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Abstract

Autonomous driving includes several sub-fields, such as perception, motion plan-
ning, and control. There are distinct motion planning objectives, such as increasing
energy efficiency and minimizing travel time. The travel time is minimized (i.e.,
driving at the time-optimal velocity) by maximizing the speed, subject to several
constraints, such as traffic laws, sensing limitations, and passenger comfort. How-
ever, the most critical constraint that must be respected in every scenario is dynamic
stability. By "dynamic stability," we refer to constraints that are functions of vehicle
dynamics, such as preventing rollover or sliding. This work focuses on autonomous
driving near the time-optimal velocity in several challenges. Two major approaches
are used to solve such problems: direct solutions, where the solution is based on an
expert’s understanding of the problem, and machine learning, where the solution
is automatically learned from data. This work proposes several algorithms for au-
tonomous driving that demonstrate the utility of the direct approach and the com-
bination of these two approaches to speed up the learning process and ensure the
safety of a learned solution.
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Chapter 1

Introduction

1.1 The Problem

The operation of autonomous vehicles requires the synergetic application of a few
critical technologies, such as sensing, motion planning, and control.

To simplify the autonomous driving task, it is usually divided into hierarchical
modules. The first module is responsible for perception; it receives raw data from
sensors as input and returns information about the environment and surrounding
objects. The output from this module is used by the motion planning module that
includes high-level navigation (e.g., whether to turn at an intersection) and low-
level planning that defines the steering and throttle commands, while considering
the vehicle’s capabilities and the near environment. The last module performs low-
level steering, throttle, and braking control.

A significant part of autonomous driving research is focused on perception. It
includes estimating the vehicle’s state and determining the vehicle’s surroundings,
such as the location of other vehicles. In this work, we use existing perception tech-
niques and focus on motion planning.

Common motion planning objectives include energy efficiency and travel time.
The travel time is minimized by maximizing the vehicle’s speed, subject to sev-
eral constraints, such as traffic laws, sensing limitations [1], and passenger comfort
[2]. However, the most critical constraint that must be respected in every scenario
is dynamic stability. By "dynamic stability," we refer to constraints that are func-
tions of vehicle dynamics, such as preventing rolling over or sliding [3, 4, 5, 6].
The vehicle’s dynamic capabilities, such as its maximum and minimum accelera-
tion, ground/wheels interaction, terrain topography, and path geometry, map to an
upper-velocity limit, above which one of the dynamic constraints is violated. It fol-
lows, that the time-optimal velocity should not cross the velocity limit.

We can identify two main challenges in autonomous driving: Driving a single
vehicle safely under challenging conditions [7, 8, 9], and navigating in crowded dy-
namic environments [10, 11, 12]. These two challenges are combined in an extreme
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way in autonomous racing [13, 8, 14, 15], where all vehicles drive very close to their
performance envelope and all try to reach the same goal, which is winning the race.

1.1.1 Direct vs. Machine Learning Approaches for Autonomous

Driving

Two major approaches are used to solve problems, such as developing an autonomous
car: directly designing the solutions and machine learning. In the direct approach,
an expert directly develops an algorithm based on general information about the
world and the problem, such as mathematics and physics tools, measurements, and
previous experience. In contrast to such a direct approach, machine learning au-
tomatically extracts knowledge from data and gets solutions that were not directly
programmed. For control problems, such as driving a car or controlling a robot, Re-
inforcement Learning (RL) reduces the development effort by automatically learning
from interaction with the environment. The RL agent is usually general and does not
include specific information about the target environment; this allows it to adapt to
different environments without the need to develop a new controller.

An extreme learning approach is end-to-end learning, which learns a direct map-
ping between the raw data from the sensors to the final actions. This approach is
used, for example, for playing Atari games [16], steering of a real car [17] given only
camera data, and simulated car racing [18]. Because the problem is not modular-
ized, higher performance can be potentially achieved because the entire system is
optimized as a whole [17]. However, this approach is usually inefficient because the
solution needs to be learned from scratch since data from other problems are not
available. For this reason, a large amount of data is required to solve one problem
[19].

Each approach has advantages and disadvantages. With the direct approach, the
developer can take into consideration a broad understanding of the problem without
the need to test the system in the real world. RL, on the other hand, needs to extract
this knowledge from the interaction with the environment, which requires a high
amount of data and leads to long training times. This is especially challenging in
safety-critically problems such as driving, where safety needs to be ensured during
the whole training phase, including at the beginning, when the learned model may
still be highly inaccurate [20]. Another challenge is how to ensure the safety of a
learned solution. The internal decision process of the learned solution is usually
nontransparent because the learned solution relies on complex models (e.g., neural
networks). Therefore, the solution can only be guaranteed statistically and not by a
mathematical analysis as in a directly designed solution.
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Despite the advantages of direct solutions, they are limited by the human un-
derstanding of the problem and the optional solutions. To solve complex problems,
usually, a simplified model is developed. This model should capture the most im-
portant properties of the problem but should be simple enough to be practical. For
example in autonomous driving, the real dynamics of a vehicle and the interaction
with the environment are complex, but they may be simplified by modeling the ve-
hicle as a point mass [21], or a bicycle model [22, 8]. Indeed, RL agents may achieve
higher performance than human-crafted solutions by training a highly expressive
model such as a deep neural network [23, 24, 25].

Research Goals The research goals of this work are:

• Developing learning-based and directly-designed algorithms for time-optimal
velocity control and competitive driving

• Speeding up the learning process by combining learning-based and a direct
approach

• Ensuring the safety of a learned solution using a directly-designed dynamic
model

• Developing a new concept for meta-reinforcement learning that allows quick
adaptation to different vehicles

1.2 Review of the Papers

The next sections review the four papers that constitute this thesis’s main part.

1.2.1 Competitive Driving of Autonomous Vehicles

This paper [26] addresses the issue of autonomous competitive yet safe driving in
the context of the Indy Autonomous Challenge (IAC) simulation race. The IAC is
the first multi-vehicle autonomous head-to-head international competition, reaching
speeds of 300 km/h along an oval track modeled after the Indianapolis Motor Speed-
way (IMS). Autonomous racing has unique challenges emanating from the unique
properties of the race vehicle, its extreme speeds, and the competitive nature of the
driving.

The autonomous racing controller was developed based on the underlying prin-
ciple that emphasizes safety over performance. To this end, our controller attempts
to avoid collisions, including those that the race rules placed the responsibility to
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avoid on the opponent’s vehicle. Despite this conservative approach, it did not di-
minish the racing controller’s competitiveness.

The racing controller is based on a repeated search for the locally best maneuver
that avoids collisions with opponent vehicles, attempts to follow the globally opti-
mal race line, and obeys the race rules. The best maneuver is selected from a tree of
local maneuvers, generated to a set of goals across the track by applying time opti-
mal control to a point mass model. The selected maneuver is then tracked using the
pure-pursuit controller [27].

Our controller was tested and analyzed in simulations with 6 competing vehicles,
all running the same algorithm. It was also tested in the IAC simulation race, where
it competed in races with up to 7 vehicles.

1.2.2 Deep Reinforcement Learning for Time Optimal Velocity Con-

trol using Prior Knowledge

This paper [28] proposes a reinforcement learning method for driving a vehicle at the
time optimal speed along a known arbitrary path. It learns the acceleration (and de-
celeration) that maximizes vehicle speeds along the path without losing its dynamic
stability.

Additionally, we propose to combine prior knowledge from a direct solution with
the RL agent to allow the RL agent to begin the training with a relatively good policy,
thus speeding up the training process. Instead of learning the actions using RL di-
rectly, only the variation from a nominal time-optimal controller is learned by the RL
agent. For this purpose, we use a directly-designed controller that controls a vehicle
along a path while avoiding rollover, slipping, and losing contact with the ground
[21]. This direct method computes the solution efficiently, making it suitable for real-
time use. Another variant, proposed in this paper, combines the direct and learning
approaches by adding the directly computed action as an additional feature in the
RL agent’s state.

1.2.3 Model-Based Reinforcement Learning for Time-Optimal Ve-

locity Control

This paper [29] presents a model-based reinforcement learning algorithm for driv-
ing a vehicle at near-time-optimal speeds along any arbitrary path. Model-based
reinforcement learning is an effective way to learn the complex dynamic model of
the vehicle from its actual responses, thus bridging the gap that separates the real
vehicle dynamics from its directly-designed dynamic model. The dynamic model of
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the vehicle is learned and used for planning the acceleration actions that maximize
vehicle speeds along the path. It is shown that the vehicle achieves higher speed
compared to the direct approach in just one minute of training.

However, to ensure the safety of the learned controller and avoid failure during
training, a dual-model approach is proposed that protects the vehicle from reaching
dynamically unstable states. A simplified and conservative directly-designed model
that accounts for the vehicle’s safety is used to predict if every command proposed
by the RL agent is dynamically safe. An alternative safe local maneuver is executed
if an unsafe maneuver is attempted. This approach results in safe driving from the
beginning of the training process.

1.2.4 Meta-Reinforcement Learning Using Model Parameters

In meta-reinforcement learning, an agent is trained in multiple different environ-
ments and attempts to learn a meta-policy that can efficiently adapt to a new environ-
ment. This paper [30] presents a Reinforcement learning Agent using Model Parameters
(RAMP) that utilizes the idea that a neural network trained to predict environment
dynamics encapsulates the environment information. Therefore, its parameters can
be used as the context for the agent’s policy.

RAMP is constructed in two phases: in the first phase, a multi-environment pa-
rameterized dynamic model is learned. In the second phase, the model parameters
of the dynamic model are used as context for the multi-environment policy of the
model-free reinforcement learning agent.

During the first phase, RAMP learns a neural network that predicts the envi-
ronment dynamics for each environment. However, since the number of the neural
network’s parameters is high, a multi-environment neural network that shares the
majority of the parameters is trained. As a result, only a small set of parameters en-
capsulate the environment properties, and these parameters are used as a compact
context for the meta-policy.

1.3 Connection Between the Papers

All four papers address the problem of autonomous driving near the performance
envelope. Each paper demonstrates a different perspective of direct-design com-
pared to machine learning approaches for developing the solutions.

The first paper, Competitive Driving of Autonomous Vehicles, relies solely on a directly-
designed algorithm for high-performance autonomous racing. Relying on a direct
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approach is called for when an immediate solution is required, and a reliable learning-
based solution still does not yet exist, like in this domain.

However, directly defining an accurate model that considers all the vehicle and
environmental constraints is impossible. Therefore, RL is used to learn the time-
optimal velocity of a vehicle to achieve higher speeds compared to a directly-designed
controller, as demonstrated in the second paper, Deep Reinforcement Learning for Time
Optimal Velocity Control using Prior Knowledge. Furthermore, the paper demonstrates
that combining the direct solution with a reinforcement learning approach speeds
up the learning process.

The second paper’s approach still requires relatively long training times, and
failures can still occur (i.e., losing dynamic stability). The third paper, Model-based
Reinforcement Learning for Time-optimal Velocity Control, proposes a model-based re-
inforcement learning algorithm that decreases training time to under one minute.
Furthermore, the direct solution is used to ensure the safety of the actions selected
by the reinforcement learning agent.

Direct and hybrid approaches require developing an environment-specific solu-
tion and relying on expert knowledge. The fourth paper, Meta-Reinforcement Learning
Using Model Parameters, presents a meta-reinforcement learning approach that does
not require an explicit direct solution but instead extracts information from multiple
environments to allow efficient adaptation to a new environment. Even though a
direct solution is not explicitly used, the knowledge from direct solutions assists in
constructing a better reinforcement learning agent.



7

Chapter 2

The Papers



Received 14 September 2022, accepted 10 October 2022, date of publication 19 October 2022, date of current version 27 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3215984

Competitive Driving of Autonomous Vehicles
GABRIEL HARTMANN 1,2, ZVI SHILLER 1, (Life Senior Member, IEEE), AND AMOS AZARIA 2
1Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 4070000, Israel
2Department of Computer Science, Ariel University, Ariel 4070000, Israel

Corresponding author: Gabriel Hartmann (gabrielh@ariel.ac.il)

This work was supported in part by the Ministry of Science and Technology, Israel.

ABSTRACT This paper addresses the issue of autonomous competitive yet safe driving in the context of the
Indy Autonomous Challenge (IAC) simulation race. The IAC is the first multi-vehicle autonomous head-to-
head competition, reaching speeds of 300 km/h along an oval track modeled after the Indianapolis Motor
Speedway (IMS). We present a racing controller that attempts to maximize progress along the track while
avoiding collisions with opponent vehicles and obeying the race rules. To this end, the racing controller first
computes a race line offline. During the race, it repeatedly computes a small set of dynamically feasible
maneuver candidates, each tested for collision with the opponent vehicles. It then selects a collision-free
maneuver that maximizes the progress along the track and obeys the race rules. Our controller was tested in
a 6-vehicle simulation, managing to run competitively with no collision over 30 laps. In addition, it managed
to drive within a close range of the leading vehicle during most of the IAC final simulation race.

INDEX TERMS Autonomous vehicles, collision avoidance, motion planning, multi-robot systems.

I. INTRODUCTION
Autonomous racing has gained great interest in recent
years [1], resulting in a number of racing competitions [2],
[3], [4]. In competitive driving, the challenge is to main-
tain safety and minimize motion time while competing
against other vehicles that attempt to achieve the same goal.
We address the issue of competitive driving in the context of
our participation in the recent Indy Autonomous Challenge
(IAC) [4]. The IAC is an international competition intended
to promote the development of algorithms for driving under
challenging conditions. Its goal is to demonstrate the world’s
first multi-vehicle, high-speed, head-to-head autonomous
racing.

The IAC, held on 2020-2021, was carried out in two stages:
a simulation race and a real race on the Indianapolis Motor
Speedway (IMS) with the Dallara AV-21 autonomous race
car [5]. Fig. 1 depicts the IMS and the race car. Over 30 teams
from universities worldwide participated in this challenge.
A prerequisite for entering the competition was to demon-
strate autonomous driving of a real vehicle. Our team’s entry
submission is shown in [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jjun Cheng .

FIGURE 1. (a) The Indianapolis Motor Speedway (b) the AV-21
autonomous race car [5].

While the simulation race achieved its stated goals, the real
race ended up with solo driving and controlled overtaking
between two vehicles [7]. Evidently, competitive driving
with real vehicles is not yet ready and will hence rely for the
time being on high-fidelity simulations. It is in the context of
this reality that we present our work on competitive driving.

A. CHALLENGES OF AUTONOMOUS RACING
Autonomous racing has unique challenges emanating from
the unique properties of the race vehicle, its extreme speeds,
and the competitive nature of the driving.

1) EXTREME SPEEDS
Racing speeds coupled with limited frequencies of the sen-
sor readings lead to state updates at large distance intervals
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compared to the vehicle size and the distance between
neighboring vehicles. Furthermore, driving near the vehicle’s
performance envelope in close proximity to neighboring vehi-
cles leaves little room for correction and hence requires
high-fidelity predictions of the behavior of the opponent
vehicles.

2) COMPETITIVE DRIVING
Competitive driving forces the competitors to race in close
proximity to opponent vehicles. As a result, the time dif-
ference between the leading teams is measured in fractions
of a second. This, in turn, forces all competitors to drive
on the performance envelope of the vehicle and the driver,
leaving little room for safety. Although the goal is to win the
race, in our opinion, especially for the first time that such a
head-to-head race is taking place, safer behavior and larger
safety margins should be preferred over pushing the vehicle’s
performance to its limits.

3) AERODYNAMIC FORCES
The aerodynamics of a race car has two main effects: a
down-force that increases the tire grip and consequently lets
the car reach a lateral acceleration of over 2.5 g, which in turn
significantly increases the vehicle’s maximal speeds along an
oval track. The second effect is slipstream, or drafting, which
reduces the drag on the vehicle that follows behind at close
range. Exploiting the slipstream is an important strategy in
car racing since it allows vehicles with identical dynamics to
overtake each other at high speeds.

4) RACING RULES
The racing rules [8] for the autonomous race were derived
from the rules used in human-driven races [9]. Central to these
rules is the principle that an overtaking vehicle is fully respon-
sible for avoiding collision with a vehicle that is moving on
its race line, without causing it to veer off its race line. If a
collision occurs in such a situation, the overtaking vehicle is
held responsible for the collision and is removed from the
race.

B. THIS PAPER
The autonomous racing controller was developed based on
the underlying principle that emphasizes safety over perfor-
mance. To this end, our controller attempts to avoid collisions,
including those that the race rules placed the responsibility to
avoid on the opponent vehicle. While this is a conservative
approach to competitive driving that attempts to drive safer
than what is allowed by the race rules, it is in our opinion the
right approach to ‘‘responsible competitive driving.’’

The racing controller is based on a repeated search for the
locally best maneuver that avoids collisions with opponent
vehicles, attempts to follow the globally optimal race line,
and obeys the race rules.

The best maneuver is selected from a tree of local
maneuvers, generated to a set of goals across the track by
applying time optimal control to a point mass model. The

selected maneuver is then tracked using the pure-pursuit
controller [10].

Our controller was tested and analyzed in simulations with
6 competing vehicles, all running the same algorithm. It was
also tested in the IAC simulation race, where it competed
in races with up to 7 vehicles. We note that the controller
is efficient for racing with even more vehicles since the
algorithm’s complexity is linear in the number of opponent
vehicles.

Despite its simplicity, this controller demonstrated safe and
competitive driving, while overtaking other vehicles over the
30 lap run, without causing even a single collision between
any of the 6 competing vehicles. In the IAC simulation race,
our vehicle managed to avoid collisions while staying within
close range of the leading vehicle for the majority of the
semi-finals and finals. Our strategy of avoiding collisions
at all cost caused our vehicle to spin off the track while
attempting to avoid collision with another vehicle that entered
our safety bound. This placed our vehicle in the 6th place in
the simulation competition.

The contributions of this paper are twofold:

• Presenting a complete controller for a multi-vehicle race
that drives competitively, avoids collision, and obeys the
race rules.

• Presenting multi-vehicle (6 vehicles) race results and
providing metrics to quantify the performance of a
multi-vehicle race.

II. RELATED WORK
Most previous work in the field of autonomous racing have
focused on solo-racing [11], [12], [13] or racing against a
single opponent vehicle [14], [15]. Very few studies have
addressed multi-vehicle racing with more than two opponent
vehicles [16], [17]. This paper describes our multi-vehicle
racing controller and demonstrates it (in simulation) in a
6-vehicle and 7-vehicle races.

Autonomous racing has been tested in competitions, such
as the Formula student challenge [2] or Roborace [3], which
focus mainly on solo racing. The recent IAC real race
demonstrated controlled overtaking between two vehicles [7].
A multi-vehicle race has been so far demonstrated only in
the IAC simulation race [4]. For a comprehensive survey on
autonomous racing, see [1].

We now survey some of the existing work on autonomous
racing regarding each of our racing algorithm modules,
namely global race line planning, opponents’ trajectories
prediction, local planning, and trajectory tracking.

A. GLOBAL RACE LINE PLANNING
A global race line is the time optimal path (the projection of
the time optimal trajectory on the track) for a one lap solo
race. Computed offline, it serves as a reference input to a
trajectory-following controller [11], [18]. It is also used in
multi-vehicle racing as a reference for the online planner, as is
demonstrated later in this paper.

VOLUME 10, 2022 111773
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The race line optimization for autonomous racing usually
minimizes lap time, which can be computed by solving a non-
linear optimization problem that considers vehicle dynamics
and track constraints [11], [19]. An alternative approach is to
construct a race line by minimizing curvature along the path,
which impacts the vehicle’s lateral acceleration [20]. Since
vehicle speeds vary little along the oval track, optimizing path
curvature offers a good kinematic approximation for the time
optimal dynamic optimization. It is computationally efficient
and it produces race lines that differ only slightly from the
time optimal line. We used open source software [21] for the
offline race line optimization.

B. TRAJECTORY PREDICTION
An early approach to trajectory prediction was based on
Kalman filter to generate short time horizon predictions while
assuming a constant velocity and acceleration along each
segment [22]. A more recent approach trains recurrent neural
networks to predict the multi-modal distribution of future
trajectories [23]. While the learning-based approach, using
neural networks for prediction, is promising, it requires a
large amount of data, and it does not guarantee the quality
of the learned solution [24].

For computational efficiency, we devised a prediction
module that accounts for the opponent’s current state and
track geometry.We used a conservative assumption that while
moving across the track, the opponent vehicle will cross the
entire track, until reaching either the inner or outer boundary,
and will follow that track boundary while maximizing its
speed during the set time horizon.

C. LOCAL PLANNING
Model Predictive Control (MPC) was used to optimize a
local trajectory for solo driving [12], [25], and for avoiding
static [26] and dynamic obstacles [27]. To avoid obstacles,
Wischnewski et al. [27] and Liniger et al. [26] first plan a
free driving zone using graph search, then generate an optimal
trajectory within the selected zone. In [15], MPC was used
directly to overtake a single opponent vehicle in a racing
scenario.

Random sampling was used to search for a feasible,
collision-free solution using Rapid RandomTrees (RRT) [28]
and RRT* [13] and CLRRT# [29] to compute an asymptot-
ically optimal solution. It is important to note that random
sampling-based methods do not guarantee a solution in a
finite computation time. Furthermore, these methods typi-
cally require excessive computation time that is detrimental
to real-time execution at high-frequency.

A less computationally demanding solution is to select an
optimal trajectory from a small set of trajectories, generated,
for example, by simulating various constant steering angles
and velocities [26], or by generating cubic spirals to a set of
target points [30].

The above mentioned methods are either unsuitable for
high-speed racing or have not been demonstrated for more
than three vehicles. Our online planner selects a trajectory

from a small set of maneuvers generated by a point mass
model to a number of target points, while minimizing motion
time, avoiding collisions with the opponent vehicles, and
attempting to reach the optimal race line, as described later
in Section V.

D. TRAJECTORY TRACKING
Trajectory tracking can be done using feedback control
by minimizing position error, [18], [31], Model Predic-
tive Control (MPC) by generating a sequence of open loop
commands that minimize tracking error subject to dynamic
constraints [11], [27], and learning-based control that itera-
tively minimizes lap time and tracking error [32], [33].

We opted for the pure-pursuit algorithm [10], together with
low-level linear and angular velocity controllers. It provides
satisfactory performance when fine-tuned for driving along
the smooth trajectories generated by the local planner. It is
easy to tune, owing to the low number of parameters used,
compared to other methods.

E. REINFORCEMENT LEARNING APPROACH
Recently, Wurman et al. [17] beat human drivers in a
racing video game, using reinforcement learning. Unlike
the hierarchical approach of the methods described earlier,
the reinforcement learning agent maps a low-dimensional
state directly to control commands. Although learning-based
approaches are promising, they usually require a high amount
of training data, making it challenging to generalize them
to training safely in the real world. Such long training also
made it impractical for the IAC simulation race because of the
slower-than-real-time performance of the simulator. Another
challenge is to validate the safety of the learned controller,
which is nontransparent (i.e., black box), unlike physics-
based controllers.

F. COMPARISON
Most of the current research focuses on single or two-vehicle
racing, and there is currently no demonstration of a real race
with more than two vehicles. We note that it is impossible to
directly compare different methods implemented in different
settings in the racing domain. This is because the perfor-
mance differences between racing competitors are very small,
as shown later in Section VII. In addition, in a racing envi-
ronment, all methods are extensively fine-tuned to a specific
setting, and thus, one method cannot be applied, as is, to a dif-
ferent setting. These challenges emphasize the importance of
racing competitions such as the Indy Autonomous Challenge
that provides an opportunity to compare the performance of
various methods on a common ground.

III. SOFTWARE ARCHITECTURE
The software architecture of the racing controller is shown
schematically in Fig. 2. An optimal race line is computed
offline for a given track, which serves the controller through-
out the race. The data from the cameras and radars provide the
position and velocity of the surrounding opponent vehicles,

111774 VOLUME 10, 2022
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FIGURE 2. The software architecture.

FIGURE 3. (a) The IMS track. (b) The optimal race line around a corner of
the track.

and additional simulated sensors provide the ego-vehicle
state, e.g., position and velocity. Together with the map and
the optimal race line, these data are used by the prediction
module to predict the opponent vehicles’ future trajectories
repeatedly. The trajectory planner uses the same information
to plan an optimal local maneuver for the ego-vehicle. This
maneuver serves as an input to the trajectory-following con-
troller, which computes the ego-vehicle’s desired linear and
angular velocities. The linear and angular velocities are con-
trolled by the velocity controller, which outputs the steering,
throttle, and brake commands.

IV. COMPUTING THE OPTIMAL RACE LINE
The optimal race line is a time-optimal trajectory when no
other vehicles are present on the track. It is computed offline,
based on the track geometry and vehicle dynamics.

The IMS is an oval track, 4, 023 m (2.5 miles) long,
as depicted in Fig. 3a.

We computed the optimal race line using an open-source
trajectory optimization software [21]. The optimal race line
typically minimizes curvature by entering the corner on the
outside boundary of the track, passing through the apex on
the inner boundary to the exit point on the outside boundary,
as shown in Fig. 3b.

V. ONLINE TRAJECTORY PLANNING
The online trajectory planner computes a collision-free tra-
jectory at 25 Hz. This rate was dictated by the frequency of

FIGURE 4. Road-aligned coordinate system.

the simulator sensors updates. This in turn resulted in a travel
distance of 3 m between trajectory updates.

The trajectory computed by the online planner is used
as a reference for the trajectory-following controller (see
Section VI). The planner first generates a tree of dynamically
feasible maneuver candidates to 8 points that span the track
width. The best candidate that maximizes progress along the
path and avoids collision with the opponent vehicles is then
selected.

The online trajectory planner uses a horizon of 200 m,
which the stopping distance at 80 m/s. This is also compatible
with the sensor range of 200 m. The limited planning horizon
decreases the optimality of the local trajectory. However,
we mitigate this by attempting to merge with the optimal race
line, which is in itself globally optimal. Despite the short time
horizon, we demonstrate that the vehicle is able to drive safely
and competitively, as described later in Sec. VII.

A. COORDINATE SYSTEM
The coordinate system used in planning the trajectory is
attached to the ego-vehicle with the x-axis tangent to the left
track boundary and the y-axis normal to track. The position of
the ego-vehicle is denoted (xe, ye). The ego-vehicle is always
located at xe = 0, and ye represents the ego-vehicle’s normal
offset from the left boundary (see Fig. 4).

In our coordinate system, for every point (xi, yi), |xi| rep-
resents the distance from the ego-vehicle along the track
(a negative xi represents a point behind the ego-vehicle), and
yi represents the offset from the track boundary regardless of
the track shape and the ego-vehicle’s location.

B. POINT-TO-POINT TRAJECTORY
We now present the computation of a trajectory between two
end points, for a point mass model. This is repeatedly used to
predict the trajectories of opponent vehicles and for planning
maneuver candidates for the ego-vehicle.

Let ps = {x0, y0, ẋ0, ẏ0} be the starting point, and pg =
{xg, yg, ẋg, ẏg} be the goal point. We wish to plan a trajectory
C(t) = {x(t), y(t), ẋ(t), ẏ(t)}, t ∈ [0,T ] so that C(0) = ps
and C(T ) = pg. We assume a constant longitudinal speed
(along the x axis) so that ẋs = ẋg. The travel time T to the
goal is therefore T = (xg − x0)/ẋ0. Since the longitudinal
distance to the goal is by choice greater than the track width,
C is thus generated by using bang-bang control in the lateral
direction, while applying the minimum lateral force with a
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FIGURE 5. A trajectory between given start and goal points. (a) Force Fy
is applied on mass m to create a continuous trajectory between the
points. (b) The lateral force Fy profile and (c) the lateral velocity ẏ (t).

single switch so that the lateral and the longitudinal end points
would be reached both at time T [34].

The lateral force Fy that generates the bang-bang trajectory
is:

Fy =
−
√
2A− T (ẏg + ẏ0)+ 2(yg − y0)

T 2m
(1)

where

A = (T 2(ẏ20 + ẏ
2
g)− 2T (yg − y0)(ẏg + ẏ0)+ 2(yg − y0)2),

(2)

and the switching time Ts is

Ts =
m(ẏg − ẏ0)+ FyT

2Fy(t)
. (3)

C(t) is thus computed for t ∈ [0,T ] by:

x(t) = x0 + ẋ0t (4)

y(t) =


y0 + ẏ0t +

1
2
Fy
m
t2 t ≤ Ts

y(Ts)+ ẏ(Ts)(t − Ts)−
1
2
Fy
m
(t − Ts)2 t > Ts

(5)

ẋ(t) = ẋ0 (6)

ẏ(t) =


ẏ0 +

Fy
m
t t ≤ Ts

ẏ0 +
Fy
m
(2Ts − t) t > Ts

(7)

Figure 5 illustrates an example of a trajectory between two
given end states.

C. TRAJECTORY PREDICTION OF OPPONENT VEHICLES
An important part of motion planning in a dynamic envi-
ronment, especially in racing, is predicting the future posi-
tions and velocities of all other vehicles surrounding the
ego-vehicle. This is performed by the prediction module,

FIGURE 6. Examples of predicted trajectories of an opponent vehicle
(marked as an orange bounding box). Black indicates constant curvature
trajectory Ĵ , and yellow indicates the predicted trajectory J , which also
considers the track boundaries. In (a) Ĵ exceeds track boundaries;
therefore, a lateral-shift trajectory is predicted by J ; in (b), although the
vehicle drives on a straight line, the predicted trajectory J follows the
track geometry.

which receives the track boundaries and an opponent vehicle
state s = {x0, y0, ẋ0, ẏ0, ω0} as input, where x0, y0 is the
opponent vehicle’s position, ẋ0, ẏ0 is its velocity, and ω0 is
its angular velocity. The module predicts the future trajectory
J (t) = {x(t), y(t), ẋ(t), ẏ(t)} up to a predefined time horizon
Tmax, which was set to 3 seconds to match the planning
horizon.

The prediction module predicts each opponent’s trajectory
based on its current state under the following two assump-
tions: the opponent vehicle intends to stay within the track
boundaries (as described earlier) and attempts to maximize
its velocity (as described in Section V-E). Namely, for a
given opponent vehicle, we first predict a future trajectory, Ĵ ,
that keeps a constant curvature κ , which we approximate by:
κ = ωo

||ẋo+ẏo||
.

It is assumed that the opponent vehicle will stay within the
track boundaries. to this end, our prediction module accounts
for the track boundaries as follows: Let (x̂, ŷ) be the first posi-
tion on Ĵ , at which the opponent vehicle approaches one of
the track boundaries at a distance dmin.We define three points,
p0, p1 and p2, each point consisting of pi = {xpi , ypi , ẋpi , ẏpi}.
The prediction module connects these points by a point mass
maneuver as explained in Section V-B.

The first point, p0 is derived from the opponent vehicle’s
current state s, such that xp0 = xo,yp0 = yo, ẋp0 = ẋo,
and ẏp0 = ẏo. The second point, p1, is based on (x̂, ŷ), but
we assume that the opponent vehicle will not increase its
curvature; therefore, we assume that ŷ will be reached later
on, by a predefined factor, k . That is, xp1 = k(x̂ − xo), yp1 =
ŷ, ẋp1 = ẋo, ẏp1 = 0}.

The third point, p2 retains a path parallel to the boundary,
up to Tmax, i.e., xp2 = ẋoTmax, yp2 = ŷ, ẋp2 = ẋo, and ẏp2 =
0}. Examples of predicted trajectories are shown in Fig. 6.

D. CREATING MANEUVER CANDIDATES
The online trajectory planner plans a set of dynamically
feasible maneuver candidates and selects one according to
multiple criteria, as follows:
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FIGURE 7. Illustration of the maneuver candidates planning:
(a) lateral-shift maneuver and (b) a maneuver to the optimal race line.

FIGURE 8. Example of 7 lateral-shift maneuvers (green) and a maneuver
that merges with the optimal race line (blue).

1) LATERAL-SHIFT MANEUVER
Given the ego-vehicle’s state se = {xe, ye, ẋe, ẏe} and a
lateral-shift target ŷ, the planner module creates a lateral-
shift maneuver, C ŷ, by connecting three points, qi =
{xqi , yqi , ẋqi , ẏqi}, i ∈ {0, 1, 2}, consisting of the q0, the ego
vehicle’s current state, q1 being the target point of the lateral-
shift, and q2 being a point down the track that retains the
lateral shift of q1. More formally, q0 = se, q1 = {(ŷ− ye)b+
c, ŷ, ẋe, 0}, q2 = {xmax, ŷ, ẋe, 0}, where ŷ is the lateral-shift
target, b, c are constants and xmax is the planning horizon.
Figure 7a illustrates a lateral-shift maneuver.

We define N equally spaced lateral-shifting targets repre-
senting potential ŷ values. The first and last targets are far
enough from the boundaries to allow a vehicle to reach them
safely. Our planner generates N lateral-shift maneuvers, one
for each defined target. Let M ′ be the set of all lateral-shift
maneuvers:

M ′
=

N−1⋃
i=0

C ŷi , ŷi = dmin +
w− 2dmin

N − 1
i (8)

where dmin is the minimal distance to keep away from track
boundaries. The width of the track,w, in most segments along
the oval is 14 m; we set the number of lateral-shift maneuvers
N = 7 to achieve a distance between targets that is close to
the vehicle’s width (2 m ).

2) MANEUVER TO THE OPTIMAL RACE LINE
In addition to these lateral-shift maneuvers, we plan a
maneuver CJopt , which smoothly merges with the optimal
race line Jopt. We define the following three points q̃i =
{xq̃i , yq̃i , ẋq̃i , ẏq̃i}, where i ∈ {0, 1, 2}.
The first point q̃0 = se; the second, q̃1 ∈ Jopt such that

(yq̃1−ye)b̃+ c̃ = xq̃1 , where b̃ and c̃ are predefined constants.
Finally, q̃2 ∈ Jopt such that xq̃2 = xmax. See Fig. 7b).

The full set of the maneuver candidates isM = M ′
∪CJopt ,

as shown in Fig. 8.

FIGURE 9. Rectangular safety bound. In (a) No overlap between safety
bounds; (b) the safety bounds overlap.

E. VELOCITY RE-PLANNING
Although the maneuver candidates M and the predicted tra-
jectories of the opponent vehicle include velocities in addition
to positions, these velocities were only used to define the
direction of the paths and to estimate the lateral forces on
the vehicle. Therefore, the velocity profiles are re-planned
to represent the future motion more accurately by assuming
that the vehicles accelerate along the trajectories until they
reach the maximal velocity. This is possible because our
planned trajectories approximate the vehicle dynamics and
thus allow maintaining maximal velocity—without losing
control—when following them.

F. COLLISION
To avoid collisions, we define a safety bound around the
vehicle owing to the uncertainty inherent in our problem.
We attempt not only to avoid a collision with another vehicle
but also to avoid any overlap between the safety bounds
around both vehicles. We use a rectangular safety bound,
which best matches the vehicle’s shape (as shown in Fig. 9).
The vehicle’s length is 5 m, and its width is 2 m. We defined
the longitudinal safety bound as 0.3 of the vehicle length, both
front and rear, and the lateral safety distance as 0.5 of the vehi-
cle width, right and left. This creates a safety longitudinal dis-
tance of 6 m between vehicles (3 m from each safety bound)
and a lateral distance of 4 m between vehicles. We note that
the simpler circular safety bound is less appropriate for this
case because of the length of the race car is more than twice
its width.

Two trajectories C1 and C2 collide if there exists some t
such that the safety bounds of both associated vehicles at time
t overlap. See Fig. 10 for an illustration.

A maneuver candidate is considered free if it does not
collide with a predicted trajectory of any opponent vehi-
cle. However, if an opponent vehicle is directly behind the
ego-vehicle, and the ego-vehicle completely blocks it, our
controller ignores it because changing the path to allow the
opponent vehicle to overtake is clearly an uncompetitive
behavior.

G. MANEUVER SELECTION
Our planner considers all free maneuver candidates. Collid-
ing candidates that assume maximal velocity are updated by
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FIGURE 10. Two trajectories describing the location of each vehicle and
its safety bounds. In (a), the vehicles collide at time t6; in (b), the vehicles
do not collide since the overlap of their safety bounds is at different
times.

FIGURE 11. Updating a maneuver candidate to become free by
decelerating towards a blocking vehicle that drives at a velocity of v2
(green), instead of accelerating to the maximal velocity, vmax (red), and
causing a collision.

reducing the speed along them to avoid collision, as shown
in Fig. 11.

If more than one maneuver is free, each maneuver is given
a cost that is the sum of three criteria: travel time, denoted
T (C), nearness to the optimal race line, denoted N (C), and
continuity, denoted K(C), as detailed below. This produces
the cost function Cost(C) for each free maneuver:

Cost(C) = T (C)−N (C)−K(C); C ∈ M . (9)

1) TRAVEL TIME
T (C) represents the estimated travel time for maneuver
C . It is computed by integrating the maneuver’s velocities
along C .

2) NEARNESS TO THE OPTIMAL RACE LINE
The search for the fastest maneuver with a limited time
horizon is local by nature. A global search is ineffective
because of the unpredictable behavior of the opponent vehi-
cles. A sensible compromise is to attempt to merge with the
precomputed race line, which is globally optimal, wherever
possible. The function N (C) thus equals Ropt if C is the
closest to the optimal race line among the free candidates and
0 otherwise.

3) CONTINUITY
To avoid frequent oscillations between maneuver candidates
of similar optimality, it is preferred, when possible, to main-
tain the same maneuver unless another maneuver is con-
spicuously better. This is done by rewarding the maneuver
that is similar to the current maneuver. For maneuver C ,
K(C) equals Rk if C is the same maneuver as the maneuver
that the vehicle currently drives on and 0 otherwise. Clearly,
switching to a new maneuver is less desired if a switch has
just occurred, but once some time has elapsed since the last

FIGURE 12. Maneuver selection examples, green: free maneuvers, red:
blocked maneuvers, blue: chosen maneuver. (a) The planner selects a
minimum-time lateral-shift maneuver to avoid slowing down because of
the blocking vehicle. (b) The planner prefers the longer maneuver
because it returns to the optimal race line (shown in light blue). (c) The
planner selects a free maneuver that is the closest to the optimal race
line. (d) None of the maneuver candidates are free; therefore, the planner
selects the safest maneuver.

switch, the controller should be more lenient towards another
switch. This is accomplished by decaying Rk linearly at the
rate Rd , as long as the same maneuver has been followed.

H. BEHAVIOR WHEN NO MANEUVER IS FREE
In dynamic environments, such as a multi-vehicle race, there
might occur situations when no free maneuver exists. In such
sitatuations, the optimality criteria are irrelevant, and then the
only selection criterion is safety. The planner then determines
the imminent collision and selects the maneuver that is as far
as possible from that collision (see an example in Fig. 12d).

VI. CONTROL
The control module outputs throttle, brake, and steering
commands that drive the vehicle as close as possible to the
selected maneuver.

A. LATERAL CONTROL
The pure pursuit algorithm [10] is used to compute the desired
angular velocity based on the current ego-vehicle’s state and
the selected maneuver, which is mapped to the Cartesian
coordinates. The pure pursuit algorithm pursues a target on
the selected maneuver C . Let v be the vector representing the
ego-vehicle’s velocity. The distance to the target is defined to
be proportional to the vehicle’s speed v = |v|, that is, ld =
ktv, where kt is a predefined constant. The angle between the
velocity vector v to the vehicle-target vector is denoted as α
(see Fig. 13). The desired angular velocity of the vehicle, ωd
is 2v sinα/ld . The desired angular velocity ωd is used as a
reference for a proportional angular velocity controller that
computes the steering command: δ = kω(ωd − ω) where
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FIGURE 13. Pure pursuit geometry. The red line represents the reference
trajectory C ; the algorithm finds a curve with a constant curvature 1/R
that will lead the vehicle to a target on C that is at a distance ld from the
vehicle.

ω is the current angular velocity of the vehicle and kω is a
proportional gain.

B. LONGITUDINAL CONTROL
The desired speed vd is provided by the selected maneuver,
which is typically used as a reference for the longitudi-
nal controller. However, when closely following a vehicle,
we modify the desired speed to: vd = vf − kf (Ld −L), where
vf is the speed of the leading vehicle, L is the distance to the
leading vehicle, Ld is the desired distance to maintain, and kf
is a proportional gain. This modification allows for smooth
driving and maintaining a constant distance from the leading
vehicle. Figure 14 illustrates the vehicle-following scenario.
Finally, the throttle and brake command u is computed by a
proportional speed controller: u = kv(vd − v) where kv is a
proportional gain.

We note that the vehicle was operated most of the time at
high speeds where the vehicle has low acceleration capabil-
ities because of the high aerodynamic drag at these speeds.
Therefore, we could assume that the longitudinal dynamics
are linear and tune the longitudinal controller for the best
performance at those speeds range.

VII. EXPERIMENTS
A. SIMULATION ENVIRONMENT
The simulation platform used by all teams was the
Ansys VRXPERIENCE simulator [35], which simulates
the AV-21 dynamics and the IMS track (see Fig. 15). The
VRXPERIENCE simulator enables multi-vehicle head-to-
head racing, in which every vehicle is controlled by a separate
controller. The sensors are simulated at 25 Hz and the ego-
vehicle’s state at 100 Hz, in simulator time. Each controller
receives the ego-vehicle’s state and the sensor data from the
simulator and sends back the throttle, brake, and steering
commands.

We use the pre-processed cameras and radars data from
the simulator to obtain the position and linear and angular
velocity of all vehicles in the sensors range. Our controller
is based on Autoware.auto [36], which is an open-source
autonomous driving framework that uses ROS2 as middle-
ware. The computation time of each cycle at our algorithm
is 20 milliseconds, on average, on an Intel Core i7 2.90 GHz

FIGURE 14. The ego-vehicle follows another vehicle. The distance
between the ego-vehicle and the vehicle ahead, L, is less than the
predefined following distance, Ld . Therefore, the ego-vehicle will slow
down to increase L.

FIGURE 15. The VRXPERIENCE simulator used for the simulation race.

CPU, which enables our algorithm to run in real time. A video
demonstrating our controller is available in [37].

B. SIMULATION RESULTS
We first tested the solo lap performance of our controller,
that is, driving along the track without other vehicles. The
lap time was 50.0 seconds, and the vehicle had an average
speed of 80.83 m/s. The vehicle ran at full throttle along the
entire lap. The speed and the lateral accelerations during a
single lap are shown in Fig. 16. As depicted by the figure,
the vehicle’s speed dropped slightly at the corners from a
top speed of 82.72 m/s to 78.79 m/s. That is owing to the
increased tire slip, which detracts from the longitudinal tire
force during the turns. Furthermore, the lateral acceleration
during the turns was over 2.5 g, which is way above what
is expected of a regular passenger car, reflecting the high
down-force generated by the race car due to its high speed
and aerodynamic properties.

We then tested our controller in a multi-vehicle scenario,
running the same controller on 6 vehicles over 30 laps. Every
controller instance operated independently of the other con-
trollers and received information only from its own vehicle
sensors. During the entire test, all vehicles drove safely while
respecting the race rules; a collision or loss of control never
occurred. Figure 17 shows two typical snapshots from the
planner of the black vehicle. Notably, all vehicles are very
close to the leading vehicle (approximately 40 m) while
moving at very high speeds (over 80m/s), resulting in approx-
imately 0.5 s separating the leading vehicle from the last.
A recording of this test, which took 28 minutes, is available
at [38] and the raw data at [39].

The lap times in the multi-vehicle test ranged from 49.84 to
51.24 seconds, a difference of less than 3% between the
extremes. The average lap time was 50.25 seconds, which is
very close to the solo lap time of 50.0 seconds. The lap-time
distribution is shown in Fig. 18. Interestingly, some of the
individual laps were faster than the solo-lap. This is owing to
the higher speeds that individual vehicles can achieve while
taking advantage of the slipstream of the leading vehicles.
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FIGURE 16. (a) Path, (b) velocity profile, and (c) lateral acceleration
during the solo lap. The vehicle slows down from a speed of 82.72 m/s to
78.79 m/s in the corners, labeled A-D. The lateral acceleration in the
corners exceeds 2.5 g due to the high down-force.

Figure 19 shows the distribution of the longitudinal dis-
tance between the first and last vehicles over the 30 laps. The
average distance was 64.7 m, which indicates a very tight
race.

Another indication of the race tightness and the compet-
itive behavior of all vehicles is shown in Fig. 20. It shows
the longitudinal distance from all vehicles to the first vehicle
during the last 10 laps. Remarkably, the vehicle starting far
behind all other vehicles (represented by the red line) crossed
the finish line ahead of the other vehicles. The last vehicle
crossed the finish line only 0.32 seconds after the first vehicle.
Note that, as mentioned in I-A3, the vehicles can overtake
each other, although having identical dynamics, by exploiting
the slipstream generated by the leading vehicle.

Figure 21 shows a sequence of snapshots of one over-
taking maneuver with three competing vehicles. As shown,

FIGURE 17. Two snapshots of trajectory planning in a scenario with 5
opponent vehicles. Predicted opponent trajectories (orange); free
maneuvers (green); colliding maneuvers (red); selected maneuver (blue).
(a) The ego vehicle drives on a straight. The colliding maneuvers are close
to the inner boundary of the track. The selected maneuver continues on a
straight line. (b) The vehicles are approaching a corner. The colliding
maneuvers are close to the outer side boundary of the track. The selected
maneuver overtakes the green vehicle from the right.

FIGURE 18. Lap times distribution of all 6 vehicles over 30 laps. The red
line represents the solo-lap time.

the black vehicle, starting second in Fig. 21b, gains a slight
advantage over the blue vehicle at every corner until it suc-
cessfully overtakes the blue vehicle, as shown in Fig. 21g.
This overtaking maneuver took approximately 40 seconds
and 3 km to complete. We note that explicitly planning such
a maneuver requires a planning horizon of a few kilometers,
which is computationally expensive. Nevertheless, our plan-
ner executes suchmaneuvers by repetitive local planning over
a horizon of 3 seconds. Although some of our controller’s
attempts to overtake other vehicles may fail, it does not
compromise the vehicle’s safety.

C. THE IAC SIMULATION RACE
Sixteen teams reached the simulation race. All teams first
competed on one solo lap, with an initial speed of 100 km/h
(rolling start), to determine the vehicles’ order for the multi-
vehicle race. Our solo lap time of 51.968 seconds placed
us in the 7th place; the first place finished at 51.848, only
0.12 seconds (0.23%) ahead of us. The average time of all
teams was 53.041 seconds.

Only 10 teams passed the multi-vehicle safety tests and
were qualified to proceed to the semi-final, which consisted
of a multi-car, 10-lap competition. The 10 teams were split
into two heats, 5 vehicles on each. Based on our solo lap
time, we were placed in the 3rd place in our heat. We finished
the semi-final in the 3rd place, at 505.428 seconds, only
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FIGURE 19. Distribution of the longitudinal distance between first and
last vehicle.

FIGURE 20. The longitudinal distance from each vehicle (each
represented by a line with a different color) relative to the first vehicle
over time. It shows a time frame of the last 10 laps of the multi-vehicle
racing test. Intersections between the lines represent overtakes between
vehicles, which indicates that the vehicles repeatedly overtake each
other. The marked red line shows that this vehicle overtook all vehicles
and finished first.

0.44 seconds (0.0871%) after the winner. The average time
for this heat was 506.711 seconds. In the second heat, three
of the five teams lost control or crashed. That left seven teams
for the final race.

We started the final race in 5th place, and our vehicle
overtook two vehicles over the first lap. Throughout the race,
our controller demonstrated collision-free and competitive
driving capabilities and was able to keep the 3rd place a sig-
nificant part of the time.With three laps to go, another vehicle
entered our safety zone from the right, which triggered a
collision avoidance action. Being on the far left track, with no
room to maneuver, the collision was avoided by stepping on
the brakes. Driving at that moment along the turn caused our
vehicle to spin off the track, which placed us at the 6th place
in the finals. Four vehicles completed the race without being
responsible for a collision. The recording of the simulation
race is available in [40].

D. REMARKS
One of the interesting results accomplished by the racing
controller presented here is its ability to balance competitive-
ness and safety. This was demonstrated by driving 6 vehicles
for 30 laps each, which accounts for 180 laps over 720 km,
without any collision. This resonates with our collision-free
run in the IAC simulation race over a total of 17 laps.

This notable result did not diminish the racing controller’s
competitiveness, as demonstrated by the 6-vehicle race,

FIGURE 21. A sequence of snapshots of an overtaking maneuver—the
black vehicle overtakes the blue vehicle. Each snapshot lasts 0.8 seconds.
The track with marked snapshot segments is depicted on the top. (a) The
black vehicle initiates an overtake. (b) The black vehicle drives parallel to
the blue and red vehicles. (c) The black vehicle prevents the blue vehicle
from continuing on the optimal race line, i.e., reaching the apex. (d) The
black vehicle gains a slight advantage at the corner. (e) At the next corner,
the blue vehicle is overtaken because it is forced to stay on the outside of
the corner. (f) The black vehicle returns to the optimal race line.

where the average lap time of all vehicles was only
0.25 seconds greater than the optimal solo-lap time. This
implies that the vehicles were running in close proximity to
each other, thus demonstrating the great challenge of high-
speed racing.

It is interesting to note that despite all vehicles being driven
by the same controller, they continuously overtook each other
by exploiting the slipstream from the leading vehicle, as was
depicted in Fig. 20.

VIII. CONCLUSION
This paper describes a competitive racing controller for an
autonomous racing car developed in the context of the Indy
Autonomous Challenge simulation race. Its development was
guided by an attempt to strike a balance between compet-
itiveness and safety. To this end, the controller attempts to
avoid collisions, even those that the race rules placed the
responsibility on the opponent vehicle to avoid.

The online planner generates a set of dynamically feasible
maneuver candidates using a point mass model. Of those
candidates, a maneuver is selected that is collision-free, min-
imizes travel time along the track, and maximizes proximity
to the race line. It is then tracked by a pure-pursuit controller.
The speed is controlled by a speed controller that follows the
velocity profile along the trajectory and regulates the speed
to avoid collision with neighboring vehicles.
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Our controller demonstrated competitive and safe driving
in a test run with 6 vehicles, all driven by the same controller,
and in the IAC simulation race. Our vehicle finished 3rd in the
semi-finals with only 0.44 seconds behind the winner, and
maintained 3rd place for a significant part of the final race.
It demonstrated responsible driving, yet competitive, and was
not involved in any collision during the entire race. It is
important to note that very few vehicles were not involved in
any collision with any other vehicle. Clearly, while the chal-
lenge of safe and competitive driving is still unresolved, the
Indy Autonomous Challenge competition brought us closer
to driving autonomously under extreme conditions.
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Abstract—Autonomous navigation has recently gained great
interest in the field of reinforcement learning. However, lit-
tle attention was given to the time optimal velocity control
problem, i.e. controlling a vehicle such that it travels at the
maximal speed without becoming dynamically unstable (roll-
over or sliding).

Time optimal velocity control can be solved numerically
using existing methods that are based on optimal control and
vehicle dynamics. In this paper, we use deep reinforcement
learning to generate the time optimal velocity control. Fur-
thermore, we use the numerical solution to further improve
the performance of the reinforcement learner. It is shown that
the reinforcement learner outperforms the numerically derived
solution, and that the hybrid approach (combining learning
with the numerical solution) speeds up the training process.

I. INTRODUCTION

The operation of autonomous vehicles requires the syn-

ergetic application of a few critical technologies, such as

sensing, motion planning, and control. This paper focuses

on a subset of the motion planning problem, that is moving

at the time optimal speeds to minimize travel time along a

given path, while ensuring the vehicle’s dynamic stability.

By ”dynamic stability” we refer to constraints that are

functions of the vehicle speed, such as rollover or sliding

[1, 2, 3, 4]. Respecting the dynamic constraints would

thus ensure that the vehicle does not rollover or slide at

any point along the path. Additional constraints that may

affect the vehicle speeds, although they are not considered

in this paper, include passenger comfort [5], traffic laws,

and sensing limitations [6]. Although these constrains must

be considered in most real driving scenarios, the vehicle’s

dynamic stability is the most challenging because it concerns

the vehicle’s (and passengers) safety.

As the time optimal velocity profile is affected by the

vehicle’s dynamic capabilities, such as its maximum and

minimum acceleration, ground/wheels interaction, terrain

topography, and path geometry, a complex dynamic model

is required to ensure that the vehicle is dynamically stable

during motion at any point along the path [1].

Since the consideration of a detailed vehicle dynamic

model may be impractical for online computation, we use a

simplified model to compute the vehicle’s velocity profile

as discussed later. In this context, one of the goals of

Reinforcement Learning (RL) is to bridge the gap between

the approximate and the actual vehicle model.

A large body of work on reinforcement learning has

focused on autonomous driving with an emphasis on percep-

tion and steering [7, 8, 9, 10, 11]. Some works have focused

on human like velocity control [12, 13] or fuel efficiency

[14]. Other works use RL to track a given reference velocity

[15]. In [16], a model-predictive control is used to drive a

race car at high speeds along a specific track. The controller

is tuned iteratively to reduce total motion time. This method

is applicable to repetitive tasks, where the initial state is fixed

for all iterations. Clearly, this approach is not suitable for

controlling a vehicle on general paths. We are not aware of

works that use reinforcement learning of time optimal speeds

along general paths, while ensuring the vehicle’s dynamic

stability.

This paper proposes a reinforcement learning method for

driving a vehicle at the time optimal speed along a known

arbitrary path. It learns the acceleration (and deceleration)

that maximizes vehicle speeds along the path, without losing

its dynamic stability. Here, steering is not learned, but is

rather determined directly by the path following controller

(pure pursuit) [17].

One major challenge of RL is that, in many cases, the

initial policy executed by the agent is random, and long train-

ing is required to achieve a good policy. Several methods

for combining prior information about the problem into the

RL process were proposed. For example, imitation learning

uses expert demonstrations (either automated or human) to

train an agent in order to achieve the initial policy [7, 13,

12]. The policy can then be further improved using RL [18,

19]. In this paper we propose a different method for using

prior knowledge in order to allow the RL agent to begin the

training with a relatively good policy. Instead of learning the
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actions directly using RL, only the variation from a nominal

time optimal controller is learned by the RL agent. For this

purpose, we use a numerical, model-based controller [20]

that controls a vehicle along a path while avoiding rollover,

slipping an loosing contact with ground. This model-based

method, computes a solution in a efficient way, hence it is

suitable for real-time use.

The RL method, the model-based method and hybrid

approach that combines both, was implemented in a sim-

ulation for a ground vehicle moving along arbitrary paths

in the plane. It is shown that, the synergy between our

learning based method and the model-based method, speeds-

up the learning process (especially at early stages). The RL

agent that uses the model-based controller, achieves at the

beginning of the learning process the same velocity as the

model-based controller alone, while the pure RL approach

achieves low performance at the same time. Eventually both

methods converge to an average velocity that is higher by

about 10% than the velocity achieved by the model-based

controller, while maintaining very low failure rates.

Our main contributions of this paper are (i) Applying a

deep reinforcement learning-based method for driving a ve-

hicle at time optimal speeds, subject to the vehicle’s dynamic

constraints, that outperforms the model-based controller; (ii)

Using the model-based prior knowledge to speed up the

learning process (especially at early stages).

II. PROBLEM STATEMENT

We wish to drive a ground vehicle along a predefined

path in the plane. The steering angle is controlled by a path

following controller whereas its speed is determined by the

learned policy. The goal of the reinforcement learning agent

is to drive the vehicle at the highest speeds without causing

it to rollover or deviate from the defined path beyond a

predefined limit.

The path is defined by P , P = {p1, p2, · · · , pN}, pi ∈ R
2,

i ∈ {1, 2, · · · , N}. The position of the vehicle’s center of

mass is denoted by q ∈ R
2, yaw angle θ, and roll angle α.

The vehicle’s speed is v ∈ R, 0 ≤ v ≤ vmax. The throttle

(and brakes) command that affects the vehicle’s acceleration

(and deceleration) is τ ∈ [−1, 1]. The steering control of the

vehicle is performed by a path following controller (pure

pursuit [17]). The deviation of the vehicle center from the

desired path is denote by derr, as shown in Fig. 1.

The agent’s goal is to drive the vehicle at the maximal

speed along the path, without losing its dynamic stability

(sliding and rollover), while staying within a set deviation

from the desired path, i.e. derr ≤ dmax, and within a ”stable”

roll angle, i.e. |α| ≤ αmax, where αmax is the maximal roll

angle beyond which the vehicle is statically unstable.

The time optimal policy maximizes the speed along the

path during a fixed distance. More formally, for every path

P with length D, and a vehicle at some initial velocity

vinit, initial position q, which is closest to point pi ∈ P

P

v

dmax

x

y

derr

Figure 1: A vehicle, tracking path P within the allowed

margin dmax.

along the path, we wish to derive the time optimal policy

π∗ that at every time t outputs the action τ = π∗(st) that

maximizes the vehicle speed (minimizing traveling time),

while ensuring that every state st is stable. The time optimal

velocity along path P is the velocity profile v(t) produced

by the optimal policy π∗.

III. TIME OPTIMAL VELOCITY CONTROL USING

REINFORCEMENT LEARNING

Our basic reinforcement learner is a direct adaptation

of the “Deep Deterministic Policy Gradient” (DDPG) [21]

to the time optimal velocity control problem. We refer to

this method as the Reinforcement learning based Velocity

Optimizer REVO.

A. Deep Deterministic Policy Gradient

DDPG [21] is an actor-critic, model-free algorithm for a

continuous action space, A, and a continuous state space,

S. The agent is assumed to receive a reward rt ∈ R when

being at state st ∈ R
|S| and taking action at ∈ R

|A|. The

transition function p(st+1|st, at) is defined as the probability

of ending at st+1 when being at state st and taking action at.
The goal of the DDPG algorithm is to learn a deterministic

policy π : S → A (represented as a neural network) that

maximizes the return from the beginning of the episode:

R0 =
T∑

i=1

γ(i−1)r(si, π(si))

where γ ∈ [0, 1] is the discount factor. DDPG learns

the policy using policy gradient. The exploration of the

environment is done by adding exploration noise to the

actions.
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We use DDPG to train an agent for driving along any

given path at the highest possible speed, while preventing

a rollover or slipping away from the path. The training

process consists of episodes; at each episode the vehicle

moves along a randomly generated path. Training an agent

on randomly generated paths allow the learned policy to

be more general. Only paths that are kinematically feasible

are considered, that is, the generated paths do not contain

any sharp curves that exceed the vehicle’s minimum turning

radius (the maximum turning ability of the vehicle at zero

velocity). Each path, P , is generated by smoothly connecting

short path segments of random length and curvature until

reaching the desired length. This ensures that the selected

path respects the vehicles steering capabilities.

The state, s, includes a down-sampled limited horizon

path segment, Ps ⊆ P , which is defined relative to the

vehicle’s position and the vehicle speed, v. More formally,

Ps = {pm, pm+d, pm+2d · · · pm+kd}
where m is the index of the closest point on the path P , to

the vehicle, d ∈ N is the down-sampling factor and k ∈ N

is a predefined number of points. In addition to this path

segment, also the current velocity of vehicle (v) is included

in the state. Therefore, the state of the system is defined as

s = {v, Ps}.
The DDPG agent is not provided with any information

related to the path segment following ps. Therefore, ps is

required to be long enough in order to enable the vehicle to

decelerate to a safe velocity at the end of this path segment,

even when driving at the maximal speed. If ps is too short,

the agent may need to drive at a lower speed to prepare for

any unforeseen curve that might appear as the vehicle moves

forward.

The reward function is defined as follows: If the vehicle

is stable and has a positive velocity, the reward r is propor-

tional to the vehicle’s velocity (rt = kvt, k ∈ R+). If the

vehicle encounters an unstable state, it receives a negative

reward. To encourage the agent not to stop the vehicle during

motion, a small negative reward is received if vt = 0.

At each time step, the action is determined as at = τt =
π(st)+η(t) where η(t) is the exploration noise. The episode

terminates at time T or if the vehicle becomes unstable.

IV. COMPUTING THE TIME OPTIMAL VELOCITY PROFILE

The time optimal velocity profile of a vehicle moving

along a specified path can be numerically computed using

an efficient algorithm described in [20, 22, 1]. It uses optimal

control to compute the fastest velocity profile along the given

path, taking into account the vehicle’s dynamic and kine-

matic models, terrain characteristics, and a set of dynamic

constraints that must be observed during the vehicle motion:

no slipping, no rollover and maintaining contact with the

ground at all points along the specified path. This algorithm

is used here as a model predictive controller, generating the

desired speeds at every point along a path segment ahead

of the vehicle’s current position. This Velocity Optimization

using Direct computation is henceforth termed VOD. The

output of this controller is used to evaluate the results of

the learning based optimization (REVO), and to serve as a

baseline for the training process. We now briefly describe

the algorithm in some details.
Given a vehicle that is moving along a given path P ,

the aforementioned algorithm computes the time optimal

velocity, under the following assumptions:

• The dynamics of the vehicle are deterministic;

• The vehicle moves exactly on the specified path i.e.

(perr)t = 0, t = {0, ...N};
• The vehicle is modeled as a rigid body (no suspension);

• Vehicle parameters, such as geometric dimensions,

mass, the maximum torque at the wheels, the coefficient

of friction between the wheels and ground, are known.

These assumptions help simplify the computation of the

time optimal velocity profile. This simplification does not

seriously affect our approach as the goal of the learning

process is to bridge the gap between the model and reality,

which may always exist, regardless of the fidelity of the

theoretical model.
The algorithm first computes the maximal velocity profile

along the path, termed the ”velocity limit curve”, which

represents the highest vehicle speeds, above which at least

one of the vehicle’s dynamic constraints is violated, i.e. the

vehicle either rolls-over, slides, or looses contact with the

ground. The velocity limit is determined by the coefficient

of friction between the wheels and ground as well as by the

centripetal forces that might cause the vehicle to slide or

rollover.
The time optimal velocity profile is computed by applying

“Bang-Bang” acceleration, i.e. either maximum or minimum

acceleration, at all points along the path. Bang-bang control

is known to produce the time optimal motion of second order

systems [23]. The optimal velocity profile is computed by

integrating forward and backwards the extreme accelerations

at every point along the path so as to avoid crossing the

velocity limit curve [22].
Fig. 2a shows a given planar curved path. The velocity

limit curve along that path is shown in black in Fig. 2b.

Note the drops in the velocity limit caused by the sharp

curves C and D along the path. Clearly, moving at high

speeds along these curves might cause the vehicle to either

slide or rollover (which of the two occurs first, depends on

the location of the vehicle’s center of mass). The optimal

velocity thus starts at zero (the initial boundary condition),

accelerates at a constant acceleration until point B, where it

decelerates to avoid crossing the velocity limit towards point

c. At point D, the optimal velocity decelerates to a stop at

the end point E (the assumed final boundary condition).
The velocity computed by this algorithm is used to control

the vehicle along the specified path. At every time t, the op-
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timal velocity profile is computed along the limited horizon

path segment Ps (as was formally defined in Section III).

The vehicle’s speed at time t serves as the initial condition

for the velocity profile computed from that point. To ensure

that the vehicle can decelerate to a stop at the end of this

path segment, the target velocity at the endpoint of Ps is set

to zero. The action produced by the controller at time t is the

initial acceleration of the velocity profile computed at time

t. This acceleration is used as a command to the vehicle’s

engine. This controller is used as a baseline for REVO.

(a)

(b)

Figure 2: (a) A curved path segment (b) The directly

computed optimal velocity profile (red) and the velocity

limit curve (black). The velocity limit drops along sharp

curves along the path. The optimal velocity never crosses

the velocity limit curve.

V. USING DIRECT COMPUTATION TO ENHANCE

REINFORCEMENT LEARNING

In this paper, we propose to speed-up the learning pro-

cess by combining VOD (the direct velocity optimization

controller) with REVO (the reinforcement learning based

controller). This is done by first adding the actions τV OD

and τREV O of VOD and REVO, respectively, to produce

the action τREV O+A of the combined policy REVO+A

(REVO+Action):

τREV O+A = τV OD + τREV O.

The REVO+A policy is illustrated in Fig. 3c.

The REVO+A policy first follows the actions of the VOD

controller, i.e. τREV O+A ≈ τV OD because τREV O ≈ 0 at

the beginning of the learning process. This is significantly

better than a randomly initialized policy as in πREV O. It

simplifies the problem for the reinforcement learner agent,

which only learns the deviation from VOD, as oppose to

learning the actions from ground up.

The second approach proposed in this paper to combining

REVO and VOD is based on adding the action output τV OD

from the VOD controller as an additional feature to the state

space of the agent:

s = {τV OD, v, Ps}.
We denote this method REVO+F (REVO+Feature). It is

illustrated in Fig. 3d.

An intuitive justification for using REVO+F is that the

reinforcement learner has the information about τV OD, and

hence, the agent can use this information to improve its

actions.

VI. EXPERIMENTAL RESULTS

The performance of the proposed methods were tested in

several experiments as detailed henceforth.

A. Settings

A simulation of a four-wheel vehicle was developed using

“Unity” software [24]. A video of the vehicle driving along

a path at time optimal velocity is available at [25].

The vehicle properties were set to width= 2.1m, height=

1.9m, length= 5.1m, center of mass at the height of 0.9m,

mass= 3, 200Kg, and a total force produced by all wheels

of 21KN .

The maximal velocity of the vehicle was set to vmax =
30m/s (108km/h). Note that the actual speed limit is

determined by the path, which may be lower in most cases

than the above set limit.

The maximal acceleration of the vehicle is 6.5m/s2. The

acceleration and deceleration are applied to all four wheels

(4x4); steering is done by the front wheels (Ackermann

steering). The friction coefficient between the wheels and the

ground was set arbitrarily high (at 5) to focus this experiment

on rollover only.
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πV OD
τV OD{v, Ps}

(a)

πREV O
τREV O{v, Ps}

(b)

πV OD

πREV O

+

τV OD

τREV O

τREV O+A

{v, Ps}

(c)

πV OD

πREV O+F

τV OD

τREV O+F

{v, Ps}

{v, Ps, τV OD}
(d)

Figure 3: π is a policy, τ is an action, {v, Ps} is the state.

(a) VOD: Direct planning (b) REVO: DDPG based learning.

(c) REVO + A: combines the actions of VOD with REVO.

(d) REVO + F: adds the action output of VOD as a feature

in the state space of REVO.

Each episode is limited to 100 time steps. The time step

is set to 0.2 seconds, i.e. 20 seconds per episode. The policy

updates are synchronized with the simulation time steps, two

updates per step. Ps consists of 25 points along the path

ahead of the vehicle (|Ps| = 25. The distance between one

point to the next point in Ps is 1m.

|pi − pi+1| = 1[m] : pi, pi+1 ∈ Ps, i ∈ {0, 1, · · · , 25}
A state is considered unstable if the roll angle of the vehicle

exceeds 4 degrees (αmax = 4), and when the vehicle

deviates more then 2m (dmax = 2) from the nominal path.

The reward function was defined as:⎧⎨
⎩

−1
0.2v/vmax

−0.2

s is not stable

s is stable

v = 0

All the hyper-parameters of the reinforcement learning

algorithm (e.g. neural network architecture, learning rates)

were set as described in [21].

B. Experiment Protocol

During the training process, the vehicle drives along

randomly generated paths using the learned policy with

exploration noise. Each training process is performed until

reaching 90,000 policy updates. Every 5000 updates the

neural networks parameters are saved for evaluation. To

evaluate the policy during the training process, the vehicle

runs along 100 random paths on every saved parameter set.

During the evaluation, the exploration noise is disabled. This

training and evaluation process was repeated 5 times for each

of the methods.
The agent’s goal is to maximize its average velocity. Since

the average velocity during the failed episodes was usually

higher than the average velocity during successful episodes,

we excluded failed episodes when presenting the average

velocity of each method.

C. Results
Fig. 4a shows an example path, and Fig. 4b shows the

velocity profile along this path during 20 seconds, for both

the VOD controller (red) and REVO+A after convergence

(black). As can be seen, the learned velocity profile of

REVO+A is higher than that of the VOD.

(a)

(b)

Figure 4: (a) Example of a random path (b) The dynamics

based velocity profile (VOD) and the velocity profile of a

trained REVO+A agent.

Fig. 5 presents the normalized average velocity along the

path during each episode. All results were normalized with
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Figure 5: Average velocity on 100 random paths, measured

at every 5000 training steps (normalized with respect to

VOD), on 5 different training processes. The bars represent

the variance between the training processes.

Figure 6: The failure rate of all methods during training.

respect to the VOD, hence it appears as a horizontal line at

1.0.

At the beginning of the training process, REVO did not

achieve any progress; after about 40, 000 training updates,

REVO achieved the same performance as that of VOD.

REVO+A achieved the same performance as VOD from

the very beginning. This implies that REVO+A converges

much faster than REVO, because REVO+A uses VOD as a

baseline.

When the training process continues, the policies learned

by all methods improve the performance of the vehicle’s

velocity compared to using VOD by about 10%. This is

expected because VOD uses a relatively simple vehicle

model.

REVO+F doesn’t improve the converge time compared

to REVO, in this experiment. On the other hand, REVO+F

performed better than REVO when used in a different

setting, as was shown in Section VI-E.

The failure rate of the different methods has a relatively

high variance as is depict in Fig. 6. After training and eval-

uation, it is possible to choose the best policy that achieves

high velocity and low failure rates. When re-evaluating the

best policies achieved by all methods on 1000 new episodes,

the failure rate is lower than 1% and the average velocity is

approved to be statistically significant higher that VOD by

about 10% (using student’s t-test, p < 0.0001).

D. Near Optimality of VOD

VOD uses a computational effective model to compute

the velocity. In this section we show that the VOD velocity

cannot be easily increased without resulting in high failure

rates. We show that even slightly scaling up the velocity

of the VOD policy, causes the vehicle to fail. This implies

that the velocity computed by VOD is close to the real

performance envelope.

Fig. 7 shows, that scaling up the VOD velocity, cause

an increased failure rate (evaluated on 100 episodes at

6 different velocity factors between 1.00 and 1.25). As

depicted by the figure, when the velocity is scaled up by

5%, the vehicle fails on 3% of the episodes, and scaling up

by 20% results in a failure rate of nearly 50%.

When controlling the vehicle using the trained policies of

REVO, REVO+A and REVO+F, a higher velocity (by about

10% can be achieved without increasing the failure rate.

Figure 7: Failure rate of VOD when scaling up the VOD

velocity

E. Closer Look at REVO+F

Before we conclude this section, we would like to take

a closer look at how adding the VOD output (τV OD) as

a feature to the state (REVO+F) influences the training

process. When running the training process on a single
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(a) REVO, VOD

(b) REVO+F, VOD

Figure 8: A comparison between learning progress of REVO and REVO+F. In episode 5, both methods accelerate until a

roll-over occurs. In episode 155, REVO+F started to imitate the VOD controller, while REVO shows a very little progress.

In episode 205, D-VOL shows almost full imitation of VOD velocity, while REVO is still in its initial stages of learning.

In episode 405, REVO+F actions result in a higher velocity than VOD

randomly picked path (instead of training each episode

on a new path) it is possible to closely track the policy

improvement. In this case, as can be seen in Fig. 8, after

some training, the learned policy uses the VOD information

supplied through the additional feature, hence the velocity

profile is similar to that of VOD; while the policy achieved

by the regular training process (REVO) is still not able to

complete this path. More research is required to understand

this observation better.

VII. CONCLUSIONS

In this paper, we addressed the issue of deep reinforce-

ment learning of autonomous driving at high speeds along

specified paths, while accounting for the vehicle dynamics

and its dynamic constraints (rollover and sliding). To this

end, we proposed two methods, each combine traditional

deep reinforcement learning (REVO) with a direct compu-

tation of the time optimal velocity profile along a given path

(VOD). One method, denoted REVO+A, adds actions of

REVO and VOD so that it is initialized at the VOD profile,

and thus it learns only the required deviations from the

model-based optimal speeds. The second method, denoted

REVO+F, adds the action of VOD as a feature to the state

of REVO.

The two methods were tested in experiments using a

simulator that simulates the dynamics of a real vehicle. We

show that REVO+A results in a significant improvement to

the basic reinforcement learner REVO, especially at early

stages of the learning process. It was shown that the REVO

took around 40, 000 iterations to converge to an model-based

velocity controller (VOD), compared to an immediate con-

vergence by the combined controller (REVO+A). Another

interesting result was that the learning process improved over

the model-based velocity profile. This is not surprising as we

used a relatively simple and computational effective vehicle

model to speed up computation and the learning process.

The REVO+F method showed no significant advantage

for randomly chosen paths. However, when learning to drive

along a single path, it quickly converged to the VOD veloc-

ity profile. This suggests that the REVO+F agent quickly

recognizes the utility of the model-based velocity profile.

Further research may be required in order to take advantage

of this phenomenon.
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Model-Based Reinforcement Learning for
Time-Optimal Velocity Control

Gabriel Hartmann , Zvi Shiller , and Amos Azaria

Abstract—Autonomous navigation has recently gained great in-
terest in the field of reinforcement learning. However, little atten-
tion was given to the time-optimal velocity control problem, i.e.
controlling a vehicle such that it travels at the maximal speed
without becoming dynamically unstable (roll-over or sliding). Time
optimal velocity control can be solved numerically using existing
methods that are based on optimal control and vehicle dynam-
ics. In this letter, we develop a model-based deep reinforcement
learning to generate the time-optimal velocity control. Moreover,
we introduce a method that uses a numerical solution that pre-
dicts whether the vehicle may become unstable and intervenes if
needed. We show that our combined model outperforms several
baselines as it achieves higher velocities (with only one minute of
training) and does not encounter any failures during the training
process.

Index Terms—Autonomous vehicle navigation, reinforcement
learning, motion and path planning.

I. INTRODUCTION

THE operation of autonomous vehicles requires the syner-
getic application of a few critical technologies, such as

sensing, localization, motion planning, and control. This letter
focuses on a subset of the motion planning problem, that is
moving at the time optimal speeds to minimize travel time along
a given path, while ensuring the vehicle’s dynamic stability.
By “dynamic stability” we refer to constraints on the vehicle
that are functions of its speed, such as not rolling-over and not
sliding [1]–[3]. Other constraints that may affect the vehicle
speeds, such as traffic laws and passenger comfort [4], while
important for driving autonomous vehicles, are not considered
in this letter as they are secondary to ensuring the vehicle stability
at high speeds.

Time optimal velocity profile is affected by the vehicle’s
dynamic capabilities, such as its maximum and minimum ac-
celeration, ground/wheels interaction, terrain topography, and
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path geometry. Therefore, the actual underlying dynamic model
of the vehicle is very complex. Yet such a model is required to
ensure that the vehicle is dynamically stable during motion at
any point along the path [1].

Model-based reinforcement learning is an effective way to
learn the complex dynamic model of the vehicle from its actual
responses, thus bridging the gap that separates the real vehicle
dynamics from its analytical model. Furthermore, the automated
learning process does not require exact information of the vehi-
cle’s physical properties. Therefore, we present a model-based
reinforcement learning method for driving a vehicle at near time
optimal speeds along any given path. The dynamic model of
the vehicle is learned and used for planning the acceleration
actions that maximize vehicle speeds along the path, without
compromising its dynamic stability.

Despite its obvious advantages, reinforcement learning has
its limitations due to the limited time available for any learning
process, which results in a limited exploration of the state-space.
This is particularly evident at the beginning of the learning
process, when the learned model may still be highly inaccu-
rate [5]. This is critical when attempting to reach the vehicle’s
performance limits during the learning process, as it may result
in a failure (i.e. vehicle instability).

To this end, we propose a dual-model approach that protects
the vehicle from reaching dynamically unstable states. A simpli-
fied and conservative analytical model that accounts for vehicle
dynamic safety is used to predict if every vehicle command
is dynamically safe. If an unsafe maneuver is attempted, an
alternative safe local maneuver is executed. By relying on both
learned and analytical models, our method gains the best of both
worlds: the high performance of the learned model and the safety
of the analytical model.

The proposed methods were implemented in a simulation for
a ground vehicle, moving along arbitrary paths in the plane.
We show that the model-based RL agent learns to drive the
vehicle at high speeds after only one minute of real-time driving.
By intervening in potentially unsafe situations, our method
eliminates any failures during the entire learning process and
even achieves higher velocities as compared to the velocities
achieved by the model-based RL agent alone. We also compare
the results to a model-free RL method (DDPG) and show that
our proposed model-based RL agent converges in a significantly
faster time and achieves higher performance.

The main contributions of this letter are thus twofold: (i)
a model-based reinforcement learning method for driving a
vehicle at near time-optimal speeds along any given path in

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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less than one minute of real-time learning; (ii) A dual-model
approach, that combines model-based RL with an analytical
planner. This approach protects the vehicle from reaching dy-
namically unstable states. Extensive experiments show that our
method outperforms other baselines.

II. RELATED WORK

Autonomous driving at high speeds that approach the vehi-
cle’s performance limits was demonstrated so far in simula-
tions [2], [6], on small-size vehicles [7], [8] and even on full-size
vehicles [9], [10]. In these applications, the vehicle behavior
is usually described by a mathematical dynamic model. While
these works demonstrate impressive vehicle performance, they
are model specific and require exact information of the vehicle’s
physical properties.

The need to develop more general techniques lead to the use
of reinforcement learning (RL) to learn the required functions
for autonomous driving. There are two types of RL algorithms:
model-free RL and model-based RL; in model-free RL the policy
is learned based on a reward signal received during the interac-
tion with the environment. Contrary, model-based RL first learns
a model of the transition dynamics and a policy is then composed
based on this model. Both model-free and model-based RL are
successfully used in the field of autonomous driving. Most works
have focused on perception and steering [11]–[13]. Other works
have considered human imitation for velocity control [14], [15],
tracking a given reference velocity [16], and achieving fuel
efficiency [17].

Some recent works use RL for aggressive driving: Jaritz
et al. [18] use model-free RL for simulated end-to-end racing.
However, the millions of training steps are required to converge,
which is impractical for real applications, and the safety of the
learned driving policy is not guaranteed. Williams et al. [19]
develop an agent that drives a small-size vehicle by learning its
dynamic model. While they achieve good results with respect
to vehicle velocity, their work does not focus on vehicle’s
safety and their planning method is based on intense sampling.
Furthermore, the vehicle must be manually driven in order to
initialize the model.

Safe learning is an active field of research; some works learn
a safe policy, that avoids failure after convergence by defining a
safety-directed optimization criterion or guiding the learning
process by external knowledge [5]. Other works emphasize
safety during the learning process. One way is to update the
policy while preventing the policy to reach unsafe situations by
using a lyapunov function [20], [21]. However, we show that it
is challenging to construct a policy that will be safe with high
probability when driving near the performance limits. That leads
us to the dual-model approach, which enables the driving policy
to focus on performance without considering safety with high
probability. Existing works propose general methods that are not
domain specific that define a safety backup policy by a formal
specification language [22], [23], others use action pruning in
a discrete state space game [24]. A similar approach to our
safety module uses model predictive control to ensure the safety
of a learned policy [25]. However, they assume known system

dynamics contrary to our dual approach that learns the dynamic
model and uses an analytical model as a backup. All these
work are not related to time-optimal velocity control where the
system is pushed to drive near the performance limits. Because
of the complex vehicle dynamics, and the importance of human
safety when driving at high speeds we propose a domain-specific
method that allows us to speed up the learning process and
minimize the number of failures to zero, as was demonstrated
in the paper. Furthermore, we rely on the stabilization policy
to drive the vehicle closer to the performance limits and thus
enabling higher safe velocity.

III. PROBLEM STATEMENT

In our setting, an agent is faced with a vehicle and a given path,
and the agent must determine the acceleration and deceleration in
order to complete the path without failure at minimal time. These
commands are learned by the agent, whereas the steering angle
is controlled by an analytical path following controller [26].

The path P is defined by N discrete points, P =
{p1, p2, . . . , pN}. The position of the vehicle’s center of mass
is denoted by q ∈ R2 and yaw angle θ. The vehicle’s speed is
vy ∈ R, vy ≥ 0 and the steering angle is denoted by δ. The action
is defined as a = {u, δd}, where u controls the throttle and brake
(which affects vehicle’s acceleration (and deceleration)), and δd
controls the steering. The steering command δd of the vehicle is
provided by a path following controller (pure pursuit [26]) πδ,
which receives as input the vehicle’s state and the path relative
to vehicle’s position.

The time optimal policy maximizes the speed along the path
during a fixed distance. That is, for every path P ,

the time optimal policy π∗ outputs, at every time t, the
actionu = π∗(st) that maximizes the vehicle speed (minimizing
traveling time), while ensuring that every state st is stable.

The time optimal velocity along path P is the velocity profile
vy(t) produced by the optimal policy π∗.

IV. DYNAMIC MODEL

The dual-model approach is based on a learned model that
is used to drive the vehicle at the maximal speeds, and on an
analytical model that is used to determine the dynamic stability
of the current vehicle state. We first describe the analytical model
that is based on a simple planar bicycle model, as described next.

A. Bicycle Model

The bicycle model represents the vehicle by only two wheels,
by collapsing the two front and rear wheels into one, as shown
in Fig. 1. The bicycle is steered by the front wheel at the steering
angle δ and is assumed, for simplicity, to be driven by the forceFt

applied on the rear wheel. The radius of curvature R, measured
from the center of rotation to the center of mass, is easily derived
from the steering angle δ:

R =

√
l2r +

(
lr + lf
tan δ

)2

, (1)
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Fig. 1. The bicycle model.

Fig. 2. Parameters for the simple roll model.

where lf and lr are the distances of the front and rear wheels from
the center of mass, respectively. The angle between the velocity
v of the vehicle center mass and its y axis is the slip angle α.
The motion of the bicycle is influenced by two parameters: the
steering angle δ and the driving force Ft.

The bicycle’s equations of motion are thus:⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

δ̇

v̇y

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−v sinα
v cosα

v/R

k(δd − δ)

Ft/m

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where ẋ and ẏ are the projections of v on the vehicle’s local
coordinate frame, and

α = arcsin
lr
R

v =
vy

cosα
(3)

To account for the time response of the steering system, the
steering angle δ is driven by a proportional controller with a
desired angle δd.

B. Dynamic Stability

To account for the dynamic stability of a vehicle moving on
a flat surface, we consider sliding and roll-over. For the sake
of simplicity, we focus only on roll-over. Referring to Fig. 2,
showing the vehicle from its rear view, roll-over may occur
during a counter clockwise turn if the vehicle moves at a high
speed at which the left wheel separates from the ground. We
use the absolute Lateral load Transfer Rate (LTR), to estimate
how close the vehicle is to a roll-over. The LTR describes the
different between the load on the left and the load on the right
wheels and is defined as:

LTR =
|Nr −Nl|
Nr +Nl

∈ [0, 1]. (4)

For our roll model, the LTR is computed by summing the
moments acting on the vehicle around the point of contact with
the ground:

LTR =
2v2 h

Rwg
. (5)

The maximal velocity for a given state is when LTR = 1 i.e.
when the load on one of the wheels is zero. The LTR is later
used to determine the potential instability of a given action, as
is discussed later in Section VI-B.

V. TIME OPTIMAL VELOCITY CONTROL USING MODEL-FREE

REINFORCEMENT LEARNING

We briefly describe a model-free RL algorithm to drive the
vehicle time optimally (we later present our model-based RL
algorithm).

This approach is a direct adaptation of “Deep Deterministic
Policy Gradient” (DDPG) [27] to the time optimal velocity
control problem. DDPG is an actor-critic, model-free algorithm
for a continuous action space,A, and a continuous state space,S.
DDPG learns the policy using policy gradient. The exploration
of the environment is done by adding exploration noise to the
actions.

The training process consists of episodes; at each episode
the vehicle moves along a randomly generated path. Each path,
P , is generated by smoothly connecting short path segments of
random length and curvature until reaching the desired length.
This ensures that the selected path respects the vehicles steering
capabilities.

The DDPG state, sDDPG, includes a down-sampled limited
horizon path segment, Ps ⊆ P , which is defined relative to the
vehicle’s position. In addition to this path segment, also the
current velocity of vehicle (vy) and steering (δ) is included in
the state. Therefore, the full state of the system is defined as
sDDPG = {vy, δ, Ps}.

The reward function is defined as follows: If the vehicle is sta-
ble and has a positive velocity, the reward r is proportional to the
vehicle’s velocity (rt = kvt, k ∈ R+). If the vehicle encounters
an unstable state or exceeds the maximal allowed LTR, it receives
a negative reward. To encourage the agent not to stand without
moving at all, a small negative reward is received if vt = 0. The
episode terminates at time T or if the vehicle becomes unstable.
(see [28] for more details on the adaptation of DDPG to the time
optimal velocity problem).

The results in section VIII-D infer that DDPG is able to
achieve high velocities. However this approach has several
limitations; the training time is too long for being practical in
real vehicles and there are still an unacceptable probability of
becoming unstable. The nontransparent nature of model-free
approaches makes it even more difficult to trust the RL policy.
We use DDPG as a baseline to our model-based RL methods.

VI. TIME OPTIMAL VELOCITY CONTROL USING

MODEL-BASED REINFORCEMENT LEARNING (LMVO)

We propose a Model-based RL algorithm (Learned Model
Velocity Optimization - LMVO). Model-based RL is considered
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to be more sample efficient than model-free RL [29], [30], which
may be important in real-world applications. The reason for that
efficiency is that the general behavior of the system is learned,
therefore, it is possible to choose the best actions sequences
without explicitly trying these sequences before. Therefore,
The agent can drive safely and near performance limits along
arbitrary paths after training on just a few different paths.

Clearly, the performance of the model-based RL algorithm
depends on the accuracy of the learned model. However, not in
all environments it is simple to learn an accurate model. Vehicle
dynamics are relatively predictable, therefore, model-based RL,
is expected to be useful for vehicle motion control.

Unlike DDPG, that learns the driving policy directly, LMVO
includes two parts: learning the dynamics of the vehicle, which
are not known (model learning), and using the learned model to
compute the actions (policy).

A. LMVO Model Learning

There are several approaches for learning the model, such
as parameter tuning of an expert-designed model [31], using
Gaussian processes [32], and neural networks [30], [33]. We
approximated the vehicle’s model by a deep neural network; the
advantage of deep neural networks is their power of approximat-
ing general functions, including highly non-linear functions.

The vehicle dynamic model are described by a global predic-
tion transition function fv that given the state svt and action a,
outputs the state svt+1 after one time step: svt+1 = fv(svt , at).

1) Vehicle’s State Definition: The vehicle’s state svt is defined
as: svt = {x, y, θ, vy, δ}, where x, y are the incremental change
in the vehicle position from position qt−1 to position qt (in the
frame attached to the vehicle at time t− 1), angle θ = θt − θt−1,
vy is the linear velocity of the vehicle, and δ is the steering angle.
The action a = {u, δd} consist of the throttle command u and
the steering command δd.

The next state svt+1 does not depend on the position x, y, θ of
the current state svt , therefore, the relative position is not used as
an input to the prediction transition function fv . During training,
the vehicle drives along randomly created paths. At each time
step t during the driving, the state svt and the action at are saved
to a state buffer D that stores the data for training fv .

The neural network that approximates the model function fv

is trained by gradient descent, mean-squared error minimiza-
tion on the collected samples stored in D (excluding the final
samples, which do not have any following state).

2) Prediction Transition Function: Instead of directly pre-
dicting the next state svt+1, we use a neural network to predict
the difference between the current state svt and the next state
svt+1: Δsv = svt+1 − svt , as described in [30]. The effect of the
action on state’s change is more significant compared to the
effect on the next state itself, therefore, the neural network can
represent the model more accurately.

The prediction transition function fv has the following ar-
chitecture: the features of the state sv (except the position) are
inserted to a fully connected layer (100 neurons) and the outputs
of that layer are inserted to 5 separated sections that consist of
two fully connected layers (20 neurons in each layer). Each of

Fig. 3. The prediction transition function svt+1 = fv(svt , at) architecture.
The blue rectangles are the fully connected layers of the neural network.

these sections outputs one output feature. Fig. 3 summarizes this
architecture.

3) Multi-Step Roll-Outs: If at time step t the n future actions
at, at+1, . . .at+n are known, it is possible to predict the n next
states (roll-out). To make a multi-step roll-out, a sequential
single-step prediction is performed. The predicted single-step
relative positions are integrated during the n-step roll-out, re-
sulting in a geometric path relative to the position at time-step t
and the velocity and the steering in the feature states. An example
of such roll-out is illustrated in Fig. 8.

The next section explains the usage of this learned model to
choose optimal actions.

B. LMVO Policy

The action u considered by the LMVO policy is either the
maximal throttle, umax, or minimal acceleration (i.e. maximal
brake), umin.We note that in order to ensure that the vehicle does
not result in an unavoidable failure it is enough to test whether
the vehicle can decelerate to a full stop from a given state, svt .
Therefore, LMVO rolls-out future states when the acceleration
action is umin (maximal brake) and the steering commands are
computed by the path following controller πδ on the predicted
future states. For all rolled-out future states, it is checked if the
predicted LTR is lower than 1, which indicates that the vehicle
is expected to remain safe.

To decide whether the vehicle is allowed to accelerate (by
applying umax for a single time step) at state svt , LMVO ensures
that the vehicle can stop safely after this acceleration step.
If the vehicle cannot stop safely from svt+1, the vehicle must
decelerate, and therefore, umin is applied. Assuming a perfectly
accurate model, if for every time step during the motion the
vehicle accelerates only if possible, the vehicle always stays
within a safe velocity envelope. Algorithm 1 describes LMVO’s
driving policy.

1) Margin of Safety: The model fv predicts the expected
values of the future states. However, the actual value may be
different due to model error or stochastic dynamics. We note
that when the vehicle drives on the limit of performance, an
under-estimated prediction of the future LTR is unacceptable
because it may lead to instability of the vehicle. Therefore,
a margin of safety is added to the expected LTR. Since the
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multi-step predictions are computed iteratively based on the
previous step, the error between the predicted and actual values
is expected to grow with the number of steps. For simplicity,
we take a safety factor that is linear with the number of fu-
ture steps. More formally, for the rolled-out future LTR values
LTRt, LTRt+1, LTRt+2, . . ., LTRt+n the vehicle is expected
to be stable up to time step t+ n if

∀LTRi, i ∈ {0, n}, LTRi + βi < 1 (6)

where β is the safety factor constant. Section VIII compares
between a variety of values of β.

2) Computing Time: At every time step t, the action at must
be applied immediately. However, since the computing time is
not negligible, the command is applied with some delay. To
solve this problem, instead of computing action at at time t,
action at+1 is computed based on the predicted next state st+1

and at+1 is applied immediately when obtaining the actual state
st+1 at time t+ 1 (which may be slightly different than the
model’s prediction for that state).

VII. STABILIZATION BY USING A PRIOR DYNAMIC-MODEL

Since the significance of failure is very severe, even situations
with a low failing probability should be avoided. However, if
taken to the extreme, the vehicle will not be able to drive at high
velocities at all, since there may be rare occasions in which the
vehicle might fail (see Fig. 9). To avoid the need to consider
the rare cases of high errors and therefore allowing a smaller
margin of safety, we propose the use of the Failure Prediction
and Intervention Module (FIM). The general idea behind FIM is
that if a failure is predicted, FIM overrides the vehicle actions,
so that the failure state is not reached. This allows the use of a
much lower safety factor.

Algorithm 2: The Failure Prediction and Intervention Mod-
ule’s Policy (πFIM ). fs(st, at) is a Prediction Transi-
tion Function. π(st) and πs(st) are Given Policies and
SAFE(st, π

′) is a Function that Predicts if Following Policy
π′ from State st is Safe.
Input: state s0
Output: action a

a0 ← π(s0);
st+1 ← fs(s0, a0);
If SAFE(st+1, π

s) = False then return πs(s0)
return a0

A. Prediction and Intervention Module (FIM)

We define a prediction transition function fs(st, at), and
two policies π(st) and πs(st). SAFE(st, π

′) is a function
that predicts if following policy π′ from state st is safe (e.g.
the vehicle remains stable). The Failure prediction and Inter-
vention Module policy πFIM (s0) predicts using fs if it will
be safe to execute a0 = π(s0) and then following πs. If all
future states are safe, πFIM returns a0 otherwise it returns
a safe action as = πs(s0). Algorithm 2 describes πFIM . We
note that if SAFE(s0, π

s) = True then it is guaranteed that
also SAFE(s0, π

FIM ) = True. This is true regardless of the
specific policy π.

We now introduce the use of the FIM module for our driv-
ing agent, which will be termed as the LMVO+FIM method.
LMVO+FIM uses the LMVO driving policy (algorithm 1) as its
π. As mentioned, the safety of π does not impact the safety of
πFIM , therefore, πFIM is expected to be safe also before the
learned model fv converges. The safety policy πFIM on the
other hand, is not required to obtain high performance (i.e high
velocities) as it is only responsible of overriding actions that may
lead to instability according to fs. For fs the bicycle model is
used; the SAFE function that is used by the FIM module, tests
by performing a roll-out using the bicycle model (fs) whether
the vehicle can safely reach a full stop. If so, it returns True,
otherwise it returns False. LMVO+FIM’s safety policy, πs, first
tests whether SAFE(fs(sv, {umin, δd}), πs) = True; if so it
returns a = {umin, δd} otherwise, the steering action straightens
the steering wheel and the acceleration action is umin (i.e.
maximal brake). That is, πs tries to brake while using the regular
controller for steering, but if it predicts that the vehicle will still
result in an unstable state, it also straightens the steering wheel
which will prevent the expected roll-over by reducing the radius
of curvature of the future state and following that, reducing LTR.
In addition to ensuring that the vehicle will not roll-over, the
FIM module ensures that this safety maneuver does not cause
the vehicle to deviate from the road.

VIII. EXPERIMENTAL RESULTS

The performance of the proposed methods were tested in
several experiments as detailed henceforth.
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A. Settings

A simulation of a four-wheel vehicle was developed using
“Unity” [34] software,1 which simulates realistic vehicle dy-
namics. The vehicle properties are: mass= 3, 200Kg, a total
force produced by all wheels of 21KN , center of mass (COM)
height h = 1.0 m, COM to rear wheel distance lr = 1.55 m,
COM to front wheel distance lf = 1.55 m and width= 2.1 m.
The vehicle is driven by all wheels (4 × 4); steering is done
by the front wheels (Ackermann steering). For DDPG we use
hyper-parameters as described in [27]. For LMVO, we use batch
size of 64 with batch normalization and learning rate 10−4.Each
episode is limited to 100 time steps. The time step is set to 0.2
seconds, i.e. 20 seconds per episode. An episode is considered
as a failure if the vehicle rolled-over or deviated more then 2 m
from the nominal path.

During the training process, the vehicle drives along randomly
generated paths using the learned policy, 30 episodes in each
learning process (at every episode the vehicle drives along a
different path). The learning process is repeated 100 times with
different seed and paths. During the training of the DDPG
agent, exploration noise is added to the actions and the noise
is disabled during evaluation because the exploration noise will
cause the vehicle to fail when driving near the performance
limits. Different types and levels of noise don’t significantly
affect the learning process, therefore we used the same noise
as [27] (OrnsteinUhlenbeck process). Because of the longer
convergence time for the DDPG agent, it is trained for 200
episodes.

Since the average velocity during the failed episodes was usu-
ally higher than the average velocity during successful episodes,
we excluded failed episodes when presenting the average veloc-
ity of each method. The baseline is a controller that uses the
same policy as LMVO but instead of learning the model, the
bicycle model is used (BiVO) with a safety factor of β = 0.1
to ensure safe driving. The average velocity at each time during
the training is normalized with respect to the baseline.

B. Learning Processes With and Without Intervention

Fig. 4 compares three different methods: LMVO with a safety
factor of β = 0.1 ((LMVO-0.1), LMVO with a safety factor
β = 0.06 (LMVO-0.06) and LMVO+FIM with a safety fac-
tor of β = 0.05. A comparison to DDPG is shown in section
VIII-D. As depicted by the figures, an important advantage of
LMVO+FIM over the other methods is that it maintains safety
also during the beginning of the training process, where the
learned model may be inaccurate. LMVO-0.1 achieves lower
velocity compared to LMVO-0.06 and LMVO+FIM but has a
lower failure rate compared to LMVO-0.06. LMVO+FIM max-
imizes the velocity without failing and even achieves a slightly
higher velocity compared to LMVO-0.06. These results validate
our assumption that LMVO+FIM can learn how to maximize
the velocity without failing and can achieve velocity that is
not lower than a not as safe driving policy (i.e. LMVO-0.06).

1A video of the vehicle driving along a path at time optimal velocity is
available at: https://youtu.be/Ffo3SYonwPk.

Fig. 4. (a) Normalized average velocity during 100 learning processes (higher
is better). (b) Failure rate during 100 learning processes (lower is better). Note
that by using the stabilization policy LMVO+FIM, there are no failures during
the entire training process.

Fig. 5. Intervention of FIM module during training LMVO+FIM.

Fig. 5 describes the intervention of the stabilization policy during
the training process. As expected, the number of interventions
decrease during training.

C. FIM Analysis

Fig. 6 shows the influence of the safety factor on the average
velocity. An LMVO agent was trained for 5 minutes (1500
samples) and was evaluated on different safety factors (β) with
and without the intervention policy (FIM). For 0.14 > β > 0.08
LMVO (blue) and LMVO+FIM (black) achieve the same ve-
locity because the intervention policy did not require to inter-
vene in the safe driving policy. For β < 0.07, the velocity of
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Fig. 6. Normalized average velocity as a function of linear safety factor (β).
The red area marks the range of safety factors that may cause failure when used
by LMVO without FIM.

Fig. 7. (a) Average velocity, (normalized with respect to the baseline).
(b) Failure rate. LMVO+FIM compare to DDPG on 100 random learning
processes. LMVO+FIM achieves higher velocity, in approximately 1% of the
time that is required by DDPG, while completely preventing failure.

LMVO+FIM is lower than LMVO due to intervention policy that
causes the vehicle to slow down and to deviate from the desired
path. The continual decrease of the LMVO+FIM velocity for
β < 0.06 is expected, because more interventions cause less
optimal driving. As discussed in section VIII-B, LMVO must
use a safety factor of 0.1 or higher in order to maintain a low
failure rate (therefore LMVO cannot safely reach the hypotheti-
cal velocities depict in Fig. 6 where the safety factor is less than
0.1).

D. Comparison to Model-Free RL

Fig. 7 a compares LMVO+FIM to DDPG. As expected,
LMVO+FIM converges to a good solution significantly faster
than DDPG. For DDPG, approximately 200 episodes are re-
quired to achieve similar performance to what LMVO+FIM
achieves after only 2 episodes (less than a minute). Furthermore,
the failure rate achieved by LMVO+FIM is constantly zero,

Fig. 8. (a) Prediction, Real (b) Prediction, Real. An example of a 20 time-steps
roll-out. (A) Prediction of the state features as a function of time-steps and the
actual values, (B) Predicted and actual paths relative to the vehicle located at
the origin. Note that the prediction values merge with the actual values.

Fig. 9. Error between the predicted and the actual LTR as a function of the roll-
out depth. Note the difference between the maximal error of the 99th percentile
of samples and all samples.

compared to a very high failure rate starting at over 90% and
even after 200 episodes, the failure rate is still approximately
5%.

E. Model Accuracy

For statistically analyzing the accuracy of the prediction func-
tion fv , 100,000 samples of data were collected from driving the
simulated vehicle by the LMVO policy. The model was trained
on five minutes (1500 samples) of the collected samples and
tested on the remaining samples. The results below are on the
test samples (i.e. they were not used in the training process). To
determine the action commands, a multi-step roll-out is used as
described in VI-B. Fig. 8 shows an example of one roll-out of
20 time steps. The actual and the predicted future positions of
the vehicle and the features prediction are depicted. The learned
model predict the future states accurately even after 20 time
steps (4 seconds). It is important to evaluate the maximum error
between the predicted and the actual LTR, because the future
LTR is used for deciding if the vehicle will remain stable in the
future states. Fig. 9 shows the error between the predicted and
the actual LTR as a function of the roll-out depth. We note that
the maximum one step error of all samples is above 0.5, while for
the 99th percentile, the maximal error is only 0.03. This result
justifies the need described in section VII-A to disregard the
extremely rare occasions, as including them would result in a
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much larger safety factor, which in-turn may extremely reduce
performance.

IX. CONCLUSION

In this letter, we addressed the issue of model-based deep
reinforcement learning of autonomous driving at high speeds
along paths, while accounting for the vehicle dynamics and its
dynamic constraints. We proposed a method (LMVO) that learns
to drive a vehicle by learning the dynamic model of the vehicle.
Additionally, we used an analytical dynamic model (bicycle
model) for predicting the stability of the future states (FIM).
We combined the analytical dynamic model with the learned
model to ensure vehicle safeness (LMVO+FIM). LMVO+FIM
achieved the best performance; i.e. the highest velocity and no
failures during the learning process. We showed that in five
minutes LMVO learned a significantly more accurate dynamic
model of the vehicle compared to the bicycle model (BiVO).
Because the learned model was more accurate, both LMVO and
LMVO+FIM achieved higher velocities than BiVO. We also
compared LMVO+FIM to a model-free reinforcement method
(DDPG). DDPG required about one hour to achieve the same
velocity that LMVO+FIM achieved after less than one minute.
furthermore, the failure rate of DDPG was significantly higher
compared to that of LMVO+FIM.
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Meta-Reinforcement Learning Using Model Parameters

Gabriel Hartmann1,2 and Amos Azaria2,3

Abstract— In meta-reinforcement learning, an agent is
trained in multiple different environments and attempts to learn
a meta-policy that can efficiently adapt to a new environment.
This paper presents RAMP, a Reinforcement learning Agent
using Model Parameters that utilizes the idea that a neural
network trained to predict environment dynamics encapsulates
the environment information. RAMP is constructed in two
phases: in the first phase, a multi-environment parameterized
dynamic model is learned. In the second phase, the model
parameters of the dynamic model are used as context for the
multi-environment policy of the model-free reinforcement learn-
ing agent. We show the performance of our novel method in
simulated experiments and compare them to existing methods.

I. INTRODUCTION

Common approaches for developing controllers do not rely
on machine learning. Instead, engineers manually construct
the controller based on general information about the world
and the problem. After repetitively testing the controller in
the environment, the engineer improves the controller based
on the feedback from these tests. That is, a human is an
essential part of this iterative process. Reinforcement Learn-
ing (RL) reduces human effort by automatically learning
from interaction with the environment. Instead of explicitly
designing and improving a controller, the engineer develops
a general RL agent that learns to improve the controller’s
performance without human intervention. The RL agent is
usually general and does not include specific information
about the target environment; this allows it to adapt to dif-
ferent environments. Indeed, RL agents may achieve higher
performance compared to human-crafted controllers [1]–[3].
However, RL agents usually require training from the ground
up for every new environment, which requires extensive
interaction in the new environment.

One solution to speed up the training time is to explicitly
provide human-crafted information about the environment
(context) to the RL agent [4]. However, such a solution
requires explicitly analyzing the target environment, which
may be challenging and time-consuming.

Instead of relying on the human understanding of the
problem for providing such context, a meta-Reinforcement
Learning (meta-RL) agent can learn to extract a proper envi-
ronmental context. To that end, a meta-RL agent is trained on
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extended interaction in multiple different environments, and
then, after a short interaction in a new, unseen environment, it
is required to perform well in it [5], [6]. Specifically, a meta-
RL algorithm that is based on context extraction is composed
of two phases. First, in the meta-learning phase, the agent
learns a general policy suitable to all environments given a
context. Additionally, in this phase, the meta-RL agent learns
how to extract a context from samples obtained from an
environment. Secondly, in the adaptation phase, the meta-RL
agent conducts a short interaction in the new environment,
and the context is extracted from it. This context is then fed
to the general policy, which acts in the new environment.

One common approach for context extraction is using
a Recurrent Neural Network (RNN). That is, the RNN
receives the history of the states, actions, and rewards and
is trained to output a context that is useful for the general
policy. However, the RNN long-term memory capability
usually limits the effective history length [7]. Additionally,
since the context vector is not explicitly explainable, it is
difficult to examine the learning process and understand if
the RNN learned to extract the representative properties of
the environments.

In this paper, we introduce RAMP – a Reinforcement
learning Agent using Model Parameters. We utilize the
idea that a neural network trained to predict environment
dynamics encapsulates the environment properties; therefore,
its parameters can be used as the context for the policy. That
is, the RL agent should be able to perform well in a new
environment if the environment dynamics are known and
the environment dynamics are encapsulated into the neural
network’s parameters. During the meta-RL phase, RAMP
learns a neural network that predicts the environment dynam-
ics for each environment. However, since the number of the
neural network’s parameters is usually high, it is challenging
for the policy to use the entire set of parameters as its
context. Therefore, the majority of the model’s parameters
are shared between all environments, and only a small set
of parameters are trained separately in each environment.
In that way, the environment-specific parameters represent
the specific environment properties. Consequently, a general
policy uses only these parameters as context and outputs
actions that are suitable for that particular environment. One
advantage of RAMP is that the history length used for
the context extraction is not limited because the context is
extracted from a global dynamic model. Additionally, the
combination of model learning and RL in RAMP makes
the training process more transparent since it is possible
to evaluate the performance of the model learning process
independently. We demonstrate the effectiveness of RAMP



in several simulated experiments in Sec. V.
To summarize, the contributions of this paper are:
• Suggesting a novel method for meta-reinforcement

learning.
• Presenting a multi-environment dynamic model learning

method that adapts to new environments by updating
only a few parameters.

• Using the dynamic model parameters directly as a
context for the general policy.

• Combining model-based and model-free RL.

II. RELATED WORK

RL has shown success in numerous domains, such as
playing Atari games [1], [8], playing Go [9], and driving
autonomous vehicles [3], [10]. Some are designed for one
specific environment [3], [11], while others can learn to mas-
ter multiple environments [2], [8]; however, many algorithms
require separate training for each environment.

Several approaches were proposed to mitigate the need
for long training times by using meta-RL methods. We
begin by describing methods that, similarly to ours, learn
a context-conditioned, general policy. However, they con-
structed the context vector in different ways. We note that
some previous works term the different training environments
“tasks" since they emphasize the changes in the reward
function. However, since our work focuses on environments
with different dynamics (transition functions), we use the
term “environments”. In [12], the environment properties
are predicted by a neural network based on a fixed, small
number of steps. However, this approach requires explicitly
defining the representative environment properties. More-
over, it assumes that these properties can be estimated based
on the immediate environmental dynamics. Rasool et al.
[13] introduce TD3-context, a TD3-based RL agent that
uses a recurrent neural network (RNN) to create a context
vector, which receives the recent states and rewards as input.
However, even though types of RNNs such as LSTM [14]
and GRU [15] are designed for long-term history, in practice,
the number of previous states considered by the RNN is
limited [7]. Therefore, if an event that defines an environment
occurs too early, the RNN will “forget" it and not provide
an accurate context to the policy. In our method, RAMP,
the context consists of the parameters of a global, dynamic
model, which is not limited by the history length. Other
approaches use the RNN directly as a policy, based on the
transitions and rewards during the previous episode [6], [16],
instead of creating a context vector for a general policy.
These approaches are also vulnerable to this RNN memory
limitation.

Finn et al. [5] proposed a different principle for meta-
learning termed “Model-Agnostic Meta-Learning (MAML)."
In MAML, the neural network parameters are trained such
that the model will be adapted to a new environment by
updating all parameters only with a low number of gradient-
descent steps. However, the training process of MAML
may be challenging [17]. Furthermore, MAML uses on-
policy RL and therefore is unsuitable for the more sampling-

efficient off-policy methods as in our approach. Nevertheless,
since MAML can also be used for regression, we compare
our multi-environment dynamic model learning method to
MAML in Sec. V-A.

Some proposed meta-RL methods are suitable for off-
policy learning [13], [18]. Meta-Q-learning (MQL) [13]
updates the policy to new environments by using data from
multiple previous environments stored in the replay buffer.
The transitions from the replay buffer are reweighed to match
the current environment. We compare our method, RAMP,
to MQL in our testing environment in Sec. V-B.2.

As opposed to all these meta-RL methods, which are
model-free, also model-based meta-RL methods were pro-
posed. In model-based meta-RL, the agent learns a model
that can quickly adapt to the dynamics of a new environment.
Ignasi et al. [19] propose to use recurrence-based or gradient-
based (MAML) online adaptation for learning the model.
Similarly, Lee et al. [20] train a model that is conditioned on
the encoded, previous transitions. In contrast to model-free
RL, which learns a direct mapping (i.e., a policy) between
the state and actions, model-based RL computes the actions
by planning (using a model-predictive controller) based on
the learned model. In our work, we combine the model-free
and model-based approaches resulting in rapid learning of
the environment dynamic model and a direct policy without
the need for planning.

III. PROBLEM DEFINITION

We consider a set of N environments that are modeled
as a Markov Decision Processes Mk = {S,A, T k,R},
k = {1, . . . , N}. All environments share the same state space
S, action space A, and reward function R and differ only by
their unknown transition function T . These N environments
are randomly split into training environments Mtrain and
testing environments Mtest.

The meta-RL agent is trained on the Mtrain environments
and must adapt separately to each of theMtest environments.
That is, the agent is permitted to interact with the Mtrain
environments for an unlimited number of episodes. Then,
the meta-RL agent is given only a short opportunity to
interact with each of the Mtest environments (e.g., a single
episode, a number of time steps, etc.), and update its policy
based on this interaction. Overall, the agent’s goal is to
maximize the average expected discounted for each of the
Mtest environments.

IV. RAMP

RAMP is constructed in two phases: in the first phase,
a multi-environment dynamic model is learned, and in the
second phase, the model parameters of the dynamic model
are used as context for the multi-environment policy of
the reinforcement learning agent. The following sections
first describe how the multi-environment dynamic model is
learned by exploiting the environments’ common structure.
In the second part, we describe the reinforcement learning
agent.



A. Multi-Environment Dynamic Model

Attempting to approximate the transition function of each
environment T k by an individual neural network is likely
to work well for the training environments. However, it is
unlikely to generalize to the testing environments, as we have
only a limited set of data points for them. However, since
the environments share a common structure, it will be more
efficient to train a neural network that has shared components
between all the environments. Namely, we intend to train a
general neural network based on the training environments
such that it can be adapted to each testing environment using
only a limited set of data points.

In addition, since RAMP’s second phase uses the neural
network’s parameters’ values directly as a context for the RL
agent, we wish to use only a small number of parameters that
should represent the properties of each specific environment
dynamics. Therefore, the general neural network shares the
vast part of the parameters between all environments and
includes only a small set of environment-specific parameters.
The values of the small set of parameters represent the
specific environment dynamics since only they are unique to
each environment. We show in Section 4 that it is possible
to predict the unique environmental properties based only
on these parameters. The environment-specific parameters
are, in fact, a compact representation of each environment;
therefore, they can be used by RAMP as a context vector (as
described in Sec. IV-B).

The number of the environment-specific parameters should
match the degree of freedom between the environments’
dynamics. That is, there should be enough parameters to
describe the difference between the environments. However,
this number is usually not precisely known, instead, it can
be tuned as a hyperparameter. Nevertheless, a greater size of
this set will not prevent the succes of the multi-environment
model learning as shown in Section V.

We approximate the transition function of all environments
by a neural network with parameters indexed by φ, which
are split to environment-specific parameters indexes ω ⊆ φ,
and to the remaining parameters indexes σ = φ \ ω. The
values of the parameters of each environment k are denoted
by φ̂k and the environment-specific parameters’ values by
ω̂k. The shared parameters’ values, which do not depend
on a specific environment, are denoted by σ̂. Our multi-
environment dynamic model is denoted by fσ̂,ω̂k

. The multi-
environment dynamic model is given a state s and action a
and outputs a prediction of the state at the following time
step s′ for each environment Mk, i.e., s′ = fσ̂,ω̂k

(s, a).

We now describe how to select ω and how to train the
neural network parameters σ̂ and ω̂k. At first, we gather
sufficient data in the form of Dk = {(s, a, s′)}, for each
environment k. At the beginning of the training process
ω = ∅ and σ = φ. The network is trained using the
gradient descent algorithm to minimize the loss, which is
the squared error between the predicted and real next state

for each environment:

L(Dk, σ̂, ω̂k) =
∑

s,a,s′∈Dk

(s′ − fσ̂,ω̂k(s, a))2. (1)

Initially, σ̂ are trained in all environments to achieve an
average model prediction:

σ̂ = argmin
σ̂

|Mtrain|∑
k=1

L(Dk, σ̂, ω̂k) (2)

After the initial training phase, the parameters ω are
selected from φ by the algorithm, one-at-a-time. Intuitively,
the algorithm should select parameters for ω that have the
greatest impact on the difference between the environments.
Therefore, at each gradient step, the gradient of the loss
function L(Dk, σ̂, ω̂k) relative to φ̂k is computed for each
environment k:

gk = ∇φ̂kL(Dk, σ̂, ω̂k), (3)

and the parameter with the highest variance between all
gradients gk is added to ω:

ω ← ω ∪ argmax
i∈φ\ω

var(g0i , g
1
i , . . . , g

|Mtrain|
i ). (4)

Then, the network is trained to minimize the loss function
in all environments:

min
σ̂

|Mtrain|∑
k=1

min
ω̂k
L(Dk, σ̂, ω̂k). (5)

That is achieved by updating the environment-specific pa-
rameters ω̂k by the corresponding gradient:

ω̂k ← ω̂k − αωg
k, (6)

and updating the shared parameters by the average gradient:

σ̂ ← σ̂ − ασ
1

|Mtrain|

|Mtrain|∑
i=0

gi, (7)

where αω and ασ are the learning rates. During the training,
parameters continue to be added to |ω| until it reaches
a predefined size nω . Algorithm 1 summarizes the multi-
environment dynamic model learning.

Finally, at the end of the training process (after achieving
a low loss value), only parameters ω need to be adjusted for
a new environment to get an accurate dynamic model, while
parameters σ remain constant. That is,

ω̂k = argmin
ω̂k

L(Dk, σ̂, ω̂k). (8)

B. Reinforcement Learning With Model Parameters Context

The multi-environment dynamic model parameters, de-
scribed in the previous section, are used as a context for
the RL agent. That is, RAMP concatenates the environment-
specific parameters’ values ω̂k to the state s for training the
RL agent.

Unfortunately, the environment-specific parameters ω̂k do
not necessarily converge to the same value when trained in



Algorithm 1 Model learning with RAMP

Require: nω ▷ Number of environment-specific parameters
Require: ninit ▷ Number of steps for initial training
Require: ntot ▷ Number of total training steps
Require: αω, ασ ▷ Learning rates
Require: {D0, . . . , D|Mtrain|} ▷ Data from the environments
ω ← ∅
for i← 1,number of training steps do

for Mk ∈Mtrain do
sample a batch of transitions bk ∈ Dk

gk ← ∇φ̂kL(bk, σ̂, ω̂k)
ω̂k ← ω̂k − αωg

k

σ̂ ← σ̂ − ασ · avg(g0, . . . , g|Mtrain|)
if |ω| ≤ nω and i > ninit then

ω ← ω ∪ argmaxi∈φ\ω var(g0i , g
1
i , . . . , g

|Mtrain|
i )

the same environment since the amount of these parameters
may be greater than the degree of freedom between the envi-
ronments. That is, there may be more than one way (i.e., sin-
gle parameters’ values) to minimize the multi-environment
dynamic model network. Therefore, the RL agent should be
trained on multiple possible representations of each environ-
ment. To achieve this, the environment-specific parameters’
values ω̂k are retrained every H episodes for each environ-
ment k by collecting data from a single episode with the
current policy. These values are stored in Ωk. The shared
parameters, σ̂, remain constant during the entire RL multi-
environment training phase.

If the RL algorithm uses a replay buffer, the current
environment index k is added to each tuple in addition
to the standard data stored in the replay buffer (i.e., state,
action, next state, reward, and done). When sampling from
the replay buffer, a context vector is concatenated to each
state according to the tuple’s environment index k. That
context vector, which is the values of the environment-
specific parameters ω̂k, is randomly sampled from Ωk.

We note that RAMP can be used with any RL algorithm
and also supports off-policy algorithms, which are considered
to be more efficient. In this work, we use TD3 [21], which
is an off-policy, actor-critic RL algorithm. The TD3 agent
contains critic neural networks that estimate the action-value
function. The critic is trained by minimizing the Bellman
function. The actor, which is a policy represented by a neural
network, aims to maximize the expected discounted infinite
episode reward by maximizing the action-value function.
RAMP using the TD3 algorithm is summarized in 2.

V. EXPERIMENTAL EVALUATION

We evaluate RAMP on two domains. The first domain, a
sine waves regression test, evaluates the first phase of RAMP
alone, i.e., the multi-environment dynamic model learning
algorithm. The second domain is the vehicle target-reaching
domain, in which vehicles with different dynamics aim to
reach a target. The vehicle target-reaching domain tests the
complete RAMP algorithm, composed of both phases.

Algorithm 2 RAMP (using TD3)

Require: ntot ▷ Number training steps
Require: Mtrain ▷ Training environments
Require: ω̂k, k = {1, |Mtrain|}

Initialize critic, actor, and replay buffer B
Add ω̂k to Ωk for all k = {1, |Mtrain|}
while i < ntot do

Select environment Mk from Mtrain randomly
Select parameters ω̂k from Ωk randomly
while not done do

Observe s
Execute action a = πΦ(s, ω̂

k) + ϵ), ϵ ∼ N (0, σ)
Observe new state s′, reward r and done flag d
Add (s, a, s′, r, d, k) to replay buffer B
if i mod H = 0 then

for all Mk ∈Mtrain do
Select random parameters ω̂k from Ωk

Sample one episode from Mk:
Dk ← {(st, π(st, ω̂k), st+1)}t={1,T}
Retrain ω̂k

new with Dk and add to Ωk

Sample random batch b ⊂ B
for all (s, a, s′, r, d, k) ∈ b do

Sample ω̂k from Ωk

Set s′ ← (s′, ω̂k)
Set s← (s, ω̂k)

Update critics using b
if i mod ntraining = 0 then

Update actor using b

i← i+ 1

A. Sine Waves Regression

We used a sine waves regression test similar to [5]. The
multi-environment dynamic model was trained on random
samples of a sine wave function with different amplitudes A
and phases ϕ:

y = A sin (x+ ϕ). (9)

The input to the function, x, is sampled uniformly from the
range [−5, 5]. The amplitudes of the different functions, are
sampled from A ∈ [0.1, 5], and the phases are sampled from
ϕ ∈ [0, π]. The network consists of two fully connected
hidden layers, with 40 neurons in each layer and ReLU
activation. The size of the environment-specific parameters is
limited to 10, i.e. nω = 10, out of a total 1761 parameters.
Contrary to the dynamic model prediction, which receives
an action in addition to the current state to predict the next
state, in this simple sine regression problem, there is a single
input and a single output. The multi-environment model
was trained on 100 random sine waves with 10 samples
each. It was then retrained by updating only environment-
specific parameters, ω, on 10 samples of new sine waves. We
compare the multi-environment dynamic model of RAMP to
a small network composed of only 10 parameters trained on
each new sine wave separately and to MAML [5], which
updates the entire network (1761 parameters).



The multi-environment dynamic model achieved a Mean
Squared Error (MSE) of 0.021. This result is slightly lower
than MAML, which achieved an MSE of 0.037. Neverthe-
less, since MAML uses 1761 parameters, it is impractical to
use them as a context for the RL agent. As expected, the
network that contains only 10 parameters resulted in a very
high average MSE, 19.25. When training on all sine waves
together (i.e., all model’s parameters are shared without
environment-specific parameters), the MSE was 1.9. Figure
1 depicts the performance of the multi-environment dynamic
model of RAMP on the test set.

Fig. 1: Evaluation of sine functions with different amplitudes
and phases. The solid lines represent the ground-truth func-
tions, and the dots are the predictions.

B. Vehicle Target-Reaching Domain

The vehicle target-reaching domain is a simple domain
that enables us to provide a precise analysis of RAMP’s
behavior and demonstrate the concepts behind RAMP. In this
domain, an agent controls the vehicle’s throttle and brake and
aims to reach a target line in a minimum time. The vehicle
must reach the target line at a speed of at most vmax. The
state, s = {v, d}, consists of the current vehicle’s speed, v,
and the distance to the target d. v ranges from 0 to 30 m/s,
the distance to the target at the beginning of the episode
is d = 40 m, and the desired maximal speed at the target
line vmax is 5 m/s. The continuous throttle/brake action, a
ranges from −1 to 1. The sampling frequency is 25 Hz. The
reward function returns −0.002 at each non-terminal step.
When approaching the target line with a higher speed, than
vmax the reward is 0.01(v − vmax)

2 otherwise 0.
We construct 24 vehicle target-reaching environments,

split into 22 for training the multi-environment model and
two for testing. All vehicles from the different environments
have identical acceleration but a different deceleration, which
is unknown to the agent. Specifically, the throttle command
a = [0, 1] causes an acceleration value v̇ = [0, 42] m/s2 in
all environments. However, the brake command a = [−1, 0)
causes a deceleration value v̇ = [0, 42ka] that is scaled down
by the braking factor ka, which has a value between 0.1 and
1. The braking factor in the test environment is ka = 0.925
and ka = 0.175, which are close to the extremes of all
factors.

We begin by evaluating the performance of the multi-
environment dynamic model learning process, and then we
evaluate the performance of the RL learning procedure. Fi-
nally, we show the adaptation process in a new environment.

1) Multi-Environment Dynamic Model Learning: The
multi-environment neural network is identical to the network
used for the sine wave regression. The dynamic model state
consists only of the vehicle’s speed, and the network predicts
the difference between the current and new states. In each
environment, 100 points are randomly sampled for training,
and only 10 points are sampled from new environments for
the adaptation process. Figure 2 shows speeds of 3 different
vehicles. All accelerate at the same rate until reaching the
maximal speed, and then, each vehicle applies a maximal
braking action (a = −1), resulting in different decelera-
tion values. The points represent the predicted speeds, and
the solid lines are the real speeds. Our multi-environment
dynamic model results in an MSE of 0.00029 on new
environments compared to an MSE of 0.045 when trained
on all environments together.

Fig. 2: Speeds prediction of different vehicles. Points are the
predictions, and solid lines are the ground-truth speeds.

Recall that the environment-specific parameters ω are
retrained multiple times during the RL training process as
described in Sec. IV-B. Figure 3 shows the values of each of
the 10 parameters for every environment, in different colors.
The different parameter sets are slightly shifted along the
horizontal axis. As depicted by the figure, the environment-
specific parameters converged to similar values; this can be
seen by the consistency of the values between the parameter
sets. In addition, the figure shows that the different envi-
ronments result in noticeable, different values for the first
three parameters. In contrast, the remaining parameters show
only a minor variance between the environments. This result
seems reasonable, since not all parameters are required to
determine the variance of the vehicle dynamics, which in
fact, has only one degree of freedom.

Recall that in the RL training phase, the general policy
must extract the properties of the environments from only
the environment-specific parameters. Therefore, beyond the
low loss of the prediction, we tested that it is possible to
directly predict the braking factor from the environment-
specific parameters. To that end, we trained a dedicated
regressor, which is not used by RAMP, on 58 sets of the



Fig. 3: Values of the 10 environment-specific parameters.
Different colors represent different environments. Multiple
parameter sets are shown with a shift along the horizontal
axis.

trained environment-specific parameters created during the
RL training process. 40 environments were used as a training
set, and the 18 remaining environments were used as a test
set. The regressor is composed of a neural network with two
hidden layers with 100 neurons each. Figure 4 shows the
prediction error distribution of the braking factor. As depicted
by the figure, the regressor predicts the braking factor, which
ranges from 0.1 to 1.0, with an average error of −0.0077.

Fig. 4: Error distribution of predicting the real braking factor
of environment k, based only on the environment-specific
parameters ω̂k.

2) Multi-Environment Reinforcement Learning: We com-
pared RAMP to the following 3 other RL agents. The
Oracle RL receives explicit information about the vehicle;
that is, the braking factor is added to the state. With full
knowledge of the environmental properties, the Oracle RL is
expected to find a nearly optimal solution. Next, we consider
a basic RL that is trained in all environments together,
without any identification input, and thus cannot distinguish
between different vehicles. Therefore, it is expected to learn a
conservative policy that enables safe deceleration to the target
line, even for the vehicle with the lowest braking capability.
The third RL agent is the meta-Q-learning (MQL) algorithm
[13].

The training process of all methods was repeated 5 times
with different random seeds and is shown in Fig. 5. Our
method’s performance during the training process is compa-

rable to the Oracle RL, achieving consistently higher episode
rewards than the basic RL and MQL.

Fig. 5: Comparison between the training processes. RAMP
is close to the Oracle RL.

Table I summarizes the average performance at the end of
the training procedure. The table shows for all agents: the
average reward in both test environments, the time to reach
the target line by the vehicles with a low and high braking
factor, and the average time. As depicted by the table, RAMP
reaches an average reward that is very close to the Oracle’s
and also has a very similar average time.

Average
Reward

Low ka

Time [s]
High ka

Time [s]
Average
Time [s]

Basic RL -0.1656 3.160 3.376 3.268
Oracle RL -0.1226 3.0 1.976 2.488
RAMP -0.1230 3.048 2.04 2.544
MQL -0.1510 3.18 2.62 2.90

TABLE I: The performance of all RL agents on the test
environments. The table shows for each agent: 1. The loss,
averaged over the test episodes following the 5 separate
training processes; 2. The average time achieved by the
vehicle with the low braking factor; 3. The average time
achieved by the vehicle with the high braking factor; 4. The
average between these times.

Next, we analyze the speed profiles of different vehicles
driven by policies trained by the different RL agents. The
speed profile of the basic RL, Oracle RL, RAMP, and MQL
are shown in Figures 6a, 6b, 6c, and 6d respectively. The
orange lines represent speed profiles of vehicles with a high
braking factor ka = 0.925, and the blue lines represent
low braking factors ka = 0.175. These values are close
to the extremes of the braking factor range to demonstrate
the difference between the environments. The bold columns
represent the maximal permitted speed at the target for
each of the two environments. As depicted by Fig. 6a, the
basic RL begins to brake on both vehicles at the same
point in time. This happens because the agent cannot know
if the vehicle has a higher braking capability that allows
braking later or not, which leads to a conservative policy.
As shown in Fig. 6b, the Oracle RL begins braking on
time in both environments and arrives at the destination at
the required maximum target speed. As shown in Fig. 6c,



(a) (b)

(c) (d)

Fig. 6: Speed profiles that were achieved by our method and the other agents. Blue - low braking factor, orange - high
braking factor, bold line - the maximal desired speed at the target. (a) The basic RL agent resulted in a conservative solution.
(b) The Oracle RL agent achieved optimal speed profiles. (c) Our agent, RAMP, achieves similar optimal results without
prior knowledge about the vehicle dynamics. (d) MQL resulted in sub-optimal results compared to RAMP.

RAMP results in a similar speed profile as the Oracle RL.
However, unlike the Oracle agent, RAMP does not receive
any explicit information about the environment; instead, it
learns this information from the trajectory sampled during
one episode. Figure 6d illustrates that the MQL agent can
distinguish between the vehicles’ braking differences because
the vehicle with the higher braking factor is allowed to gain
more speed. However, MQL’s speed profile is not as good
as RAMP’s since the MQL agent does not accelerate and
decelerate at the maximal values, therefore resulting in longer
driving times.

To conclude the evaluation of RAMP’s performance in
the target-reaching domain, we analyze RAMP’s adaptation
process. As opposed to the Oracle RL, which is given the
braking factor information, RAMP must learn it from the
driving experience. That is, in the first episode, RAMP
collects data points, and the environment-specific parameters
are trained on it; in the second episode, RAMP drives the
vehicle with the updated context. Figure 7 shows the speed
profile of a vehicle during two subsequent episodes for
the low braking factor vehicle (Fig. 7a) and for the high
breaking-factor (Fig. 7b). As depicted by Fig. 7a, in the first
episode (represented by the dashed line), the vehicle brakes
too late and therefore crosses the target line at too high a

speed. In the second episode (represented by a solid line),
the vehicle brakes earlier and cross the target line at a speed
that is within the speed limit. Similarly, for the vehicle with
a higher braking factor, RAMP learns that the vehicle can
brake later. Therefore, in the second episode, it crosses the
finish line earlier than in the first episode.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented RAMP, a novel meta-reinforcement
learning algorithm. RAMP is constructed in two phases:
learning a multi-environment dynamic model and train-
ing a general reinforcement learning policy that uses the
model parameters as context. The multi-environment dy-
namic model is trained on data from multiple environments.
The shared parameters are updated by the average gradient
computed from the loss resulting from all environments,
and the environment-specific parameters are trained sepa-
rately on data from each environment. The low number of
environment-specific parameters allows direct use of them as
context for the general policy. That general policy is trained
by TD3, an actor-critic, off-policy RL algorithm.

We evaluated the performance of RAMP in simulated
experiments. First, we tested the multi-environment dynamic
model performance by a sine-wave regression test which we
show to achieve a slightly lower loss compared to MAML



(a)

(b)

Fig. 7: RAMP evaluation during two subsequent episodes.
The dashed line represents the speed profile used for col-
lecting data in the first episode and the solid line in the
second. (a) Low braking factor: the agent learned that this
vehicle must brake earlier. (b) High braking factor: the agent
learned that this vehicle can brake later.

[5]. Then, we tested RAMP in a simple driving domain
where every vehicle had a different deceleration rate. We
showed that RAMP achieved similar performance to an
Oracle RL agent, which is provided with full knowledge of
the environment properties.

In future work, we plan to test RAMP in more challenging
domains, such as controlling the steering of an autonomous
vehicle and following a given path. Recall that RAMP
assumes that the environments differ by their dynamics and
not by their reward function, while most previous works
consider the opposite. In order to adapt to environments
that also differ by their reward functions, a future extension
can be to learn a reward prediction function and uses its
parameters as a context in addition to the multi-environment
model parameters.
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Chapter 3

Discussion and Conclusions

This section reviews the main results presented in the papers and concludes this
work.

One of the interesting results accomplished by the racing controller presented
in the first paper [26] is its ability to balance competitiveness and safety. This was
demonstrated by driving 6 vehicles for 30 laps each, which accounts for 180 laps over
720 km, without any collision, and in the IAC simulation race, where our controller
drove over a total of 17 laps with no collision.
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FIGURE 3.1: Lap times distribution of all 6 vehicles over 30 laps. The
red line represents the solo-lap time.

This notable result did not diminish the racing controller’s competitiveness, as
demonstrated by the 6-vehicle race, where the average lap-time of all vehicles was
only 0.25 seconds greater than the optimal solo-lap time, as shown in Fig. 3.1.
This implies that the vehicles were running in close proximity to each other, which
demonstrates the high competitiveness of our controller.

Despite the unprecedented achievements of autonomous vehicles in the Indy Au-
tonomous Challenge [31], human drivers still defeat autonomous racing. One rea-
son for the superiority of human drivers is that humans’ actions are based on com-
plex ,conscious and subconscious decisions that are challenging to model in directly-
designed algorithms such as the described approach.
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The subsequent papers explored the use of learning-based approaches that elimi-
nate the need to explicitly define the controller, while achieving higher performance.
The learning methods in these papers were demonstrated on maximizing speed and
path following along a given path. Figure 3.2, from the second paper [28], presents
the normalized average velocity along the path during training. All results were nor-
malized relative to the directly-designed velocity controller (VOD), which appears
as a horizontal line at 1.0.

At the beginning of the training process, the RL agent (REVO) drove very slowly
and achieved the same performance as VOD after about 40, 000 training updates.
REVO+A achieved the same performance as VOD from the beginning, which implies
that REVO+A converges much faster than REVO because REVO+A uses VOD as a
baseline.

When the training process continues, the policies learned by all methods increase
the vehicle’s velocity, compared to using VOD, by about 10%. This performance
improvement is expected because VOD uses a simplified vehicle model.

FIGURE 3.2: The average velocity on 100 random paths, measured at
every 5000 training steps (normalized relative to VOD), on 5 different
training processes. The bars represent the standard deviation between

the training processes.

One of the challenges of RL is the long training times. The third paper [29] pre-
sented a model-based RL approach (LMVO) which is more efficient compared to the
model-free RL algorithm (REVO) used in the previous paper. Ensuring safety is an-
other challenge of learning-based approaches. Therefore, a safety module (FIM) that
is based on a direct solution is presented in this paper.
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Figure 3.3 compares three different methods: LMVO with a safety factor of 0.1
(LMVO-0.1), LMVO with a safety factor 0.06 (LMVO-0.06) and LMVO+FIM with a
safety factor of 0.05.

LMVO-0.1 achieves lower velocity than LMVO-0.06 and LMVO+FIM but also
has a lower failure rate than LMVO-0.06. LMVO+FIM maximizes the velocity with-
out failing and achieves a slightly higher velocity than LMVO-0.06. These results
validate our assumption that LMVO+FIM can learn how to maximize the velocity
without failing and can achieve a velocity that is not lower than a not-as-safe driv-
ing policy (i.e., LMVO-0.06).
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FIGURE 3.3: Comparison between model-based RL methods during 100
learning processes. (A) Normalized average velocity (higher is better).
(B) Failure rate (lower is better). Note that when using the stabilization
policy LMVO+FIM, there are no failures during the entire training pro-

cess.

As depicted by Fig. 3.3b, an important advantage of LMVO+FIM over the other
methods is that it maintains safety also during the beginning of the training process,
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where the learned model may be inaccurate.
All these model-based RL methods converged to high-performance solutions in

only a few episodes compared to the 200 episodes required for the model-free RL
method (REVO). However, the model-based approach requires planning the action
using the learned dynamic model in contrast to the immediate solution that results
from the model-free RL policy.

A meta-RL algorithm (RAMP) was proposed in the fourth paper [30] to eliminate
the need for directly developing a solution for speeding up the RL learning process
or ensuring safety. RAMP was validated in a target-reaching problem where each
vehicle has a different, unknown braking capability. It was compared to the follow-
ing 3 other RL agents in Fig. 3.4. The Oracle RL received explicit information about
the vehicle. With full knowledge of the environmental properties, it is expected to
find a nearly optimal solution. Next, a basic RL that was trained in all environments
together, without any identification input, and thus cannot distinguish between dif-
ferent vehicles. Therefore, it is expected to learn a conservative policy. The third
RL agent is the meta-Q-learning (MQL) algorithm [32]. Our method’s performance
during the training process is comparable to the Oracle RL, achieving consistently
higher episode rewards than the basic RL and MQL.

FIGURE 3.4: Comparison between the training processes. RAMP is
close to the Oracle RL.

This doctoral thesis presented several algorithms for time-optimal velocity con-
trol and competitive driving that use both the direct-design approach, as well as the
learning-based approach. The first paper described a directly designed algorithm for
autonomous racing. The second and third papers used directly designed solutions
for speeding up and ensuring the safety of an RL agent. The fourth paper described
a new approach for meta-RL.
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ning along predefined path for static formations of mobile robots”. In: Interna-
tional Journal of Control, Automation and Systems (2017).

[7] José L. Vázquez et al. “Optimization-Based Hierarchical Motion Planning for
Autonomous Racing”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020, pp. 2397–2403. DOI: 10.1109/IROS45743.
2020.9341731.

[8] Juraj Kabzan et al. “Amz driverless: The full autonomous racing system”. In:
Journal of Field Robotics 37.7 (2020), pp. 1267–1294.

[9] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-
based autonomous racing of 1: 43 scale RC cars”. In: Optimal Control Applica-
tions and Methods 36.5 (2015), pp. 628–647.

[10] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments us-
ing velocity obstacles”. In: The International Journal of Robotics Research 17.7
(1998), pp. 760–772.

https://doi.org/10.1109/IROS45743.2020.9341731
https://doi.org/10.1109/IROS45743.2020.9341731


Bibliography 47

[11] Xiaohui Li et al. “Real-time trajectory planning for autonomous urban driv-
ing: Framework, algorithms, and verifications”. In: IEEE/ASME Transactions
on mechatronics 21.2 (2015), pp. 740–753.

[12] Chris Urmson et al. “Autonomous driving in urban environments: Boss and
the urban challenge”. In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

[13] Johannes Betz et al. “Autonomous Vehicles on the Edge: A Survey on Au-
tonomous Vehicle Racing”. In: IEEE Open Journal of Intelligent Transportation
Systems 3 (2022), pp. 458–488. DOI: 10.1109/OJITS.2022.3181510.

[14] Alexander Wischnewski et al. “A Tube-MPC Approach to Autonomous Multi-
Vehicle Racing on High-Speed Ovals”. In: IEEE Transactions on Intelligent Vehi-
cles (2022), pp. 1–1. DOI: 10.1109/TIV.2022.3169986.

[15] Peter R Wurman et al. “Outracing champion Gran Turismo drivers with deep
reinforcement learning”. In: Nature 602.7896 (2022), pp. 223–228.

[16] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602 (2013).

[17] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv
preprint arXiv:1604.07316 (2016).

[18] Maximilian Jaritz et al. “End-to-end race driving with deep reinforcement learn-
ing”. In: 2018 IEEE,ICRA. 2018, pp. 2070–2075.

[19] Tobias Glasmachers. “Limits of end-to-end learning”. In: arXiv preprint arXiv:1704.08305
(2017).

[20] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe rein-
forcement learning”. In: Journal of Machine Learning Research 16.1 (2015), pp. 1437–
1480.

[21] Zvi Shiller and Y-R Gwo. “Dynamic motion planning of autonomous vehi-
cles”. In: IEEE Transactions on Robotics and Automation 7.2 (1991), pp. 241–249.

[22] Jeong hwan Jeon et al. “Optimal motion planning with the half-car dynamical
model for autonomous high-speed driving”. In: 2013 American Control Confer-
ence. 2013, pp. 188–193. DOI: 10.1109/ACC.2013.6579835.

[23] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: nature 518.7540 (2015), pp. 529–533.

[24] David Silver et al. “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play”. In: Science 362.6419 (2018), pp. 1140–
1144.

https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/TIV.2022.3169986
https://doi.org/10.1109/ACC.2013.6579835


Bibliography 48

[25] Florian Fuchs et al. “Super-Human Performance in Gran Turismo Sport Us-
ing Deep Reinforcement Learning”. In: IEEE Robotics and Automation Letters
6.3 (2021), pp. 4257–4264. DOI: 10.1109/LRA.2021.3064284.

[26] Gabriel Hartmann, Zvi Shiller, and Amos Azaria. “Competitive Driving of Au-
tonomous Vehicles”. In: IEEE Access 10 (2022), pp. 111772–111783. DOI: 10.
1109/ACCESS.2022.3215984.

[27] Omead Amidi and Chuck E Thorpe. “Integrated mobile robot control”. In: Mo-
bile Robots V. Vol. 1388. SPIE. 1991, pp. 504–523.

[28] Gabriel Hartmann, Zvi Shiller, and Amos Azaria. “Deep Reinforcement Learn-
ing for Time Optimal Velocity Control using Prior Knowledge”. In: 2019 IEEE
31st International Conference on Tools with Artificial Intelligence (ICTAI). 2019,
pp. 186–193. DOI: 10.1109/ICTAI.2019.00034.

[29] Gabriel Hartmann, Zvi Shiller, and Amos Azaria. “Model-Based Reinforce-
ment Learning for Time-Optimal Velocity Control”. In: IEEE Robotics and Au-
tomation Letters 5.4 (2020), pp. 6185–6192. DOI: 10.1109/LRA.2020.3012128.

[30] Gabriel Hartmann and Amos Azaria. Meta-Reinforcement Learning Using Model
Parameters. 2022. DOI: 10.48550/ARXIV.2210.15515.

[31] Indy Autonomous Challenge. https://www.indyautonomouschallenge.
com/. 2021.

[32] Rasool Fakoor et al. “Meta-Q-Learning”. In: International Conference on Learn-
ing Representations. 2020. URL: https://openreview.net/forum?id=
SJeD3CEFPH.

https://doi.org/10.1109/LRA.2021.3064284
https://doi.org/10.1109/ACCESS.2022.3215984
https://doi.org/10.1109/ACCESS.2022.3215984
https://doi.org/10.1109/ICTAI.2019.00034
https://doi.org/10.1109/LRA.2020.3012128
https://doi.org/10.48550/ARXIV.2210.15515
https://www.indyautonomouschallenge.com/
https://www.indyautonomouschallenge.com/
https://openreview.net/forum?id=SJeD3CEFPH
https://openreview.net/forum?id=SJeD3CEFPH


תקציר

נהיגה אוטונומית כוללת תתי נושאים כגון חישה, תכנון תנועה ובקרה. ישנם מטרות שונות לתכנון התנועה, שכוללים
שיפור יעילות האנרגיה וקיצור זמן הנסיעה. זמן הנסיעה מקוצר )כלומר, נסיעה קרוב למהירות האופטימלית בזמן( על

ידי מיקסום המהירות, שיכולה להיות מוגבלת על ידי אילוצים שונים כגון חוקי תנועה, מגבלות החיישנים, ונוחות
הנסיעה. על כל פנים, האילוץ הקריטי ביותר שצריכים להתחשב בו בכל מצב הוא היציבות הדינמית. הכוונה ביציבות

דינמית היא אילוצים שתלויים במהירות הרכב כגון מניעת התהפכות או החלקה. העבודה הזאת מתמקדת בתנועה
אופטמלית בזמן בסביבות שונות.

קיימות שתי גישות לפתרון פעיות מהסוג הזה: פתרון ישיר, שבו הפתרון מבוסס על הבנת הבעיה על ידי מומחה, ולמידת
מכונה שמאפשר ללמוד את הפתרון באמצעות מידע באופן אוטומטי. העבודה הזאת מציעה כמה אלגוריתמים עבור נהיגה
אוטונומית שמדגימים את התועלת של פתרונות ישירים בפני עצמן והשילוב עם שיטות מבוססות למידה כדי להאיץ את

תהליך הלמידה ולשמור על הבטיחות של הפתרון הנלמד.
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