet to those mea-
sured with random groups of words of the same size.

6. Calculate the T-test value between the gate-based groups
and the random groups to ensure better distribution.

We now review every step in detail:

The corpus
We used the BHSA corpus Winther-Nielsen (2019), (Biblia
Hebraica Stuttgartensia Amstelodamensis), which is an open
Hebrew Bible Database using text-fabric. It contains the text
of the Hebrew Bible, augmented with linguistic annotations,
compiled by the Eep Talstra Centre for Bible and Computer,
VU University Amsterdam.

Before passing the corpus to our pipeline, we ran the fol-
lowing preprocessing:

• First, we filtered out words other than verbs, nouns, ad-
verbs, or adjectives because the other parts of speech carry
less contextual information.

• We then normalized the words by converting them to their
lexemes.

The word embedding algorithm
As a word embedding algorithm, we used word2vec. This
algorithm works in a reasonable amount of time and provides
good contextual relations between the resulting word embed-
dings, even when trained on small corpora (TODO: refer to
Moshe’s thesis).

The root to gate method
Inferring the gate from a 3-letter root works as follows:

1. Look for ′WJHN < MT ′ (the order matters). If found -
delete the first occurrence and return the result.

2. Otherwise - delete the third letter and return the result.

The rationale behind this logic is being the ′H > MNT JW ′

letters unstable in Hebrew. These letters are often used as
”reading servants” (vowel markers) or as prefixes or suffixes.
The specified order ′WJHN <MT ′ determines the level of in-
stability from higher to lower and therefore the most unstable

found letter should be removed first. If no unstable letter was
found - remove the third one, assuming the tendency of gen-
erating new words by adding suffixes. The last assumption
will be discussed in Section .

The main algorithm
Below is the listing of the our main algorithm in a python-like
pseudo-code style:

##
First, train the language model on the
target corpus

corpus = BHSA()
model = word2vec.train(corpus.sentences)

##
This auxiliary method receives an array of
words and returns the array of pairwise
similarities between them

def get_pairwise_similarities(words , model):
similarities = []
for i in range(len(words)):

for j in range(i + 1, range(len(words
))):
similarities.append(model.

get_similarity(words[i],
words[j]))

return similarities

##
This is the main method of the algorithm

def main():
gate_roots = {}

group the words by gate
then by root
for w in corpus.words:

gate = root_to_gate(w.root)
if gate_roots [gate] is none:

gate_roots[gate] = {}
if gate_roots[gate][w.root] is none:

gate_roots[gate][w.root] = []
gate_roots[gate][w.root].append(w)

groups = {}

for each gate, generate a list of
words, randomly selecting a single
word per root, and in parallel,
generate another list of random
words, of the same size
for g in gate_roots:

if groups[g] is none:
groups[g] = {'found': [], 'random

': random.select(corpus.words
, len(gate_roots[g]))}

for r in gate_roots[g]:
groups[g]['found'].append(

random.select(r, 1))

evaluate the pairwise similarities
for both the groups and then evaluate
their mean values
found_similarities = [

get_pairwise_similarities(groups[g]['
found'], model) for g in groups]

founds_means = [mean(s) in
found_similarities]

random_similarities = [
get_pairwise_similarities(groups[g]['

random'], model) for g in groups]
random_means = [mean(s) in

random_similarities]

finally return the global means and the
T test value

return mean(found_means), mean(
random_means),
t_test(found_similarities ,

random_similarities)

Results

The average distance between the words sampled for the same
gates is 1.019, while the average distance between randomly
sampled words is 1.068. These differences are statistically
significant (p < 0.05; using a student t-test). Therefore, we
can conclude that the semantics of words with similar gates
are closer to each other than random words.

Table 1: The number of root members of the different gates.

Roots of gate Number of Gates Average Distance
2 42 0.99
3 33 1.02
4 19 1.08
5 9 1.00
6 1 0.90
7 2 1.09

Total average: 1.019

Table 2: Example of two word with the same gate (> C) but
different root. The distance between the two vectors that rep-
resent those words

Hebrew English The Root The Gate

fire >C >C

woman > NC >C
The distance compared to the average: 135%

Table 3: Example of two word with the same gate (> C) but
different root. The distance between the two vectors that rep-
resent those words

Hebrew English The Root The Gate

balsam NV P V P

babies V NP V P
The distance compared to the average: 137%

Table 4: Example of two word with the same gate (FB) but
different root.

Hebrew English The Root The Gate

satisfied FB < FB

old age FJB FB
The distance compared to the average: 58%

Table 5: Example of two word with the same gate (> C) but
different root. The distance between the two vectors that rep-
resent those words

Hebrew English The Root The Gate

tranquil C > H C >

rush C > N C >
The distance compared to the average: 40%

Conclusions
Future work

Optimize the algorithm by changing the underlying
assumptions
In the course of the experiment, we had to proceed from the
assumptions that seemed most likely. However, these as-
sumptions are not absolute, and we can try to improve the
results by questioning them and trying new directions, and
examining alternative evolutionary patterns.

For example, the root to gate method can be modified to
assume that if no unstable letters are found, the letter to be
removed to find the gate is not necessarily the last one. If
we refer back to the PR gate, we can assume that roots like
P>R, PTR, or P<R evolved from this gate, although this evo-
lutionary pattern adds a letter to the middle of the gate, not to
the end. Moreover, sometimes the first letter of a root may be
claimed to come from a prefix. At least one example of such a
formation is widely known - the TRM root very clearly orig-
inates from the RM gate and the T prefix.

A second evolutionary pattern worth examining is ana-
gram/metathesis - rearranging the letters of a given word to
form a new word. It is obvious in many cases. For example,
the connection between the roots PRZ and PZR or between
KBF and KFB is obvious to every native Hebrew speaker.

More patterns to be examined are assimilation, voicing
voiceless phonemes or unvoicing voiced phonemes. As we
already mentioned, the close relationship between QY and
GZ seems to be obvious. A comparison between QYY and
GZZ or between QYR and GZR can be very compelling.

Finding larger corpora
Using a larger corpus may improve results. We may want
to either add more root annotations to BHSA (currently only

about a quarter of words have root annotations) or try to use
the Modern Hebrew corpus, even though it may be less effi-
cient in finding the right contextual relationships. Using Tan-
naic Hebrew and Talmudic Hebrew is another way of expand-
ing the corpus.

Testing more etymological hypotheses
An investigation of etymological phenomena like gate-to-root
evolution may be our next task. For example, we may want
to investigate the formation of square roots (roots made up
of four consonants). A brief overview of square roots can
highlight the following patterns of formation:

• Gate duplication, like in the GLGL, DRDR, or VMVM
roots.

• A combination of two different gates. For example, the rare
biblical root XCML, which denotes a shade of light and is
used in modern Hebrew to denote electricity, is sometimes
explained as a combination of two gates: XC (to be silent)
+ ML (to speak).

• Using paradigms from other Semitic languages to create
Hebrew roots. For example, the quadriconsonant root
CKLL developed from the triconsonant root KLL using an
Akkadian paradigm of prepending C to the root (this pat-
tern has become widespread in modern Hebrew, as you can
see in the roots CXZR, CXPL, and others).

• Adoption of roots of foreign languages, for example, the
root HNDS is of Persian origin.

Figure 2

Acknowledgments
sdfasfsaf

References
Huehnergard, J. (2011). Appendix c: Historical akkadian

phonology. In (p. 586-594). Leiden, The Netherlands:
Brill. doi: https://doi.org/10.1163/9789004369160 046

Winther-Nielsen, N. (2019). Interfacing the hebrew bible:
past, present and future applications for the bhsa. HIPHIL
Novum, 5(2), 143-152.

Zeldin, A. (2021). The semitic root evolution (cultural and
historical aspect). Uchenye Zapiski Kazanskogo Univer-
siteta. Seriya Gumanitarnye Nauki, 163(4-5), 47–66.

Research methods and experimental system

In the paper on image processing, we introduce the Blind Autonencoder For Fairness and

Objectiveness (BAFO). In the training phase, a labeled image is inserted as an input to BAFO.

In the UTKFace dataset the images size is 56x56x3 (RGB), and the images are tagged by age,

gender, and ethnicity. We note that the labels include the information that we intend to

later conceal. The image is then compressed by the encoder into two vectors representing

the parameters that describe the image, one vector for the mean and the other for the

standard deviation. After sampling the latent vector from the mean and the standard

deviation, it is concatenated to the information BAFO is concealing, the age, the gender and

the ethnicity. The latent vector is then decoded back to an image with a size similar to the

input image.

In the last paper, we utilized Word2Vec for word embedding.

Word2Vec is a popular technique in natural language processing (NLP) that aims to

represent words as dense vectors in a high-dimensional space. There are two main

architectures within Word2Vec: Continuous Bag-of-Words (CBOW) and Continuous Skip-

Gram. CBOW predicts a target word based on its context, while Skip-Gram predicts the

context words given a target word. In CBOW, the model learns to predict the target word by

summing up the embeddings of the context words and passing them through a neural

network. On the other hand, in the Skip-Gram architecture, the model predicts the context

words based on the target word. Both CBOW and Skip-Gram use a shallow neural network

with a hidden layer to learn the word embeddings. These word embeddings capture

semantic and syntactic relationships between words, allowing for various NLP tasks such as

word similarity, analogy detection, and even capturing complex linguistic patterns.

Word2Vec has revolutionized NLP by providing efficient and effective word representations

that capture the contextual and semantic information of words in a compact vector space.

We chose to utilize the Skip-Gram architecture as it yields superior results.

 אוניברסיטת אריאל בשומרון

 למידה באמצעות מורכבות בעיות פתרון

 עמוקה

חיבור זה הוגש כחלק מדרישות התואר

 "דוקטור לפילוסופיה"

 מאת

שטקל אביגיל

 עבודה זו נכתבה בהנחיית פרופסור עמוס עזריה

 מוגש לסנאט אוניברסיטת אריאל בשומרון

03/07/2023

 תקציר

ה עוצמה לפתרון בעיות מורכבות בתחומים מגוונים. היכולת שללמידה עמוקה התגלתה כגישה רבת

ללמוד דפוסים וייצוגים מורכבים ישירות מנתונים גולמיים שינתה את תחום הבינה המלאכותית.

בעבודה זו, אנו חוקרים את היישום של למידה עמוקה כדי לטפל במספר בעיות שונות בתחומים

 שונים.

ולדבך, בעיה פתוחה מפורסמת במתמטיקה. ההשערה קובעת ראשית, אנו חוקרים את השערת ג

שכל מספר זוגי גדול משניים ניתן לבטא כסכום של שני מספרים ראשוניים. על ידי פיתוח מודל

למידה עמוקה, אנו שואפים לחזות את מספר מחיצות גולדבך עבור מספר זוגי נתון. באופן מפתיע,

הקיימים, מבלי לדרוש פירוק ראשוני של המספר. המודל שלנו עולה על האומדנים האנליטיים

 התקדמות זו מקרבת אותנו לפתרון אחת הבעיות הפתוחות הבולטות בעולם המתמטיקה.

לאחר מכן, אנו מתעמקים בתחום השמירה על הפרטיות. ההתמקדות שלנו היא בהסתרת מידע אישי

ת, אנו מציעים מודל מקודד מתמונות תוך שמירה על תכונות רלוונטיות אחרות. כדי להשיג זא

(שאומן על מערך נתונים הכולל תוויות של המידע שיש להסתיר, כגון מין או גיל. על VAEאוטומטי)

, אנו מבטיחים שהמודל לא לומד VAEידי הוספה ישירה של התוויות הללו לוקטור הסמוי שנדגם של

תוך שמירה על מאפייני תמונה מידע הסמוי. השיטה שלנו מסתירה בהצלחה מידע פרטי מאחסןאו

אחרים, כפי שהוכח במחקרי משתמשים. גישה זו טומנת בחובה הבטחה לשמירה על הפרטיות

 ויכולה למתן הטיה במערכות הנשענות על ניתוח תמונה.

 עיצוריים-לבסוף, אנו חוקרים את האבולוציה של השפה העברית, במיוחד את המעבר מאטימונים דו

 ערוך , מערך נתונים BHSA(. באמצעות קורפוס 3C))שורשים(עיצוריים-תלתים (לשורש2C))שערים(

לייצוג משמעות סמנטי, אנו חוקרים את השערת Word2Vecידנית של התנ"ך העברי, ושיטת

בעברית המקראית. הניתוח שלנו מגלה שמילים בעלות 3C םלשורשי 2C משעריםהאבולוציה

יותר בהשוואה קרובים, יוצרות אשכולות 2Cאותם אטימונים שורשים שונים, שמקורן ככל הנראה מ

לקבוצות מילים אקראיות. ממצאים מובהקים סטטיסטית אלה תומכים מאוד בהשערה ושופכים אור

 על ההתפתחות ההיסטורית של המורפולוגיה השמית.

ת והיעילות על ידי יישום טכניקות למידה עמוקה לבעיות הנבדלות הללו, אנו מדגימים את הרבגוניו

של גישה זו בהתמודדות עם אתגרים מורכבים. מהשערות מתמטיות ועד לשמירה על פרטיות

ואבולוציה לשונית, למידה עמוקה מציעה מסגרת רבת עוצמה לפתרון בעיות וקידום ההבנה שלנו

 במגוון רחב של תחומים

	Introduction
	Background
	Approximations of Goldbach's Function

	Deep Learning Based Architectures for Goldbach's Function Approximation
	Data Composition
	Model Features

	Model Architectures
	Basic-MLP
	Multiplication-Layer Model
	Ln-Layer Model
	Normalization of the Result
	Results

	Discussion
	Conclusions
	References

