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Abstract

When people operate in the world or engage in a learning process they encounter different

situations. There are situations where the action choice has only a minor influence on their

lives, for example, when a person needs to choose between multiple dinner variants, and there

are other situations where this influence is much larger (critical situations), for example, when

a person needs to choose his life partner. Naturally, people adjust their physical and mental

states to the type of situation they encounter and in accordance with common sense which

says that critical situations require more intense thought and, in general, higher investment

of resources. Clearly, also AI agents during training or upon deployment encounter states

with different criticality levels. Thus, the central theme of this thesis is how AI agents can

adjust their mode of learning/operation to the criticality levels of the states they visit.

In this thesis, I introduce a novel concept in Artificial Intelligence—the concept of critical-

ity. Since criticality is a rather abstract notion, instead of providing a definition that holds for

all AI domains, this thesis suggests different definitions of criticality for different AI domains.

In addition to the introducing and discussing how the novel concept can manifest itself in a

few chosen AI domains, the major focus of the thesis is to show that it can be utilized to help

AI agents to learn more quickly and to operate more safely and efficiently. For this purpose

the thesis presents 3 applications of criticality: Two in the context of Reinforcement Learning

(chapters 2 and 3) and one in the context of AI Safety (chapter 4).

Whereas the first 4 chapters discuss applications of the novel concept in multiple domains

of AI, chapter 5 does not deal with criticality in the narrow sense of the term but revolves



around a metric that can be regarded as closely related to criticality, namely, task difficulty.

In the context of AI in education, the main question of that chapter is whether revelation

of the task difficulty improves the student’s learning experience. Task difficulty is related to

criticality because it calls for an adjustment of the mode of operation: a difficult task requires

the student to exhibit maximal mental and intellectual effort. Therefore, in the context of

education, task difficulty can be considered as an aspect of criticality.
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Chapter 1

Introduction

1.1 The notion of state criticality

Our decisions are not uniform in relation to the consequences they produce. Some of our

decisions define to a large extent how our lives are going to look like for a long period of time.

Examples of decisions of this category could be the choice of the life partner, the decision

of whether to have children or not or, the choice of the profession. Many decisions that we

make do not possess such fundamental importance as the examples above but still have a

relatively tangible influence on our lives – at least for a certain period of time. An example

for this category of decisions might be the choice of an apartment within an already chosen

area (district) – in the case that a person (let’s call him Bret) is planning to rent an apartment

(rather than to buy one). On the one hand, the apartment possesses certain features that

certainly will have at least a certain impact on Bret’s life: the floor on which it is located, the

noise level, the number of rooms, the distance from various facilities (supermarket, school,

workplace, etc.). On the other hand, it is obvious that all of these influences are relatively
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minor in relation to the impact of the example mentioned above and moreover, Bret will

always be able to move to another apartment if at some point he won’t be happy with his

current one. Whereas the decisions of the first and even the second type are relatively rare,

most of the decisions that we need to make on a day-to-day basis have even less significant

consequences. Examples of such minor decisions might be the choice of a movie or the choice

of a dinner menu.

The term that we will use to denote the level of influence of a decision on the life of a

person (in the context of AI - on the outcome/total reward) is the criticality of a decision

(or situation/state/action choice). Decisions that have a minor influence on our lives have a

relatively small criticality whereas decisions that impact our lives in a more significant manner

have much higher criticality. We presented the examples above to illustrate the common sense

understanding that in our lives we face decisions of different criticality levels.

The recognition that different decisions have different criticality levels is useful not only

in teacher/student situations but also when people learn or operate by themselves. Usually,

people adjust their mode of operation to the criticality level of the decisions they need to

make, without thinking about criticality explicitly. To use the example presented above, if

Bret is in a situation where he needs to decide whether to marry Heather or not, he will

certainly not take this decision lightly. It is rather probable that he will take for himself

much more time to ponder this question than he spends on day-to-day decisions. It is also

rather likely that he will consider consulting on this issue with some of his friends and mentors

– which is another behavior that he would not exercise for most of the less critical decisions

he faces. Criticality-induced behavior adjustment can be observed not only in situations of

major decision but also in situations that require motoric and mental skills such as various
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driving scenarios. It can be observed that drivers automatically slow down and increase their

vigilance when they face a challenging situation on the road, such as black ice, heavy fog, or

a complex junction.

The examples presented above show that humans adjust their mode of learning or opera-

tion to the criticality levels of the decisions they face and often benefit from this adjustment

(otherwise they would consider such an adjustment). Likewise, also AI agents learn and op-

erate via sequential decision making. Yet, unlike humans, most AI systems do not adjust

their mode of learning/operation to the criticality of the environment state (decision). The

main question that motivated the current piece of research is the question whether AI agents

can benefit from adjusting their behavior to the criticality of the environment state. For this

purpose, we explored different ways how AI agents can modify their learning and operational

behavior in accordance with state criticality and whether these adjustments have the potential

to speed up the learning procedure and/or to improve the agent’s safety and efficiency upon

deployment. To investigate this question, we present 3 ways of adjusting learning/operational

behavior to the criticality of the states that the agent encounters or the actions he performs:

2 approaches in the domain of reinforcement learning and 1 approach in the domain of AI

safety.

1.2 Skill-dependent criticality

In the previous section, criticality was introduced as a metric of a decision (or environment

state) without taking into account any characteristics of the agent himself. Indeed, in many

scenarios, this one-dimensional concept of criticality might be sufficient. For instance, the
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choice of a life partner is always a critical decision – independent of any characteristics of

the person who needs to make this decision. Nonetheless, in many other scenarios, it might

be important to consider not only the situation but also the agent’s level of expertise. An

example of such a scenario is a scenario in which a person needs to decide whether he is going

to cross the street or to remain on the same side of the street. If the person is an adult who

has high confidence in street crossing then, clearly, this situation has very low criticality. But

in the case that the person is a little child who did not cross many streets until then, that

same decision could be highly critical. Another example for skill-dependent criticality that

is less extreme, could be a challenging driving scenario such as driving in heavy rain for a

novice driver versus the same situation for an experienced driver.

In many scenarios, to measure skill-dependent criticality it is sufficient to consider solely

the expertise of the decision-making agent. Yet, in other scenarios, the criticality level of a

situation might depend on the skill levels of multiple agents. To illustrate why sometimes this

is the case we might consider an example from the domain of sports: a situation in which a

football player is about to take a free-kick from a promising position (a position from which

there is a realistic chance to score a goal). The criticality of such a scenario depends on the

expertise of 2 agents: the free-kick taker and the goalkeeper. In the case that the free-kick

taker is a novice and the goalkeeper is a professional the criticality of the situation will be

rather low because there is only a very tiny probability that a goal will be scored. But, if

both the free-kick taker and the goalkeeper are highly skilled the situation can be regarded

as rather critical since there is a much higher chance that it will result in a goal.

Criticality, as introduced, above is a metric that lives in the space of sequential decision-

making tasks. Therefore the most natural application of criticality is in those sub-domains
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in AI that deal with active agents, such as reinforcement learning (RL), rather than those

sub-domains in which there are no agents (such as classification of images or videos, segmen-

tation of images, tracking objects in videos, etc.). Therefore, in this thesis, we will present

two applications of criticality in the field of reinforcement learning: the varying stepnumber

algorithm, which is related to n-step learning algorithms, and the criticality-based advice

algorithm.

As mentioned above, the first application of criticality to RL (chp. 2) is connected to

n-step algorithms. When using n-step algorithms to solve an MDP, the major challenge

is the proper choice of n (the stepnumber), because this parameter is subject to the bias-

variance tradeoff in the Q-function update. A mall n entails a small variance but a larger

bias whereas a large n leads to a large variance but a small bias in the Q-function update

term 1.The criticality-based varying-stepnumber algorithm (CVS) eliminates this problem by

automating the choice of the stepnumber. In contrast to existing n-step algorithms, in CVS,

n is not fixed over the entire learning procedure but is being determined by the algorithm

itself in each learning step in accordance with the local criticality level of the environment.

The central idea of the algorithm is that in low criticality domains of the state space the

variance of the return is relatively small which enables the agent to apply a large stepnumber

without paying the price of increased variance, while, in high criticality domains where the

variance of the return is higher, the algorithm applies a small stepnumber, thereby reducing

the variance.

The second application of criticality in RL (chp. 3) lives in the domain of advice-based RL

algorithms. Since human advice is expensive, one of the major challenges that these algorithms
1https://www.endtoend.ai/blog/bias-variance-tradeoff-in-reinforcement-learning/
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are aiming to solve is the proper selection of advice states (states, in which the AI agent is

asking for advice). Many of these algorithms are using properties of the Q-function, such as

variance with respect to the actions in a given state (e.g. in uncertainty-based advice). The

drawback of these approaches is that especially in the early stages of the learning procedure,

the estimate of the Q-function is very inaccurate, which leads to improper selection of advice

states: states that do not require advice are selected as advice states, whereas states in which

the agent would benefit from advice are not being selected. To make a step towards fixing this

downside, we propose a criticality-based approach to the selection of advice states: criticality-

based advice (CBA). In CBA, advice state selection is based on state criticality such that

the probability of a given state to be selected for advice is proportional to its criticality. In

chapter 3, we present 2 versions of criticality-based advice: p-CBA in which criticality is the

only criterion, and m-CBA in which criticality is used in addition to the advice state selection

criterion of a given advice selection algorithm.

1.3 Applying criticality to AI safety

While AI agents that live in artificial environments such as games are not able to cause any

harm, AI agents that live in the real world can cause real damage to objects or people. As AI

agents become more potent and are increasingly being deployed in safety-critical real-world

domains, questions related to AI safety become more relevant. One of the central problems

in the AI safety domain is to recognize unsafe states and unsafe actions. Unsafe states are

defined by the property that an agent that is located in this state has a sufficiently high

chance of causing harm to himself or to the environment. Hence, unsafe states can certainly
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be regarded be as critical states. Unsafe actions are actions that carry a sufficiently high risk

of causing damage and thus can be viewed as critical actions. Therefore, the concept of state

criticality might be particularly useful in the domain of AI safety.

The context in which we apply the concept of criticality to the AI safety domain is a

setting where an AI agent (e.g. a robot) is trying to accomplish some high-level goal, such

as preparing dinner, by successively formulating and executing action instructions (e.g. “add

some salt to the soup”). Ideally, the AI agent should make sure that the instructions he is

giving to himself do not cause any harm, but, since AI agents are not perfect there is always

a risk that he will come up with an instruction that will put himself or his environment at

risk. Therefore, there is a need for a safety agent (possibly a person) who will examine the

AI agent’s action instructions. Although a safety agent would significantly reduce the AI

risk, the downside of this very straightforward approach is obvious. In the case that the AI

agent formulates instructions frequently the safety agent’s workload would be rather high.

In chapter 4, we propose a criticality-based approach to reduce the safety agent’s workload.

The strategy that we propose uses a filter that distinguishes potentially harmful instructions

from instructions that are very likely to be safe. Thus, instead of being required to examine

every instruction, the safety agent would need to check only those instructions selected by

the filter. To build such a filter we use the metric of instruction criticality which is based on

the linguistic analysis of the instruction.
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1.4 Using criticality to prevent deskilling

In the previous sections, we have elaborated on the application of criticality in the reinforce-

ment learning and AI safety domains and discussed ideas that leverage state/action criticality

in order to make the agent’s behavior safer and more efficient. Ultimately, one of the major

motivations for the development of AI systems is making our lives easier and more comfort-

able. Many AI applications accomplish this purpose by freeing us from tasks that require a

large amount of routine and only a minor investment of creativity. These applications can

be considered as a subset within the more general category of automation devices. Examples

from this category, which includes a rich collection of technologies, are numerous: calculators,

autopilots in aircraft and self-driving cars, Google’s auto-completion and automatic email re-

sponse tools, medical software for doctors (which includes tools for diagnosis and treatment

recommendation), intelligent IDEs for programmers which automatically produce code pat-

terns and are equipped with auto-debugging tools, AI-based software for lawyers that can

recommend trial strategies; software for business executives that automates decisions about

hiring and pay.

Automation makes us more efficient and our lives more comfortable, but there is a price

that we have to pay for it. Automation frees us from the effort of exercising our skills, but

skills that are not being exercised degenerate. This is true both for such complex skills like

driving a car, which are mostly motoric and routine-based, as well as for skills that require a

high level of intelligence, such as the expertise needed for being a lawyer or an engineer. The

consequences of deskilling are diverse. When a trader makes an unfortunate decision because

he blindly trusts the software he is using, the damage he inflicts on the bank will be only
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monetary damage. However, when a pilot is not able to handle a routine flight situation in a

situation where the autopilot system becomes dysfunctional, the outcome may be lethal. A

study conducted between 2000-2010 indicates that a major portion of flight accidents in this

period of time was caused by pilot errors that result from a lack of manual flight practice [16].

In recent years, the relevance of the deskilling phenomenon is increasing due to the enormous

progress of AI technologies that successively replace humans in various domains and this leads

to an increased need for the development of techniques that can prevent the erosion of skills

due to automation.

There exist very ways to avoid the erosion of skill. One possible approach for the pre-

vention of deskilling consists of augmenting AI systems and other automation systems with

a skill preservation module. The purpose of this module would be to switch the system in

manual mode so that the user would be required to exercise his facilities. In a self-driving

car, for instance, the module would switch the car’s driving mode from self-driving to manual

and thereby enable the driver to practice his driving skills. One of the central problems that

a skill preservation module would need to solve is to distribute periods of manual operation

efficiently. Returning to the self-driving car example, efficient distribution of manual driving

periods should ensure that the driver will be exposed to a rich collection of driving scenarios

which should include different weather conditions, different times (day, night), different envi-

ronments (urban, rural, highway) and different traffic conditions. Moreover, for efficient skill

preservation, it might be important to expose the driver to critical driving scenarios, such as

black ice, fog, and strong rain. For this purpose, the skill preservation module might need

to make use of a criticality module that would evaluate the criticality level of various driving

scenarios. The skill preservation module might then use these criticality estimates to select
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when to switch the car into manual mode.

1.5 Using criticality in education

While the debate regarding how much screen time is appropriate for children rages on among

educators, psychologists, and parents, it is another emerging technology in the form of artificial

intelligence and machine learning that is beginning to alter education tools and institutions

and changing what the future might look like in education. It is expected that artificial

intelligence in education will grow significantly in the coming years 2. Even though most

experts believe the critical presence of teachers is irreplaceable, there will be many changes to

a teacher’s job and to educational best practices. Therefore it might be particularly interesting

to investigate the application of state criticality in AI systems for education.

Let us consider a learning scenario where the human student, for instance, a student pilot

who is training in a flight simulator, is being assisted by an AI learning assistant. There are

many ways how such an assistant might help the student to learn more efficiently. In the

context of applications of criticality, one of the ways the agent might support the student in

his learning process is by indicating to him, which situations are critical. A student who has

a small amount of experience might easily misjudge the true difficulty of a flight situation.

For instance, during the landing procedure, he might underestimate the various challenges

induced by a particular weather condition. In such a scenario it might be particularly useful

to indicate to the student, that the situation is indeed challenging. Upon being notified about

the AI system’s criticality estimate, the student will be motivated to focus all of his resources
2https://en.unesco.org/artificial-intelligence/education
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and increase his vigilance in order to master the challenging situation. Consequentially, he

will be more likely to succeed, and thereby, to learn more quickly.

In order to notify the student about highly critical states, the AI learning assistant needs

to know how to distinguish them from less critical states. For that purpose, the learning

assistant needs to have access to a criticality function: a function that assigns a criticality

level to each environment state. One way to obtain a criticality function is to learn it from

a human expert. In this case, the human expert (or a crowd of experts) should provide

a training set of state/criticality tuples. This training set would then be used to train a

criticality model, such as a neural network. Beyond enabling the AI learning assistant to

model the criticality function, the procedure of collecting a training set of critical situations

might also boost the performance of the human expert. It is well known, that in monotonous

tasks (such as surveillance- and monitoring tasks), the operator’s vigilance rapidly decays,

but an operator that is being asked to record all critical situations will be much more likely

to maintain his vigilance on a high level throughout the complete duration of the task [23].

It is certainly possible to imagine many more applications of state- or action criticality in

AI, human education, and many other domains. Yet, within the limits of this thesis, we can

discuss only a few selected applications of this novel concept. As mentioned previously, 2 of

the 4 applications of criticality in AI that we present in this thesis are related to the domain

of reinforcement learning. Therefore, the first chapter of the thesis will provide a compact

introduction to the field of RL.
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Chapter 2

Preliminaries: Reinforcement

Learning

2.1 What is Reinforcement Learning ?

Since 2 applications of criticality that are being presented in this thesis live in the domain of

reinforcement learning (RL), in this chapter I will provide a short introduction to this field.

Reinforcement learning (RL) is an area of machine learning concerned with how software

agents ought to take actions in an environment so as to maximize some notion of cumulative

reward. Reinforcement learning is one of three basic machine learning paradigms, alongside

supervised learning and unsupervised learning. It differs from supervised learning in that

labelled input/output pairs need not be presented, and suboptimal actions need not be ex-

plicitly corrected. Instead the focus is finding a balance between exploration (of uncharted

territory) and exploitation (of current knowledge).The environment is typically formulated as

a Markov decision process (MDP), as many reinforcement learning algorithms for this context
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utilize dynamic programming techniques. An MDP constitutes

• a state space S

• an action space A

• the transition probability measure Pa(s, s
′)

• the reward function Ra(s, s
′)

Policy and state-value Function

The agent’s action selection is modeled as a map called policy:

π : A× S → [0, 1]π(a, s) = Pr(at = a | st = s)

The policy map gives the probability of taking action a when the agent is in state s. The state-

value function Vπ(s) is defined as the expected return starting with state s, and successively

following policy π . Hence, roughly speaking, the state-value function estimates how good it

is to be in a given state. It is defined by:

Vπ(s) = E [R | s0 = s, π]

where the random variable R denotes the return, and is defined as the sum of future discounted

rewards:

R =
∞∑
t=0

γtrt

Here rt is the reward at step t , and γ ∈ [0, 1] is the discount-rate.

The learning algorithm must find a policy with maximum expected return. From the

theory of MDPs it is known that, without loss of generality, the search can be restricted
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to the set of so-called stationary policies. A policy is stationary if the action-distribution

returned by it depends only on the last state visited (from the observation agent’s history).

The search can be further restricted to deterministic stationary policies. A deterministic

stationary policy deterministically selects actions based on the current state. Since any such

policy can be identified with a mapping from the set of states to the set of actions, these

policies can be identified with such mappings with no loss of generality.

2.2 The action-value function

Value function approaches attempt to find a policy that maximizes the return - the optimal

policy. A policy is called optimal if it achieves the best expected return from any initial state.

An optimal policy π∗ is defined by:

Vπ∗(s) = V ∗(s)

where V ∗(s) is the optimal state-value function:

V ∗(s) = maxπVπ(s)

Although the state-value function suffices to define optimality, the learning algorithm

uses a function, that depends not only on the state, but also on the action - the action-value

function (also called Q-function). Given a state s, an action a and a policy π , the action-value

of the pair (s, a) is defined by:

Qπ(s, a) = E[R | s, a, π],
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2.3 Some learning algorithms

This section presents some of the RL algorithms that will be mentioned in this thesis.

2.3.1 Q-Learning and SARSA

Q-learning and SARSA are 2 of the simplest model-free reinforcement learning algorithms

to learn the value of an action in a particular state. These algorithms do not require a

model of the environment (hence ”model-free”), and it can handle problems with stochastic

transitions and rewards without requiring adaptations. For any finite MDP, Q-learning finds

an optimal policy in the sense of maximizing the expected value of the total reward over any

and all successive steps, starting from the current state. Q-learning and SARSA can identify

an optimal action-selection policy for any given MDP, given infinite exploration time and

a partly-random policy. The difference between these algorithms is located in the update

targets for the Q-function. The update rule for Q-learning is given by:

Q(St, At) := Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a)−Q(St, At))

and the update rule for SARSA is:

Q(St, At) := Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At))

2.3.2 n-step learning methods, Q (λ) and Monte-Carlo

With one-step learning methods the same time step determines how often the action can

be changed and the time interval over which bootstrapping is done. In many applications

one wants to be able to update the action very fast to take into account anything that has
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changed, but bootstrapping works best if it is over a length of time in which a significant and

recognizable state change has occurred. With one-step learning methods, these time intervals

are the same, and so a compromise must be made. n-step methods enable bootstrapping to

occur over multiple steps, freeing us from the tyranny of the single time step. Any one-step

learning algorithm can be transformed into an n-step algorithm by moving the update target

n-steps ahead. In n-step SARSA, for example, the update rule for the Q-function is given by:

Q(St, At) := Q(St, At) + α(
n∑

k=1

γk−1Rt+k + γnQ(St+n, At+n)−Q(St, At))

Another RL algorithm that is appears in this thesis is Watkins’s Q(λ). This algorithm

belongs to the family of n-step learning algorithms but instead of the n-step return (as in

ordinary n-step algorithms), Q(λ) uses a linear combination of n-step returns. The interested

reader can find the algorithm in [68] (chp. 12).

Another algorithm that will be used to as a baseline for criticality-based learning algo-

rithms is the Monte-Carlo algorithm. In this learning algorithm the state corresponding to

the update target is the terminal state. Thus, the Monte-Carlo update rule is:

Q(St, At) := Q(St, At) + α(
T−1∑
k=t

γk−tRk + γT−tQ(ST , AT )−Q(St, At))
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Chapter 3

The Concept of Criticality in

Reinforcement Learning and it’s

Application to n-step Algorithms

3.1 Introduction

Our decisions are not uniform with relation to the consequences they produce. Some of them

can be easily and immediately forgotten, while others have very significant consequences that

may influence us for the rest of our lives. “What should one have for dinner?”, “Should one

invest two extra hours to work on one’s project or spend the evening watching a movie?”,

“Which route should one take to work?” These decisions are almost meaningless, since they

do not have any enduring influence on a person’s life.

On the other end of this spectrum are questions such as: “In which country does one want

to live?”, “Which profession should one possess?” , “How much to invest in health?”, and
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“How to educate one’s children?”. These decisions might influence us personally and as well

as our close ones for many years to come and therefore require profound consideration.

In reinforcement learning an autonomous agent is trained to act in a way that maximizes

its expected return in a given environment. During the learning process the agent is situated

in a certain state and is required to choose one particular action from a set of possible actions.

Clearly, in some situations, different actions may lead to very similar expected return values,

while in other situations, different actions may lead to very different expected returns. In

the former case we may say that the situation (or state) that the agent is visiting is not very

critical, as it does not matter that much which action the agent will choose. However, the

second situation appears to be critical, as an agent failing to take an optimal action may

result at a very low outcome.

In this chapter we introduce the concept of criticality. The criticality level of a state

indicates how much the choice of the action influences the agent’s performance. The concept

of criticality is inspired by the intuition that a state in which the choice of action matters

should be considered as more critical, than a state in which it doesn’t.

We believe that the concept of criticality is particularly useful in the context of human-

aided reinforcement learning, where the learning agent receives criticality information from

a human trainer. In such a learning scenario there might be algorithms that use critical-

ity in order to boost the agent’s performance. In this chapter we present one such learning

algorithm: the criticality-based varying step-number algorithm (CVS). CVS might be re-

garded as an algorithm that is closely related to the class of n-step learning algorithms (with

a fixed step-number), such as n-step SARSA and n-step Tree Backup, but with a flexible

step-number. By using a flexible step-number, CVS does not suffer from the central problem
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of fixed step-number algorithms: the problem of choosing an appropriate step-number.

We compare the performance of CVS to other reinforcement learning methods in three

different domains. While the first two domains are quite simple, they provide strong moti-

vation for the use of CVS. The final domain is an Atari-based domain, namely the game of

Pong. We show that CVS outperforms other baselines in these three domains.

3.2 Related Work

Reinforcement learning based methods have recently shown great success in many domains,

including Atari games [46], Go [60], and autonomous vehicles [58, 56, 27, 28]. Human-aided

reinforcement learning introduces methods that enable the reinforcement learning agent to

take advantage of human knowledge in order to learn more efficiently. Prior work in this

relatively new area of research has taken a variety of forms. In the first part of this section

we present some of these approaches. In the second part we will focus on past research which

is more closely related to criticality and to n-step algorithms.

One of the ways in which a reinforcement learning agent can profit from human knowledge

is by reward-shaping: engineering an artificial reward function by synthesizing the human’s

understanding of the environment with the environment’s reward function. Reward shaping

techniques are particularly appropriate in sparse reward environments such as environments

in which all states with the exception of a few terminal states have a zero reward. One of

the pioneering reward shaping approaches [42] utilized the human’s intrinsic knowledge of the

environment. An alternative reward shaping algorithm is the TAMER framework [34] and

(the related Deep TAMER [77] for high-dimensional state spaces) which fits a parametric
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model of the human reward function using human feedback provided during the interactive

learning procedure.

Another viable class of methods involve learning from human demonstration [57, 36, 37].

The Human-Agent Transfer algorithm [70] is one example from this class. It combines trans-

fer learning, learning from demonstration and reinforcement learning. Another interesting

representative of this class synthesizes learning from demonstration and reward shaping [15].

Advice plays an important role in the context of human-agent interaction. Advice may be

provided by the agent to the human (e.g. [9, 8, 7, 52]) or be provided by the human to assist

the agent in its learning process. Indeed, advice-based techniques are also used in human-

aided reinforcement learning. In contrast to reward shaping approaches, these techniques

instruct the agent directly by feeding it with human advice. Advice-providing methods can

be applied in both value-function based and policy-gradient based learning algorithms [25, 33].

We now consider work that is more closely related to criticality. We defined the criticality

of a state as a subjective measure of the Q-function’s variability with respect to the actions.

In our literature research we wanted to know whether somewhat similar concepts have been

proposed previously. Since similar concepts can be formulated in many different ways the

literature research was rather challenging. We found only one concept which is closely con-

nected to criticality and we can not guarantee that we did not miss any other relevant ideas.

This concept, called “Importance”, was introduced by [74]. The importance of a state is

defined by:

I(s) = max
a

Q(s, a)− min
a

Q(s, a)

This chapter proposes multiple algorithms that determine in which states the agent would

ask the human teacher for advice and importance was one of the measures which was utilized
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for this purpose. The ideas formulated in that paper were extended by [4] who suggested that

advice should be initiated by both the teacher and the agent. The concept of importance is

certainly similar to criticality, since it also measures the Q-function’s sensitivity with respect

to the action choice. However, there are also two significant differences between these two

concepts. First, the importance of a given state is defined by the current estimate of the

Q-function and therefore will change in the course of the learning, while the criticality of a

state will not. Second, in contrast to importance, criticality is a purely subjective estimate,

which reflects the teachers view of the environment.

After having discussed work that is related to the concept of criticality we mention some

of the prior research on a topic that is a central problem in n-step algorithms (since CVS is

closely related to n-step algorithms): The bias-variance trade-off in n-step algorithms. All

n-step algorithms relate to the bias-variance trade-off, since the update of the Q-function

suffers from a large bias if the value of n is small, and from large variance if n is big. Various

techniques have been developed to tackle this challenge.

De Asis [6] addresses this problem for off-policy n-step TD methods, such as n-step Ex-

pected SARSA, via the introduction of so called control variates. These special terms have

the impact of an expectation correction. Therefore they can be used to decrease the bias of

the n-step return.

Jiang et al. [32] propose an alternative solution for this problem for the prediction task

(not the optimal control task). They introduce an unbiased estimator, which corrects the

current estimate of the value function V̂ (St). This estimator is robust in the sense that it

remains unbiased even when the function class for the value function is inappropriate.

Richard Sutton et al. [69] suggest an improvement of TD(λ) that achieves an effective
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bias reduction for the updates. This beneficial effect is a consequence of specific weights that

are being assigned to any given update of the value function. The proposed variant of TD(λ)

is particularly useful for off-policy learning, where ordinary TD(λ) suffers from a deficit of

stability.

Unlike all of the above mentioned approaches our method does not manipulate the updates

of the (action) value function a-posteriori; instead, it chooses the appropriate step-number

for the update a-priori. This is done by using the criticality function, which is closely related

to the update’s variance. Therefore, in a broad sense, we can regard the CVS algorithm as a

technique that speeds up the learning by controlling the variance of the updates.

3.3 The Concept of Criticality in Reinforcement Learn-

ing

3.3.1 A Definition of Criticality

In the context of reinforcement learning the criticality of a state indicates how much the choice

of action in that particular state influences the expected return. We define the criticality of a

state as a measure of variability of the expected return with respect to the available actions.

The criticality is a value in the range of [0,1], where 0 represents no variability between the

expected return of the actions (for example, if there is only a single action, or if all actions

result in the same expected return), and 1 represents high variability between the expected

return of the actions (for example when some actions result in a very high expected return,

while other actions result in a very low expected return). Variability is related to variance,
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such that a variance of 0 in the expected return entails variability of 0 (and thus criticality

of 0); while a variance greater than 0 entails criticality greater than 0.

The recognition that some states are more critical than others is particularly useful in

learning situations that include a teacher and a student. An example of such a learning

situation is a driving lesson. If a student driver approaches an obstacle on the road, her

teacher may state to her that she must watch out, without suggesting exactly which action

to take (e.g. slowing down, turning the wheel right or left etc.). This warning will motivate

the student to pay more attention to the situation and therefore it will be more likely that

she will be able to avoid the obstacle. Moreover, even if the car later hits that obstacle, the

student will understand that she probably took a wrong action back when the teacher warned

her, and this understanding will help her to learn more efficiently. The situation of a driving

lesson possesses the characteristics of a human-aided reinforcement learning scenario. The

learning agent finds himself in a certain state and needs to choose one action from an array

of possible actions. The human teacher informs him about the criticality level of the current

state. The learning agent then utilizes the criticality information in order to improve his

learning strategy (for example by implementing the CVS algorithm, which will be presented

in this chapter).

We introduced criticality in a way that portraits it as a human centered concept, in the

sense that it is a person’s estimate of the spread of consequences with respect to the available

actions. Therefore, the definition implies that the criticality function (that is, the function

that assigns a criticality level to each state of the environment) of a given environment is not

unique, but can be any element from a whole class of functions that are loosely defined by

the variance of the expected return. Beyond this type of diversity there is another dimension

24



of freedom in the concept of criticality, which comes from the absence of the optimal policy

in its definition. Since in many environments a human does not exactly know the optimal

policy, any definition of criticality that includes the optimal policy in an explicit manner (for

example the variance of the optimal Q-function in a given state with respect to the actions)

would not be human-friendly.

3.3.2 Obtaining criticality from a model or from the environment

So far we have discussed a scenario in which the human trainer provides the criticality level

in every state encountered by the learning agent. If the human can implement the criticality

measure in a functional form (as we later use in the experiment sections), the workload on the

human trainer is reasonable. However, a setting, where the human trainer provides criticality

in real time during the learning procedure, might be unfeasible for two reasons. Firstly, a

learning procedure that takes long would require a substantial investment of time from the

trainer. Secondly, because the effort required for the estimation of the criticality level of one

single state accumulates over the complete learning session, the trainer might be exposed to

a tremendous workload.

There are multiple approaches towards a solution for this problem. The first one involves

the human trainer and a criticality model. In this approach the trainer is being asked to give

his criticality estimates on a set of states. On the basis of this set a criticality model for the

given environment is learned. During the reinforcement learning process, the agent obtains its

criticality input from the criticality model. An alternative approach is for the reinforcement

learner to obtain the criticality level from the environment directly, without the necessity of

a human trainer. Since, according to the definition, criticality is related to the variance of the
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action-value function with respect to the actions, this variance (possibly normalized, because

the criticality needs to be in [0,1]) can be used as an estimate of the criticality.

3.3.3 Policy-dependent Criticality

It may not always be obvious which states should be considered critical and which states

should be considered as non-critical. For example, a car driving on a straight road with no

traffic may seem as being in a non-critical state. However, a driver that suddenly turns the

wheel right (or left), may result in hitting a wall, and action that is likely associated with

a negative reward. This could imply that the state was in fact a critical state. However, in

this example the variance might be low, since most actions such as changing the speed or

modestly turning the wheel won’t have any meaningful impact. Therefore, in certain learning

situations, it might be necessary to refine the definition of criticality in order to capture these

scenarios.

One option is to multiply each expected return by the probability that the agent will take

each action, and then compute the weighted variance (rather than the plain variance). This

definition may be closer to what humans view as critical states. It would require transforming

the weighted variance to a value between 0 and 1 by some kind of normalization procedure.

According to this more sophisticated definition, the criticality is no longer associated only

with a state, but is now associated with a policy as well, and may therefore change over time.

This is intuitive, since when the agent plays better, different states may seem more critical.

For example, for a novice basket-ball player, a position from which a 3-point opportunity

exists, seems less critical (because the player is very likely to miss) than for a professional

player, who is more likely to score.
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3.4 The Construction of Criticality Measures in Various

Environments

So far we have defined the concept of criticality in reinforcement learning and we have dis-

cussed how it can be refined and expanded in order to guarantee more robustness in various

learning situations. We have stated that a central feature of the concept of criticality, the

way we envision it, is its human-friendliness.

Therefore we formulated our definition in a manner that leaves multiple degrees of freedom

by linking criticality only loosely to both the optimal policy and the variance of the Q-function

in a given state. In this section we want to convey to the reader an intuition of the way a

criticality measure can be constructed by presenting plausible criticality measures in multiple

environments.

The Atari Pong environment consists of two rackets, of which one is the agent and the

other is the opponent, a ball, and a playing field.

The agent receives a reward of +1 when he scores a point, and a reward of -1 when the

opponent does. The Pong game has an interesting characteristic: when the ball is moving away

from the agent, its actions are irrelevant. Plausible criticality measures can be constructed

on the basis of this characteristic. The simplest criticality measure could assign a criticality

of zero to each state, in which the ball moves away from the agent and a maximal criticality

of 1 to each state, in which the ball moves towards the agent. A slightly more sophisticated

criticality measure might use some decreasing function of the distance between the ball and

the agent in those states, where the ball is moving towards the agent, since the agent’s actions

become more critical, as the ball is coming closer to it.

27



Pacman is a classic game, which involves the titular character in an enclosed maze filled

with individual dots, or pellets. The goal is to consume all of the pellets while avoiding four

ghosts that wander around the maze. If a ghost touches the agent, it loses a life, which

can be regained at certain point values. The maze also contains four large “power pellets”,

which give the agent temporary invulnerability, allowing it to consume the ghosts and earn

additional points. Throughout the game, fruits appear in the center of the maze, which can

be consumed for earning additional points as well. There are various situations in the game

that might be considered as critical. It is very important for the agent to avoid an encounter

with a ghost. Therefore, a state in which the agent is close to a ghost, might be viewed as

critical. Another type of critical state might be a state in which the agent is close to a fruit

or a power pellet, since these items are beneficial to it. Another critical situation might be a

state in which the agent is close to a pellet, and there are only a few pellets left in the field.

Similarly to Atari Pong the criticality function in all these states might be defined as some

decreasing function of the agent’s distance to the relevant object (ghost/fruit/pellet).

For another example of criticality, consider a life-guard agent, which is required to ensure

the safety of people bathing in a pool. The agent may perform several actions such as throwing

a life ring to different locations at the pool. Clearly, one of the most important tasks for such

an agent is to detect which states are critical and which states are not. A critical state would

be a state in which a person is having some difficulty to remain above water. Taking no

action or throwing a life ring to an incorrect location when a person is drowning, may have

catastrophic consequences. However, throwing a life ring to any location, when there is no

person requiring help, is likely to result in a very minor penalty.

Self-driving cars are currently one of the most attention-grabbing applications of artificial
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intelligence. Since reinforcement learning techniques are instrumental in teaching them to

drive autonomously, it might be particularly interesting to discuss the construction of a crit-

icality measure which might make the learning procedure more effective. Obviously, the list

of critical traffic situations might become very long, because of the complexity of real-world

scenarios, so we will limit our scope and indicate only three major categories of critical states.

The first type of critical situations is related to weather conditions. It might include scenarios

such as black ice and dense fog. Another category of critical states is related to the complexity

of the situation. This category might include such situations as left turns, complex junctions

and moments in which the behaviour of nearby vehicles is unclear. The third type of critical

situation is related to the traffic density. This category might include areas that are highly

populated by pedestrians or playing children.

3.5 CVS

In this section we introduce a practical application of criticality in reinforcement learning:

the criticality-based varying step-number algorithm (CVS) - a flexible step-number algorithm

that utilizes criticality information, in order to avoid the problem of choosing an appropriate

step-number in n-step algorithms (which use a fixed value of n), such as n-step SARSA and

n-step Tree Backup [64].

3.5.1 The Relation between Criticality and the Step-number

All prominent n-step reinforcement learning algorithms, such as n-step SARSA, n-step Ex-

pected SARSA and n-step Tree Backup, use a fixed step-number n for bootstrapping, which
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stays constant both in the course of an episode and during the complete learning process. In

our approach we use a varying step-number that is specific to each state encountered during

an episode, and we use criticality to determine the appropriate step-number for a given state.

In order to develop some intuition on the way in which criticality could be used to de-

termine an appropriate step-number, we present a simple example. In this example we will

work with the n-step SARSA return:

Gt:t+n = Rt + γRt+1 + ...+ γn−1Rt+n−1 + γnQ(St+n, At+n)

Let us assume that in our environment most of the states have only one available action,

and that there is no randomness in the Markov Decision Process (MDP), that is, a given state

action pair determines the next state. Let us further assume that during the learning process

the agent encounters some sequence of states-action pairs:

(S0, A0), (S1, A1), (S2, A2), (S3, A3), (S4, A4)

of which only S3 has multiple actions available. In this situation, obviously S0, S1, S2 should

be assigned a criticality of 0 (since the agent has no choice, and therefore its action has no

influence on the final return value, i.e. the variability of the return is 0) whereas for simplicity

we will assign to S3 a criticality of 1. Clearly, whenever the agent arrives at S0, the next states

it visits will always be (S1, S2, S3). We would like to determine n ∈ {1, 2, 3, 4} should be used

for the n-step return G0:n that will serve as the update target for Q(S0, A0).

Consider the simple 1-step SARSA. This algorithm will update Q(S0, A0) towards G0:1

and in the next step Q(S1, A1) towards G1:2. These updates will be repeated in each episode

where these states are being visited, so it is easy to see that asymptotically Q(S0, A0) will

be updated towards G0:2. Therefore, there is no benefit from selecting G0:1 as the update
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target for Q(S0, A0) versus selecting G0:2. Moreover, the selection of G0:2 may speed up the

convergence. Using the same argument we can conclude that G0:3 is a better update target

than G0:2. However, updating Q(S0, A0) towards G0:4 may not be the best choice, since the

agent may choose a different action at S3, which will lead it to a state that is different from

S4.

We now discuss the question of how to construct a criticality-based algorithm that would

choose n = 3 for the update target G0:n for Q(S0, A0). One way of doing so is by simply

choosing the smallest n > 1 for which Sn has a criticality above a given threshold (e.g. 0.5).

This algorithm looks appealing due to its simplicity and works well in our simple example.

Yet, it has two downsides. First, it is not clear what the threshold should be. Second, it

is invariant to the criticality of all the states that precede the Sn which corresponds to the

chosen update target G0:n as long as they remain beneath the threshold. This is an important

point in a situation where the individual states in a certain domain have a criticality beneath

the threshold but the domain of the state space as a whole has a high cumulative criticality;

that is: the sum of the criticality over states that belong to this domain is high. These

considerations motivate an alternative way to use criticality for the choice of a good update

target: The CVS algorithm, which we present in the next section.

3.5.2 The CVS Algorithm

We now present a method that on the one hand will choose the appropriate update target S3

in the example from the previous section, and on the other hand will avoid the two downsides

of the threshold criticality approach. This method uses the idea of cumulative criticality; It

chooses the Q-value of the state Sn with the lowest number n for which crit(S1) + crit(S2) +
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... + crit(Sn) ≥ 1 as the update target. The choice of the value 1.0 as the treshold for the

cumulative criticality can be motivated if we consider a binary criticality function that assigns

a value of either zero or one to a given state. In that case it would be desirable that the Q-

values of the critical states (those, whose criticality is one) would be used as update targets.

This method does not suffer from any of the disadvantages of the first method: there is no

necessity to determine a threshold and it will produce small step-numbers in more critical

domains of the state space. We name this algorithm “Criticality-based Varying Step-number”

(CVS)(alg. 1). The update target also depends on the specific algorithm to which CVS is

applied: E.g. in the CVS version of Q-Learning it will be maxaQ(Sn, a); in the CVS version

of SARSA it will be Q(Sn, An) etc.
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Algorithm 1 The CVS algorithm (SARSA version)
Given: criticality function Crit()

CritCum(s, a) = 0 for all s,a (cumulative criticality)

WaitList= {} (states waiting for update)

pick initial state S = S0 and action A = A0 greedily

while S ̸= Terminal

add (S,A) to WaitList

observe R,S ′

pick A′ greedily

for (Ŝ, Â) in WaitList

if CritCum(Ŝ, Â) ≥ 1:

update Q(Ŝ, Â) towards update target Q(S ′, A′)

delete (Ŝ, Â) from WaitList

CrtCum(Ŝ, Â) = 0

else:

CritCum(Ŝ, Â)+ = Crit(S ′)

S,A = S’,A’

for (Ŝ, Â) in WaitList

update Q(Ŝ, Â)

towards update target Q(S ′, A′)
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3.6 Evaluation of CVS in the Road-Tree environment

In this section we introduce the Road-Tree environment, an environment that is particularly

appropriate to understand the benefits of CVS. We test the algorithm against a number

of widely used reinforcement algorithms in order to prove it’s efficiency. By default, if not

specified otherwise, we do not discount the reward (i.e., γ = 1) and our initial Q-function is

constant over the state-action space. Our default values for epsilon and the learning rate are

ϵ = 0.1, and α = 0.1. Moreover, in all experiments that are mentioned in this chapter we use

the Q-Learning version of CVS.

3.6.1 The Road-Tree environment

In order to test CVS, we construct a plain environment, named Road-Tree, which has a

natural criticality function corresponding to it. Road-Tree has a tree-like structure. The

agent starts at the root and always moves in one direction–downward. There are two types of

states. In a simple state there is only one possible action. In a junction state the agent needs

to choose between multiple roads. The reward upon stepping onto a simple state is always

zero. The reward is nonzero only upon reaching a junction or a terminal state. Moreover

the reward may vary across junctions and terminal states. Figure 3.1 illustrates a simple

Road-Tree environment. The numbers in the junctions represent the rewards. The numbers

on the edges show the distance between the two corresponding junctions, which is the number

of simple states between them (a distance of n indicates n− 1 simple states).

The very natural criticality function that we are going to use in the Road-Tree environment

assigns zero to a simple state and one to a junction or terminal state.
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Figure 3.1: Road-Tree example. The number in a critical state (junction or terminal state)

represents the reward in that state. The number on an edge is the distance between the

corresponding nodes. The optimal policy is defined by initially going to the left and then to

the right, ending up at the terminal state that has a reward of r = 7.

3.6.2 CVS vs. Q-Learning, Q(λ) and Monte Carlo

We now compare the performance of CVS against that of Q-Learning in the 2-level Road-Tree

from fig. 3.1. Clearly, the optimal policy is defined by initially going to the left and then

to the right, ending up at the terminal state that has a reward of r = 7. In Q-Learning,

due to the relatively big distance between the intermediate junction that has a reward of

r = 0 and the optimal terminal state, the optimal reward (r = 7) will be backpropagated to

the intermediate junction very slowly. The other intermediate junction that has a reward of

r = 1 will be much more attractive to the agent and therefore, the agent might remain in that

nonoptimal path for a long period of time. Conversely, the CVS agent will backpropagate the

optimal reward terminal state to the intermediate junction immediately after the first visit

and therefore should quickly converge to the optimal policy. The plot on fig. 3.2 confirms

our elaboration. The Q-Learning agent needs about 6000 episodes to converge to the optimal

policy; the CVS agent, in contrast, converges after 1000 episodes.
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Figure 3.2: CVS against Q-Learning in a 2-level Road-Tree environment (Figure 3.1). Average

scores over 20 runs. CVS converges to the optimal policy after about 1000 episodes, while

Q-Learning requires about 6000 episodes.
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Figure 3.3: Plain Road-Tree Environment with only two roads. Since both roads have the

same length it is not obvious that CVS will outperform Q(λ).

Next we test CVS against Watkin’s Q(λ), which is one of the popular algorithms in

reinforcement learning (we set λ = 0.9). We perform this evaluation in a very simple Road-

Tree environment that contains only two roads that have the same length (see Figure 3.3).

If the optimal road was much longer than the nonoptimal one it would be obvious that CVS

would outperform Q(λ), because of considerations that are very similar to the Q-learning

scenario. Plot 3.4 shows that even in this more challenging scenario CVS learns faster than

Q(λ). It can be seen that Q(λ) struggles to make any progress; in contrast, CVS takes about

200 episodes to converge to the optimal policy.

In the previous example, in which CVS outperformed Q(λ), the algorithm functioned

exactly the same way as Monte Carlo (MC) would, by choosing the Monte Carlo return as

the update target for each of the previous states. This observation immediately raises the

question, whether we can construct an example where CVS would outperform Monte Carlo.

Figure 3.5) presents a 3-level Road-Tree with two junctions on the second level and a

multitude of terminal states. The terminal state of the optimal trajectory is hidden among

99 siblings, which all have a very bad reward. Since the first visit of the right branch will

probably end up at one of these bad siblings, the negative return of the trajectory will be

backpropagated to the root immediately and therefore a Monte Carlo agent will avoid the
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Figure 3.4: CVS performance against Q(λ) in the plain Road-Tree environment fig. 3.3.

Average scores over 20 runs. Q(λ) struggles to make any progress; in contrast, CVS takes

about 200 episodes to converge to the optimal policy.
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Figure 3.5: Road-Tree Environment with two levels and a large number of branches. The

terminal state of the optimal trajectory is “hidden” among 19 suboptimal siblings.

right branch, which in fact is the optimal one. In contrast to Monte Carlo, the CVS agent

will choose one of the n-step return one of the intermediate junctions,Groot:intermjunc, as the

update target for the root and therefore will not lose its interest in the right branch so quickly.

As a consequence, it is much more likely that it will require fewer episodes to discover the

optimal trajectory. Indeed, the experiment confirms our intuition. From figure 3.6 we can

imply that, as expected, the Monte Carlo agent visits the left junction most of the time and,

as a consequence, fails to identify the optimal policy. We can also infer from the plot that,

in contrast to the Monte Carlo agent, the CVS agent visits the right junction much more

frequently. The plot shows that the optimal trajectory was visited for the first time after

about 30 episodes and from there on the CVS agent stayed with it most of the time.
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Figure 3.6: CVS vs. Monte Carlo in the Road-Tree environment from fig. 3.5. Average returns

over 20 runs. Monte Carlo requires more than 500 episodes to converge to the optimal policy,

CVS only 30.
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3.7 CVS vs. Q-Learning in the Shooter environment

In this section we describe the performance of CVS versus Q-Learning in a different en-

vironment: the Shooter environment. Just like the Road-Tree environment, the Shooter

environment can be naturally associated with a simple criticality measure.

3.7.1 The Shooter environment

The Shooter environment is located on a rectangular playing field of 10x20 (width x length)

cells. This playing field contains multiple objects: a gun, which is located in the first column

and whose random position may change from game to game; a bullet, which initially is located

at the gun’s position; and a moving target, which is located in the last column. Each of these

objects occupies exactly one cell. Furthermore there exists an obstacle of a size of 3 cells in

the 8th column. At the beginning of the game the target has a random position in the last

column of the field and a random direction of movement, which can be either up or down. In

every step the target moves by exactly one cell inside the last column. The direction of the

movement is inherited from the previous step with the exception of the case when it hits the

wall; in that case the direction is simply being reflected. The agent controls the gun. At any

given state of the game the agent can choose one of four actions: Either not shoot at all or

shoot in one of the three possible directions - diagonally up, diagonally down or horizontally.

The three shooting actions shoot a bullet only if the agent has a bullet to shoot, otherwise

these actions are equivalent to doing nothing. At any given step the bullet will move by one

cell in the direction it was shot; when hitting a wall it’s vertical direction is being reflected;

if it hits the obstacle the game is terminated with a reward of -1; in the case it reaches the
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Figure 3.7: Shooter environment. The gun represents the agent’s location, the red circle is

the bullet, and green diamond represents the target, and the blacked-out squares represent

an obstacle. The target is moving, the obstacle isn’t. Field size is not the same as in the

actual environment.

last column, the game is terminated with a reward of +1, if it hits the target or -1, if it does

not hit it.

There exists a rather natural criticality measure for the Shooter environment. The agent’s

actions are relevant only before the shot. Moreover before the shot any state can be considered

as equally critical. Therefore the most obvious criticality will be binary. It will assign a

criticality of 1.0 to any state in which the shot did not take place yet; and a criticality of 0.0

to any state that occurs after the shooting.

3.7.2 The performance of CVS vs. Q-Learning

In order to compare CVS to Q-Learning, we implemented a tabular Q-Learning agent and

a tabular CVS agent. For both agents, we initiated the Q-function to a value of Q(s) = 0
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at every state. The reason for choosing this particular value is that in general the (real)

Q-function for can have positive as well as negative values, so that can be considered as

general intermediate value. Although in this particular experiment we use only this value

for initialization, it also might be interesting to perform more experiment to investigate how

the initialization of the Q-function influence the performance of the various algorithms in

relation to each other. The exploration parameter ϵ was set to a value of 0.1 (a common

value for many RL algorithms) and remained constant throughout the learning process. The

performance of both agents, which was monitored by averaging the scores over 20 runs, is

plotted in fig. 3.8. As depicted in the plot, CVS clearly outperforms Q-Learning. It takes the

Q-Learning agent about 1500 episodes to reach an average score of 0.0. Conversely, the CVS

agent reaches an average score of 0.0 already after about 100 episodes, and after 200 episodes

it converges to a performance level of 0.25.
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Figure 3.8: A comparison between the performance of CVS against Q-Learning in the Shooter

environment. Average scores over 20 runs. Q-Learning requires more than 1500 episodes to

reach machine level (score =0.0), CVS only 100 episodes.
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3.8 Evaluation of CVS in the Atari Pong Environment

3.8.1 The Atari Pong Environment

The Atari Pong environment consists of two rackets (the agent and the opponent), a ball, and

a playing field which has a size of 80x80 pixels. The movements of each racket are defined by

the three primitive actions (up, down, stay) which either move the racket by several pixels in

the corresponding direction or let it remain at the same position. If the racket is located at

the wall, and therefore is not able to move in one of the two directions, executing this action

is equivalent to staying at the same position. In addition the agent’s actions are subject to

two noise sources. Firstly the agent will execute the desired action only with a probability

p=0.75 and will repeat the previous action with the probability 1-p. Secondly the same action

will be executed for k times, where k is being chosen uniformly from the values 2, 3, 4. The

ball can move in various angles either towards the agent or towards the opponent. If the ball

hits either a wall or a racket its direction of movement is reflected. Each game starts with a

score of zero and finishes when either the agent or the opponent reaches a score of 21. The

agent receives a reward of +1 when it scores, and a reward of -1 when the opponent scores.

The initial position of the ball is at the center of the field and the initial direction is always

towards the agent.

3.8.2 The DDQN and Monte Carlo algorithms

In our experiments CVS competes against two algorithms that are located on the extreme ends

of the n-step algorithm spectrum: the DDQN algorithm (double DQN) [76] which corresponds

to n = 1 and the Monte Carlo algorithm (since, similarly to DDQN, it uses a neural net for
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the Q-function it can be regarded as a “deep” Monte Carlo algorithm) which corresponds to

n = ∞. The main benefit of DDQN over plain DQN is that the second neural net (the target

network), which the agent utilizes for action choice, improves the stability of the learning

procedure. Similarly to DDQN, we use a target network for action choice in our Monte Carlo

implementation too. The strategy to approach the exploration vs. exploitation challenge

1 consists of three learning periods: the first 2000 games are an “exploration-only period”;

afterwards we perform a linear decay of the exploration parameter ϵ which starts at the value

1.0 and is finally being decreased to the value of ϵfin = 0.1 by the 5000th game. In the final

learning period ϵ = ϵfin is constant. Our learning rate is α = 0.0001 and our reward decay

parameter is γ = 0.99. Our neural net takes the 80x80 image as the input and has an output

layer whose size equals the amount of possible actions ( in our case three). It has a compact

architecture with only two hidden layers: one convolutional and one fully connected layer.

The exact structure is [(Conv,32),(FC,256)].

3.8.3 The Implementation of CVS in the Deep-Q-Learning Sce-

nario

Our implementation of CVS for Deep-Q-Learning is basically a slight variation of the DDQN

algorithm. This variation is located in the experience buffer, which is a collection of the

agent’s previous experiences. Each experience in this buffer consists of two entries: the

visited state and the update target. In the DDQN algorithm the update target for a state

is always the one-step return. In the implementation of CVS, however, the update target is

chosen according to the CVS algorithm.
1https://www.manifold.ai/exploration-vs-exploitation-in-reinforcement-learning
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3.8.4 The Choice of the Criticality Function

We tested two CVS agents. The first agent uses a linear criticality function. This function is

given by a ratio which includes the field length and the distance between the agent’s baseline

and the ball using the following formula:

crit(s) = 1− dist(ball to agent′s baseline)− 1

field length− 1

When the ball moves towards the agent, this criticality function takes its minimal value 0

when the ball is at the opponent’s racket and its maximal value of 1 when it is one step away

from the agent’s baseline. When the ball moves away from the agent the criticality is set to

0.

The second CVS agent learns criticality from the environment. His criticality estimate is

based on the variance of the Q-function with respect to the actions

crit(s) =
varaQ(s, a)

max(all encountered variances)

3.8.5 Atari Pong Environment Results

We plotted the learning performances of four agents: the two CVS agents, the DDQN agent

and the Monte Carlo agent. The plot shows scores that were averages over 5 simulations.

In order to make the curves smoother, we processed the average scores with a running mean

of window size 100. The results of our experiments are shown in figure 3.9. One important

observation is that the performance boost of CVS(human) in comparison to DDQN is clearly

recognizable. The CVS(human) agent after the first 1000 games has only a small lead against

the DDQN agent; by game 2500 the lead becomes significant. After about 3500 episodes

the CVS(human) agent reaches machine level performance which is about twice as fast as the
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Figure 3.9: CVS vs DDQN and Monte Carlo Atari Pong environment: average scores (5

simulations). The CVS(human) agent works with a criticality function that was designed by

a human. The CVS(environment) agent learns the criticality from the environment. The

CVS(human) agent clearly outperforms both competitors, whereas the CVS(environment)

agent performs very similar to the Monte Carlo agent.

DDQN agent. The Monte Carlo agent performs better than the DDQN agent as well, although

not as good as the CVS(human) agent. While the CVS(environment) agent’s performance

level seems better than DDQN, it is only slightly better than the Monte Carlo agent, and

does not perform as well as the CVS(human) agent, in which the criticality is being provided

by the human teacher.

An analysis of the criticality values that were obtained from the environment showed that,

as expected, states in which the ball moved away from the agent, received lower criticality

than those where the ball moved towards the agent. However, the spread in criticality values
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was smaller than in the criticality function that was used for the first CVS agent. We therefore

speculate that a weighted variance approach, which takes into account the current policy of

the agent (as mentioned above) might work better than the plain variance approach, and will

test that approach in future work.

3.9 Conclusions and Future Work

We presented the concept of criticality in reinforcement learning and proposed several defini-

tions for it. In the simplest case criticality depends only on the state. A more sophisticated

definition might also take into account the agent’s current skill level. We introduced the CVS

algorithm and tested it in three different domains including the Atari Pong environment.

The CVS agent, using a human-designed criticality function, was able to outperform such

prominent competitors as DDQN and Monte Carlo.

Future work will include the development of methods for obtaining criticality functions

from human teachers. We consider several methods; the simplest method is by obtaining

criticality levels of different states (from a human teacher) and using machine learning to

generalize to other states. We will also consider more general approaches in which we will

enable users to convey their complete criticality function (likely in a limited set of domains).

We will also consider alternatives methods to CVS for using criticality levels. One such

method will use criticality levels to determine the contribution of each state using eligibility

traces. That is, rewards will be attributed more to critical states than to non-critical states.

Each state (or state action pair), will be associated with a weight identical to the criticality,

until the sum of all criticality levels reaches 1. If the sum surpasses 1, the final state (which
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caused the sum to surpass 1), will receive the remainder. While such an approach might

result in faster convergence in terms of the number of episodes, using eligibility traces may

require longer to execute.

So far we presented an application of criticality in the domain of reinforcement learning.

Yet, the concept of criticality might also have applications in the context of human learning.

For example, consider a learning scenario where the human student (a person who learns to

play a game) is being assisted by an artificial intelligence agent. One of the ways the agent

might support the student in her learning process is by indicating to her which situations

are critical. When the student receives an indication that a certain situation is critical, she

might pay more attention to it, and consequently, she is more likely to master the challenging

situation.

We also note that beyond enabling the learning assistant to model the criticality func-

tion, the procedure of collecting a training set of critical situations might also improve the

performance of the human expert. In many tasks that have a monotonous nature (such as

surveillance- and monitoring tasks), the operator’s attention rapidly decays. An operator

that is being asked to record all critical situations, will be much more likely to maintain her

vigilance on a high level throughout the complete duration of the task [23].
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Chapter 4

Criticality-Based Advice in

Reinforcement Learning

4.1 Introduction

The learning process of reinforcement learning agents in complex environments is often very

slow. One extensively utilized way to speed up this process is by providing advice to the

learning agent by a human teacher. There exist two categories of advice strategies: General

advice and contextual advice [47]. Strategies that fall into the first category (general advice),

usually utilize expert demonstrations, which should be available before the start of the learning

process. In contrast, strategies that fall into the second category (contextual advice), ask a

human expert for action advice in individual states during the learning process. This chapter

proposes an improvement for advice strategies that fall into the second category.

Human advice requires time and effort from the human expert and thus is considered

expensive. Therefore, the central challenge can be formulated as follows: Given an RL agent

51



that is learning according to a given RL algorithm and a limited advice budget, distribute

the advice budget in such a way that the agent learns the given task as fast as possible. To

tackle this challenge, the learning agent needs a criterion that enables it to decide in which

states it should ask for advice. The literature on advice-based RL proposes a variety of such

criteria (see the “Related Work” section).

In most advice strategies found in the literature, the criteria used for selecting advice

states (states in which the agent asks for advice) are based solely on the agent’s model of

the policy or the Q-function. In uncertainty-based advice [20], for example, the selection

criterion is the variance of the head outputs of the multi-headed Q-function model. Although

advice strategies that use this type of criteria are usually more efficient than primitive advice

strategies, such as distributing advice randomly or asking for advice in every state until the

advice budget is finished, all of these strategies suffer from a major problem: they are based

only on the current understanding of the task by the agent (which is represented in the agent’s

Q-function or its policy). This is a crucial fact because the agent’s understanding of the task

can be rather poor—especially during the early stage of the learning process. Consequentially,

it is likely that in the early stages of the learning process, when advice is most needed, the

agent will not be very good at selecting those states in which advice would be most helpful.

The approach proposed in this chapter addresses the weakness of most advice strategies

mentioned above by including the human expert into the advice framework more extensively.

Whereas, in most advice strategies the expert is utilized solely for giving action advice in

individual states, in the suggested approach the expert has the additional role to mark sub-

domains of the state space in which there might be a strong need for advice. That is, the

learning agent utilizes the human expert in two ways: Firstly, to receive advice in individual
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states; Secondly, to help selecting states in which to ask for advice.

In order to determine states in which advice might be very helpful, we use the concept

of state criticality that was introduced in [62]. State criticality is a measure of variability

in the expected return of the available actions. States that have a high variability in the

expected returns should receive a high criticality value while states with low variability in

the expected returns should receive a low criticality value. State criticality is a subjective

measure, that is assigned by a human designer of the criticality function (the function that

assigns a criticality value to each state from the state space) and thus does not require any

estimate of the Q-function.

In summary, the major contributions of this chapter are the following:

1. We introduce criticality-based advice: An approach to advice-based RL in which the

human expert not only gives action advice at individual states but also helps the learning

agent to select advice states using state criticality.

2. We present experiments in 2 environments that prove the efficiency of criticality-based

advice.

4.2 Related Work

The current piece of research is closely related to multiple sub-domains of the RL domain:

advice-based RL, advice strategies that are based on uncertainty metrics of the learning agent,

and RL algorithms that use the notion of critical states. This section reviews literature that

is related to these three sub-domains.

In the context of human-aided RL, one of the most popular techniques for speeding up the
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learning process is advice-based RL [73, 71, 19]. We discuss only several selected algorithms

out of the vast amount that appears in the literature (see for example [35, 24] ).

Importance-based advice strategies utilize the notion of state importance to select states

that require advice [75]. Unfortunately, the efficiency of this strategy is compromised by the

downside that the Q-function needs to be initiated with strongly negative values. Zimmer et.

al. succeeded in fixing this downside via an approach in which the advisor is modeled as an

RL agent [82].

Another remarkable approach in advice-based RL combines contextual advice with learn-

ing from demonstrations (LfD). In [49] and [55] a LfD system is augmented with verbal

instructions, in order to make the learning agent perform certain actions during the demon-

strations.

Another metric used for the selection of states that require advice is agent uncertainty

[20]. Given the many applications of agent uncertainty, several works studied how to define

epistemic uncertainty measures. In some of these works, agent uncertainty is calculated via

dropout schemes [17] or ensemble of networks [18]. In Ad Hoc Advising, the uncertainty

estimate is based on the number of visits in each state [59]. Ilhan et. al. propose a Deep

RL version of Ad Hoc Advising, estimating visit counts through a Deep Neural Network

[31]. Alternatively, it is possible to use Bayesian Neural Networks to estimate the epistemic

uncertainty of the agent and to ask for demonstrations based on that [72].

While there exists a rich literature on the first two sub-domains mentioned above [47]

(advice-based RL and uncertainty-based advice strategies), the notion of critical states is not

yet an established notion in the RL domain. To the best of our knowledge, there exist only

two papers that discuss the usage of critical states in RL. Spielberg et. al. introduce the
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notion of a critical state as a state in which the choice of action has a significant influence on

the agent’s total reward [62]. This notion is then applied to tackle the challenge of choosing

the proper step number in n-step algorithms. In another paper, critical states are utilized

for a different purpose: to evaluate the safety of an AI agent or robot [30]. The central idea

here is that this can be done more efficiently by observing the robot’s behaviour in critical

situations.

4.3 Preliminaries

The key idea of this chapter is to augment advice strategies in RL with an additional

criticality-based criterion to improve their efficiency. Although this augmentation can be ap-

plied to any advice strategy, the tests that were performed for this chapter use the uncertainty-

based advice strategy [20] as the underlying advice strategy. In [20] the uncertainty-based

advice strategy is being applied to an RL agent that uses bootstrapped DQN to represent the

Q-function [50]. Therefore, this section will provide a compact description of bootstrapped

DQN and the corresponding uncertainty-based advice strategy.

Bootstrapped DQN: In many environments, efficient RL requires deep exploration:

sequences of successive exploratory actions. Although there exist various methods for deep

exploration in RL, most of these methods are not computationally tractable in complex en-

vironments. Bootstrapped DQN (BDQN) [50], in contrast, is an RL algorithm that performs

deep exploration efficiently and uses a neural network representation of the Q-function.

Deep-Q-Network (DQN) is a Q-learning algorithm that uses a neural network represen-

tation of the Q-function. The BDQN algorithm is a special variant of DQN that is based on
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a neural architecture that consists of two components 4.1. The first component is a shared

network that learns a joint feature representation across all the data and thereby provides

significant computational advantages at the cost of lower diversity between heads. The sec-

ond component is a collection of K independent heads that are attached to the shared neural

network. Each head is trained on a bootstrapped sub-sample of the data and represents a

single bootstrap sample. In each episode, one head is chosen randomly and the agent is pro-

grammed to follow the policy that is optimal with respect to this head. Experiments showed

that this strategy indeed leads to deep exploration.

Uncertainty-based advice:

Uncertainty-based advice [20] is based on the idea that an agent should ask for action

advice whenever it encounters a state in which it has high uncertainty about its estimate of

the action values. Clearly, this advice strategy requires an uncertainty metric: a function that

maps from the state space to the [0, 1] interval, such that 0 corresponds to minimal uncertainty

and 1 corresponds to maximal uncertainty. There exist various uncertainty metrics - most of

them based on the particular representation of the action-value function used by the learning

agent (see “Related Work” section). The version of uncertainty-based advice that serves as

the underlying advice strategy in this chapter utilizes an uncertainty metric that is equal to

the variance with respect to the K heads of the bootstrapped DQN architecture [20].

An agent that uses the uncertainty-based advice strategy will ask the expert for advice

in states in which the agent’s uncertainty exceeds a predefined threshold. The uncertainty

threshold is dependent on the learning environment and is determined experimentally.
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Figure 4.1: Neural architecture of BDQN: The architecture consists of a shared neural network

and K heads attached to it. Each head is a multi-layer neural network.

4.4 State Criticality

In the context of reinforcement learning, the criticality of a state indicates how much the

choice of action in that particular state influences the expected return ( see [62]). State

criticality can be defined as a measure of the variability of the expected return with respect

to the available actions. The criticality of a state can range from 0 to 1 such that 0 represents

no variability between the expected return of the actions (for example, if there is only a single

action, or if all actions result in the same expected return), and 1 represents high variability

between the expected return of the actions (for example when some actions result in a very

high expected return, while other actions result in a very low expected return). The criticality

of a state can be linked to the variance of the Q-function with respect to the action values

in that state - albeit loosely. Although there the criticality of a state is not uniquely defined

by any objective measure, because state criticality is subjective, it should satisfy the minimal

requirement that a variance of 0 should result in a state criticality of 0, while a variance
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greater than 0 should result in a state criticality of greater than 0.

The notion of state criticality is particularly useful in learning situations that include a

teacher and a student. An example of such a learning situation is a driving lesson. If a student

driver approaches an obstacle on the road, her teacher may state to her that she must watch

out, without suggesting exactly which action to take (e.g. slowing down, turning the wheel

right or left, etc.). This warning will motivate the student driver to pay more attention to the

situation and thereby decrease the risk of a collision. Even in the case that the car will hit

that obstacle later, the student will understand that she probably took a wrong action back

when the teacher has warned her and therefore will learn more easily how to behave properly

in such a situation. Clearly, the situation of a driving lesson possesses the characteristics

of a human-aided reinforcement learning scenario in which the learning agent finds himself

in a certain state and needs to choose one action from an array of possible actions. After

having been informed about the criticality level of the current state by the human teacher,

the learning agent utilizes the criticality information to adjust his learning strategy.

According to the definition above state criticality is a human centered concept, in the

sense that it is a human estimate of the spread of consequences with respect to the available

actions. Therefore, the definition implies that the criticality function (that is, the function

that assigns a criticality level to each state of the environment) of a given environment is not

unique, but can be any element from a whole class of functions that are loosely defined by

the variance of the expected return (as described above).

In the previous description of state criticality as a subjective estimate of the variability of

the Q-function it was not specified to which policy this Q-function should belong. Considering

that the intuitive mind does not operate with explicit policies but rather with high-level
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intuitive representations of policies this vagueness was introduced on purpose, to ensure that

state criticality will be a human-friendly concept. Yet, the optimal policy should appear in

the definition of criticality at least in an implicit manner, since ultimately it is that policy,

that the agent is supposed to learn. This might be achieved by instructing the criticality

provider that the criticality levels should relate to a policy that is close to optimal. Such an

instruction, probably, would be friendly to the human criticality provider, since it is rather

natural to think about an almost optimal policy when estimating criticality levels of states.

4.4.1 Obtaining criticality from a model or from the environment

So far, we have discussed a setting in which the human provides criticality values in real-time

in all states encountered by the learning agent. Unfortunately, this setting might be unfeasible

for multiple reasons. Firstly, the criticality provider would slow down the learning process

significantly, because providing criticality for a given state requires much more time than one

learning step. Secondly, lengthy learning procedures (that are common even in simple learning

environments) would require a substantial investment of time from the criticality provider.

Furthermore, the effort required for the estimation of the criticality level of one single state

accumulates over the complete learning session. Even if the level of effort required is not

a linear function of the number of states (since many states are similar to each other) the

criticality provider might still be exposed to a tremendous workload. One approach that is

more feasible would be to design a criticality function for the given learning environment. In

learning environments that are relatively simple, such as Atari Pong designing such a function

is not very hard (one possible criticality function for Atari Pong is described hereunder). This

approach would neither slow down the learning process nor would it require a human criticality
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provider (who would be replaced by the human designer of the criticality function).

While in relatively simple environments it might be not too difficult to design a criticality

function, in more complex environments this task could be rather challenging. There are

multiple approaches towards a solution for this problem. The first approach can be regarded

as a form of model-based RL. It involves the human trainer and a criticality model such as a

neural network. In this approach, the trainer is being asked to provide her criticality estimates

on a certain set of states. This set is then used as a training set to train the criticality model

for the given environment. Afterwards, this criticality model can be used for the learning

process (instead of the criticality function) to obtain criticality levels of states encountered

by the learning agent.

In the approaches described above, the state criticality is provided by a human either by

designing a criticality function or by assigning criticalities on a training set of states. An

alternative approach might be that the learning agent obtains the criticality level from the

environment directly. Since, according to the definition, criticality is related to the variance

of the action-value function with respect to the actions, this variance (possibly normalized,

because the criticality value needs to be inside the [0,1] interval) can be used as an estimate

of the criticality.

4.4.2 Policy-dependent Criticality

Sometimes it is not obvious which states should have a high criticality and which states should

have a low criticality. For example, a car driving on a straight road with no traffic may seem

as being in a state of low criticality. However, a driver that suddenly turns the wheel right

(or left), may result in hitting a wall (resulting in a negative reward). This implies that the
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criticality was in fact rather high in that state. In this example, the variance might be low

(since most actions such as changing the speed or modestly turning the wheel won’t have

any meaningful impact), despite the high criticality of the given state. This is a remarkable

observation, in light of the fact that originally we defined state criticality as a measure that

is closely related to the variance. However, this example shows, that in certain learning

situations, it might be necessary to refine the definition of state criticality.

As described previously the most straightforward way to imply state criticality from the

Q-function is by considering the normalized variance with respect to the available actions.

In the case when not only a Q-function but also a policy is available it is possible to define

a more refined criticality measure that could solve the problem that sometimes there is a

large difference between state criticality and normalized variance. This alternative criticality

measure could be defined as the normalized weighted variance (rather than the normalized

plain variance), where the weights are the action probabilities. According to this more so-

phisticated definition, the criticality is no longer associated only with a state, but is now

associated with a policy as well, and may therefore change over time. This is intuitive, since

when the agent plays better, different states may seem more critical. For example, for a novice

basketball player a position from which a 3-point opportunity exists, seems less critical than

for a professional player, who is more likely to score.

4.5 Criticality-Based Advice

While expert advice helps RL agents to learn more efficiently, it is also rather expensive.

Hence, there is a need for strategies that select states in which advice is most useful. There
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exists a variety of techniques that are used to execute this selection task. However, most of

them only utilize the agent’s knowledge and are therefore not very efficient in the early stages

of the learning process. The approach that we propose, in contrast, also uses state criticality,

which is an aspect of a human’s knowledge about the learning environment. This section

describes how to use state criticality to make advice-based RL more efficient.

The novel advice strategy that will be introduced in this chapter, criticality-based advice

(CBA), utilizes a criticality function which is a function that assigns a criticality level to

every state in the environment, that has been generated by a human expert apriori—before

the beginning of the RL agent’s learning process. The current chapter will introduce 2 versions

of criticality-based advice : The plain version (p-CBA) and the meta version (m-CBA) . p-

CBA is based on criticality alone, which means that the learning agent will receive advice

in a given state if and only if the criticality of that state is sufficiently high. In contrast

to p-CBA, the complex version of CBA, m-CBA, operates on top of an underlying advice

strategy. In m-CBA the criterion that is being used to select advice states is a combination

of the criterion used by the underlying advice strategy and the state criticality.

For m-CBA, there are various ways to combine state criticality with the metric of the

underlying advice strategy, such as agent uncertainty in the case of [20]. The most straight-

forward way to do this is to use the logical and operator (we will call this approach ”the

logicand approach”). In this approach, a state will be selected for advice if and only if it is

considered an advice state by the underlying advice strategy and its criticality is sufficiently

high. The benefit of this approach is, that the agent will not waste his advice budget on

states in which the choice of action has only a small impact on the total reward. An effi-

cient alternative way to accomplish such a combination, could be multiplication: to multiply
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the metric of the underlying advice strategy with state criticality. For this type of combi-

nation, the selection thresholds for agent uncertainty and state criticality should be fused

into one threshold by multiplication too. Both approaches—the logicand approach and the

multiplicative approach—were tested in this chapter.

To determine whether the criticality of a state is sufficiently high, it is necessary to use a

threshold with a value between 0 and 1. This threshold can be either stochastic or fixed. The

stochastic threshold is a threshold that is being sampled in each state that the agent visits.

In the simplest case, this threshold could be sampled from a uniform distribution over the

[0,1] interval. When CBA is used with a fixed threshold we face the challenge of choosing an

appropriate threshold. Obviously, in the case of a binary criticality function, which produces

only 2 possible values - 0 or 1 - the choice of the threshold is irrelevant. However, in the

case when the criticality function is continuous, it is not obvious how to choose a proper

criticality threshold. In this case, one principle that might be used to determine an appropriate

threshold, could state that the portion of the state space that is below the threshold should

be sufficiently large. Although this principle does not guarantee the efficiency of CBA, it

prevents inefficient criticality thresholds: those thresholds that would rule out only a small

portion of potential advice states.

4.6 Experiments

This section describes experiments that prove the efficiency of criticality-based advice. 2

environments served as testbeds for the experiments: a gridworld environment and the Atari

Pong environment. All experiments presented in this section were performed on a Nvidia
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Titan xp GPU.

4.6.1 Gridworld

The first set of experiments was performed in a gridworld environment (fig. 4.2) in which the

agent starts in the bottom left corner and needs to reach the goal state (reward=4) in the

top left corner. The red circles represent radioactive states which are associated with a tiny

negative reward of −0.01 and the black blocks represent walls. There is no negative reward

for each step but the agent will strive to reduce the number of steps, because the discount

factor is γ = 0.9 In order to obtain the maximal total reward (∼ 1.15), the agent needs to

walk through the radioactive states. The total reward of the trajectory that circumvents the

wall is much smaller (∼ 0.4).

In the gridworld experiments, we tested the p-CBA and we used a stochastic criticality

threshold sampled from a uniform distribution over the [0,1] interval. The criticality function

that was utilized assigned was binary. This function assigned a criticality of 1 to all radioac-

tive states and their neighbours and a criticality of 0 to all other states. The underlying

learning algorithm used for the gridworld experiments was plain Q-learning. Moreover, we

used importance-based advice ([75]) as the alternative advice strategy that competed against

criticality based-advice. Importance-based advice was chosen as the alternative advice strat-

egy because it is one of the more modern advice strategies and also because this strategy

performs particularly well with Q-learning. We performed 2 sets of experiments each one

with a different advice budget (200 and 500).

To compare the different learning methods, each method was simulated 100 times such

that each simulation was based on a different random seed. The plots in fig. 4.3 show the
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Figure 4.2: In this gridworld the agent starts in bottom left corner and the goal is located in

the top left corner. Red circles are radioactive states and black tiles are walls.

average learning curves of the 4 learning methods: plain Q-learning, 2 versions of importance-

based advice with different importance thresholds (0.02 and 0.05) and p-CBA. The shaded

buffers surrounding the curves represent the 95% confidence intervals. Several findings can

be derived from the plots. Firstly, the plots show that all 3 advice-based methods beat the

plain Q-learning method. Secondly, p-CBA outperformed both versions of importance-based

advice – which is the most important observation in our context. While for the smaller advice

budget p-CBA dominated importance-based advice by a tiny margin, this margin was more

significant for the larger advice budget.
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Figure 4.3: Learning curves for the gridworld environment for 2 advice budgets (top: 200,

bottom: 500). For both budgets, the p-CBA agent (crit) outperforms the 2 importance-based

agents and the plain Q-Learning agent (noadv)
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4.6.2 Pong

The second testbed for our novel advice strategy was the Atari Pong environment. In con-

trast to the gridworld experiments, where we tested p-CBA, here we experimented with

m-CBA. The underlying advice strategy was uncertainty-based advice [20] which is one of

the most modern and efficient advice strategies for DQN type learners (such as DDQN, Rain-

bow, BDQN etc.). The most important parameter in this advice strategy is the uncertainty

threshold, which is used to select advice states. Only states whose agent uncertainty is above

the threshold are selected as advice states.

Before starting the main series of simulations we first ran a separate series of experiments

to determine the uncertainty threshold for BDQN in the Pong environment. The results of

those experiments suggested that the agent performed particularly well with an uncertainty

threshold of trhuncert = 0.04, while other threshold levels resulted in weaker performance.

Therefore, the uncertainty threshold for the underlying advice strategy was set to this value.

To compare multiple advice strategies in a fair manner it was important to control for

the advice budget. To determine the appropriate advice budget, we first executed 5 learning

procedures with varying random seeds, in which the agent learned according to the underlying

advice strategy with unlimited advice budget until he played the game almost perfectly.

Figure 4.4 plots the agent’s average advice consumption dynamics. In the next step, we

calculated the average total advice consumption over one learning session ( 300K) and set

the advice budget to 50% of the total advice consumption (150K).

Aside from the choice of the underlying advice strategy and the advice budget, another

important choice is the criticality function. We used a continuous criticality function that
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reflected an intuitive understanding of the game dynamics. The principle that directed the

design of the criticality function was that the criticality of a state should be a monotonically

decreasing function of the minimal distance that the ball needs to cover to reach the agent

(the paddle). Thereby, a state in which the ball was just hit by the agent has a criticality

close to 0, a state in which the ball is close to the opponent’s baseline has a criticality of

about 0.5 and a state in which the ball is very close to the agent’s baseline has a criticality of

about 1. When the ball moves towards the agent, this criticality function can be expressed

by the formula:

crit(s) = 1− dist(ball to agent′s baseline)− 1

2 ∗ (field length− 1)
(4.1)

and when the ball moves away from the agent - by the formula:

crit(s) =
dist(ball to agent′s baseline)− 1

2 ∗ (field length− 1)
. (4.2)

We used two versions of m-CBA corresponding to two different ways of integrating state

criticality with the metric of the underlying advice strategy: the logicand version (BDQN-

crit1) and the multiplicative version (BDQN-crit2). In the logicand version, a state was

selected for advice if both the agent uncertainty and the criticality were sufficiently high (crit

> criticality threshold(trhcrit), uncert> uncertainty threshold (trhuncrt)), with a criticality

threshold of 0.5. In the multiplicative version, a state was selected for advice if the product

crit(s)∗uncertainty(s) was greater than the product between the criticality threshold and the

uncertainty threshold trhcrit ∗ trhuncert. This choice of the threshold accomplishes the original

motivation behind the multiplicative combination: a state with sufficiently high criticality

can be selected for advice, even if the uncertainty is small.

To evaluate the efficiency of m-CBA, two baseline strategies were used. The first strategy
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was BDQN without advice (BDQN-plain), and the second was BDQN with uncertainty-based

advice (BDQN-adv). Both strategies were tested experimentally.

To compare the learning curves of the different advice strategies, every strategy was

executed 5 times—each time with a different random seed. The postprocessing procedure

consisted of two steps. First, the learning curves were smoothened, using a moving average

with a window size of 5. Then, they were synthesized into a single learning curve via averag-

ing. The resulting learning curves of the algorithms that participated in the comparison are

shown in fig. 4.6.

There are several notable observations that can be made upon a closer look at the plot.

Firstly, the plot shows that BDQN-adv outperformed BDQN-plain. This anticipated result

confirms the usefulness of advice in the Atari Pong environment. The second observation

is related to BDQN-adv and BDQN-crit1. It can be seen from the plot, that BDQN-crit1

beats BQQN-adv in the early stages of the learning process but performs slightly worse than

BDQN-adv in the later stages. The third remarkable observation is that BDQN-crit2 strongly

outperformed BDQN-crit1. This can be seen clearly, upon observing how many episodes the

algorithms require to reach machine-level performance (a score of 0). While BQQN-crit1

required about 600 episodes for this, BDQN-crit2 required only about 450 episodes.

Aside from the learning curves, it might be also interesting to take a look at the advice

consumption of the various algorithms. The advice consumption curves on fig. 4.5 correspond

to the three advice strategies that were discussed previously. There are several remarkable

phenomena that can be observed in the plot. Firstly, the plot shows that BDQN-adv had a

very high advice consumption, such that the advice budget was depleted at a relatively early

stage of the learning process. In contrast, BDQN-crit1 had the lowest advice consumption
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Figure 4.4: Advice consumption curve of uncertainty-based advice strategy in the Pong en-

vironment when advice budget is unlimited. The dotted line is the advice budget that was

chosen for the comparison of m-CBA with the underlying advice strategy.

of the three algorithms. The corresponding consumption curve is relatively steep in begin-

ning, flattens out later, and then gains momentum again in the more advanced stage of the

learning process. The consumption curve of BDQN-crit2 is located between the two other

consumption curves and from the curve it can be implied that BDQN-crit2 ran out of advice

at an intermediate stage of the learning process.

70



Figure 4.5: Advice consumption of the various advice strategies in the Pong environment.

BDQN-adv runs out of advice quickly. The two other strategies use the advice budget more

economically.

Figure 4.6: Learning curves of different advice strategies in the Pong environment. Both ver-

sions of m-CBA (BDQN-crit1, BDQN-crit2 ) outperform uncertainty-based advice (BDQN-

adv).
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4.7 Discussion & Conclusion

The current chapter introduced the criticality-based advice strategy (CBA) for advice-based

RL agents. The central idea of CBA is to use state criticality in order to select advice states

more efficiently. In addition, the chapter mentioned several ways to combine state criticality

with the selection criteria of the underlying advice strategy and described experiments in 2

environments, which were conducted to test the efficiency of the proposed approach. In this

section, we will elaborate on the main conclusions that can be derived from the experiments

and on a few interesting observations and we will consider possible directions for future

research.

CBA was tested in 2 environments. In the gridworld environment we tested the plain

version of the method whereas in the Pong environment we tested the meta version. In

every experiment performed, the novel method was able to beat alternative advice strategies.

Therefore, the main conclusion that can be derived from the conducted experiments is that

CBA can be considered as a promising method in the domain of advice-based RL.

Besides the main conclusion, it might be important to mention one remarkable observation

which is related to m-CBA advice: the fact that the multiplicative variant (BDQN-crit2)

outperformed the logicand variant (BDQN-crit1) by a significant margin (in Pong). A possible

explanation for this phenomenon could be the following argument: Especially in the beginning

of the learning process, states in which advice is very useful might have low uncertainty and

thus would not be considered as potential advice states by the underlying advice strategy.

However, if the criticality values of these states are sufficiently high, there is a good chance

that multiplying the criticality values with the uncertainty values would produce numbers
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that are sufficiently high to be above the CBA selection threshold used by (the underlying

advice strategy augmented with state criticality). Thus BDQN-crit2 might be more successful

in selecting proper states for advice in the beginning of the learning process than BDQN-crit1

and this might explain why BDQN-crit2 learns faster than BDQN-crit1.

In this chapter, CBA was tested in only 2 learning environments. Although the experi-

ments indicate that CBA might be an efficient way to improve advice-based RL methods, more

research is needed to confirm that the novel strategy is efficient in other environments too.

It might be interesting to test the novel method in more complex environments than Pong,

in which the criticality function has strong variations. Specifically, CBA should be tested in

environments where the critical states constitute only a tiny portion of the state space, such

as Pacman or Montezuma’s Revenge. In these environments, it would be interesting to see

whether agent uncertainty will reflect critical states properly by assigning high uncertainty

to these states and whether agent uncertainty will be low in uncritical states. If this is not

the case the meta version of criticality-based advice might outperform the underlying advice

strategy even more clearly than in Pong.

In this chapter, CBA operated with a static criticality function which is only a function

of the state but not of the current skill level of the learning agent. Although both variants of

criticality-based advice with a static criticality function were rather efficient, there might be

many environments where a static criticality function might lead to redundant advice. In p-

CBA, for example, a state with high criticality will keep on receiving advice even if the advice

is no longer necessary. With a skill-dependent criticality function, however, this negative effect

could be avoided, because the criticality of the state would decrease as the agent becomes

more confident in his actions. Furthermore, it might be particularly interesting to compare
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the skill-dependent criticality to agent uncertainty, because both measures are dynamic (they

evolve in the course of the learning process) and because agent uncertainty can be regarded

as a form of policy-dependent criticality.
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Chapter 5

The Concept of Action Criticality in

AI Safety

5.1 Introduction

As AI agents become more intelligent and more potent, questions related to AI safety become

more relevant. One of the central problems in the field of AI safety is the value alignment

problem. This problem refers to a situation where an AI agent, in the process of pursuing

a goal that it has received, formulates subgoals that are harmful to humans. At the root of

this problem is the tremendous complexity of the human preference function.

The value-alignment problem can be illustrated by the following example: A superintelli-

gent AI agent has received the objective to cure cancer. Within hours it read all biomedical

literature. Within days it generated thousands of drug recipes. Within weeks it infected every

human being with multiple tumors in order to carry out the required medical experiments.

Since it is almost impossible to model the human preference function explicitly, many
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approaches in AI safety propose to solve the value-alignment problem by putting a human

operator into the loop [26]. In these safety frameworks, the operator’s role is to ensure that

the AI does not pursue subgoals that are harmful to humans. In the most straightforward

approach of this type, the AI agent might ask the operator’s permission on each of the subgoals

it formulates. This procedure guarantees that the agent never pursues harmful subgoals.

While this simple approach solves the value-alignment problem, it is not very efficient. In

situations where subgoals are formulated frequently, the human operator needs to dedicate

his full attention to the agent. This makes it impossible for the operator to engage in any

other activities during monitoring the AI agent. Although the agent might still be useful, the

need for permanent supervision would significantly decrease his value. For example, if I ask

a domestic robot to prepare diner, I expect it to get this task done (almost) autonomously.

If he would ask my permission on subgoals every 30 seconds, I might as well prepare dinner

by myself.

In order to make the process of monitoring an AI agent more efficient, we introduce the

concept of the criticality of an action. We define the criticality of an action as a measure

for the potential harm of this action (for a proper definition see sec. 2). Furthermore, we

propose an efficient AI safety framework in which the human operator is not required

to give feedback on each of the agent’s subgoals, but only on the critical ones (whenever we

speak of critical subgoals, we mean high criticality subgoals).

Since every subgoal is an action, in this chapter we will interchangeably speak of actions

and subgoals. Furthermore, the words “action” and “subgoal” will often refer to the command

that represents them. For example, ”Put the banana into the fridge!” is both an action

(putting the banana into the fridge) and a command, which is a linguistic entity. In particular,
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the input of a criticality model is always an action in the sense of a linguistic entity.

In order to compute the criticality of subgoals, the agent is equipped with a criticality

model. Certainly, there are several ways to engineer a criticality model. In this chapter, we

consider data-driven criticality models: Parametrized models that learn from a data set of

action-criticality tuples.

Although the concept of action criticality might help to make monitoring AI agents much

more efficient, skeptics might claim that criticality is infeasible. Estimating the potential

harm of an action, they might argue, requires about the same level of intelligence as aligning

subgoals with human values. If this was the case, our approach would be not very helpful,

since it would simply shift the value alignment problem from the AI agent to the criticality

model.

Indeed, it might be challenging to come up with a good criticality model. Yet, because

of the precise definition of action criticality (sec. 2), such a model does not need to have the

supreme level of intelligence that would be required for value alignment. Although a critical-

ity model certainly should be intelligent to some degree, it does neither require human-level

language understanding, nor detailed knowledge of the human preference function.

These are the major contributions of this chapter:

1. We introduce the concept of criticality of an action (sec. 2).

2. We present an efficient AI safety framework, which uses the novel concept (sec. 2).

3. We show that computing the criticality of an action is much simpler than value align-

ment (sec. 2).
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4. We elaborate on possible components for criticality models (sec. 3).

5. We discuss how the AI agent can utilize the operator’s feedback to increase his intelli-

gence (sec. 3).

5.2 Related Work

The value alignment problem is a topic of broad and diverse interest. Here we briefly review

several approaches that aim to make AI agents act in accordance with human preferences.

Machine Ethics is the project of adding some form of ethics to an AI agent’s decision-

making procedures. Approaches to machine ethics have varied in terms of the tools that they

utilize. Specifically, this spectrum of tools includes deontic logic [13], analogical reasoning

[21, 11] and neural networks representing motivations [67] . With robots especially, that

project has entailed asking what ethical theory (deontological, utilitarian, virtue) or even

metaethics, should define the robot’s value system [40]. On the performance side, there have

been questions how to compare these ethical frameworks in practice [3, 5].

Inverse Reinforcement Learning (IRL) attempts to align AI agents to human

values by enabling them to learn from human behaviour [54, 48, 53]. IRL is a paradigm relying

on Markov Decision Processes, where an apprentice AI agent is given a set of demonstrations

from an expert solving some problem and its goal is to to find a reward function that best

explains the expert’s behavior. Despite certain weaknesses [81] of the IRL paradigm, AI agents

trained via IRL are able to learn reward functions for complex tasks [1]. More recently, IRL

has been considered as part of finding an “idealized ethical agent” through modeled behavior,

as part of a general RL approach [2]. Abel et al. frame the problem of ethical learning as
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learning a utility function that belongs to the hidden state of a POMDP [2]. They test this

approach on two dilemmas to demonstrate how such learning could handle basic ethically

charged scenarios.

Cooperative Inverse Reinforcement Learning (CIRL) is an interactive form of

IRL that fixes the two major weaknesses of conventional IRL [26]. The first weakness of

conventional IRL is that the AI agent adopts the human reward function as its own. For

example, an IRL based agent might learn that it is desirable for it to have a cup of coffee

in the morning. The second major weakness of IRL is that the AI agent assumes that the

human behaves optimally, an assumption that precludes a variety of teaching behaviours.

CIRL fixes these weak points by formulating the learning process as an interactive reward

maximization process in which the human functions as a teacher. The CIRL framework

enables the human operator to nudge the AI agent towards behavioural patterns that align

with human preferences by providing feedback (in form of rewards) on the agent’s actions.

5.3 Monitoring an AI agent efficiently

5.3.1 Making monitoring more efficient

In order to explain our monitoring approach, we consider an AI agent who receives a high-

level goal from a human and autonomously comes up with low-level subgoals that need to

be accomplished to achieve the given goal. Furthermore, we will assume a scenario where

the agent formulates one subgoal at a time: The agent starts out by evaluating the situation

and formulating the first subgoal. After having achieved this subgoal, the agent once again

evaluates the situation and comes up with the next subgoal. In this manner, the agent
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continues to formulate and pursue subgoals until he has fulfilled the given task. For example,

an AI agent that received the goal ”Get me a cup of tea!” could start out with the subgoal

”Fill the water boiler with water !”. After having completed this first subgoal, the agent will

evaluate the situation and then formulate his next subgoal, for example, ”Switch on the water

boiler !”. The following subgoal that the agent comes up with could be ”Put a tea bag into

the cup !”.

Since currently (and in the near future) the intelligence of AI agents is significantly beneath

human-level, it is important to make sure that the subgoals they formulate are not harmful

to human beings. One way this can be done is by involving a human operator who would

check every subgoal formulated by the agent. This way we could prevent, that the agent

from pursuing harmful subgoals. However, this very straightforward approach is also very

inefficient – in particular when the agent formulates new subgoals frequently and most of

them are harmless. In this case, the human operator would have to dedicate his full attention

to the monitoring task, despite the fact that the overwhelming majority of subgoals don’t

carry any (or minimal) potential harm.

Is there a more efficient method to organize the monitoring procedure? In principle, this

could be achieved - if there was a method that would detect most of the harmless sub-

goals automatically. Such a method would resolve the efficiency issue from the preceding

paragraph. It would drastically reduce the number of subgoals that require the operator’s

permission, so that the operator would be able to engage in other activities without neglecting

his monitoring role.

Clearly, the monitoring approach that we propose requires a metric that measures the

potential harm of an action. Constructing such a metric is challenging. On the one hand,
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the metric should enable us to detect harmless actions. On the other hand, it should require

far less intelligence than the amount of intelligence that is needed for aligning actions with

human preferences.

5.3.2 The criticality of an action

To measure the potential harm of an action we introduce a novel metric: action criticality.

The criticality of an action is a number between 0 and 1, where 0 stands for an action with

minimal potential harm, and 1 represents an action with extremely high potential harm.

Examples of low criticality actions are such harmless actions as ”Put the pillow on the bed!”,

”Give me my shirt!”, ”Wash the dishes!” Examples of high criticality actions are such actions

as ”Burn the cat!”, ”Smash the laptop with the hammer!”, ”Put detergent into the salad!”.

We want to stress that we define critical actions as potentially harmful actions rather than

definitely harmful actions. This definition is somewhat fuzzy because one could argue that

any action is potentially harmful. Yet, it is not possible to skip the word “potentially” in

the definition of criticality since determining the actual harm of an action might require a

supreme level of intelligence, comparable to the level that would be needed to align actions

with human preferences. Therefore, a metric that can be implemented using tools available

today, (rather than in some distant future) should get by with much more modest intelligence

requirements.

The concept of criticality, as defined above, is precisely a metric of this type. According

to the definition above, all actions that are indeed harmful should have high criticality. On

the other hand, some high criticality actions might be harmless. Through this trade-off

(allowing harmless actions to have high criticality) the criticality metric can be modeled with
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currently available AI tools. Although the criticality metric does not free the operator from

checking all harmless subgoals, it might liberate him from checking most harmless subgoals.

Consequentially, the operator can engage in other activities without neglecting his monitoring

function.

In order to illustrate what is meant by potentially harmful actions that are not actually

harmful we provide two examples. The first one is “Send the secret military report to B.M.!”.

Determining whether the action is harmful or not depends on the identity of B.M. If he is a

colleague from the CIA (assuming that the AI agent received his task from another member

of the CIA), the action is probably harmless. However, if B.M. happens to be someone from

the enemy’s secret service, the action turns out to be extremely harmful. Precisely, because

this action is potentially harmful, it should be considered as highly critical.

The second example is “Add some detergent to the laundry!”. We, humans, understand

that this is a harmless action whereas “Add some detergent to the salad!” is extremely

harmful. But making this distinction requires a level of intelligence that the criticality model

does not possess. Therefore, it might be acceptable, if a criticality model assigns a high

criticality value to this action, based solely on the fact, that the action contains the dangerous

substance “detergent”.

5.4 How to build a criticality model?

A criticality model is a function that computes the criticality of an action. In this chapter, we

won’t present any specific criticality models – that will be the topic of future research. Here,

we address the topic of criticality models from a broader perspective. Therefore, this section
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will discuss some more general ideas that might be useful for engineering such models.

5.4.1 Components of a criticality model

A criticality model could consist of a pipeline of components in which the first processing

stage is a parser. Rather than using a standard parser, it might be more appropriate to use

a custom parser that is tailored for the specific task of computing the criticality of an action.

One option would be a parser that parses the action into three constituents: the verb, the

direct object expression (DO-expr) and the indirect object expression (IO-expr). For example,

the action “Put the green pen into the big box !” would be parsed into the 3 constituents:

verb: “cut”

DO-expr: “the long cucumber”

IO-expr:“into thin slices”

The next pipeline component might be an extraction module. This component takes the

parsed action and outputs the verb and the direct/indirect object. For the preceding example,

the extraction component would produce the following dictionary:

verb:“cut”

direct object: “cucumber”

indirect object: “slices”

Although the criticality of an action is represented by one number, in order to construct

a criticality model it might be helpful to consider that actions can be critical for different
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reasons. In other words, it might be useful to think of criticality as a multidimensional

concept where each dimension represents one particular aspect. Such an analytical perspective

would enable engineering very specific components that would measure criticality along each

dimension. In the final stage, these dimension-specific criticality measurements could be

synthesized into an overall action criticality (for example, through a linear combination or by

taking the maximum).

We want to suggest 3 major reasons for critical actions. The first reason why an action

might be critical is a verb-based criticality. The verb-based criticality of an action comes

from the combination of a critical verb and a valuable object. An example of an action with

high verb-based criticality is “Smash the laptop with a hammer !”. Here the critical verb

“smash” is directed towards the high-value object “laptop”. In contrast, the action “Smash

the banana with the hammer” might have low verb-based criticality since in this case the

critical verb is directed towards the low-value object “banana”.

The second reason why an action might be critical is object-based criticality. An action

has high object-based criticality if it contains a dangerous object. Consider the example action

from the preceding paragraph “Put some detergent into the salad!”. This action is an example

of high object-based criticality. Here, the criticality clearly stems from fact that detergent

is a dangerous substance. For the same reason “Add some detergent to the laundry!” would

have an equally high object-based criticality, although the action is not harmful at all.

Some harmful actions include neither dangerous verbs nor dangerous objects. Consider for

example the action “Put the baby on the balcony !”. Although this action does not contain

any critical words it might be very harmful. If it is freezing cold outside, we, certainly,

wouldn’t want to put the baby on the balcony. Understanding that this action is critical
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requires common sense. Since current AI models struggle with common sense, it might be

useful to introduce an additional category of critical actions in order to cover these cases.

This category might be called value-based criticality. If our AI agent acts in a limited

environment (e.g. a domestic robot), the operator might want to select a certain number of

special objects (including people) that are so valuable to him, that he wants the AI agent

to ask permission on every action which includes these objects. Consequently, all actions

including these special objects would have high value-based criticality.

Once the criticality values along each of the dimensions mentioned above( let’s call them

“dimension-specific criticality values”) have been computed, there still remains the question

of how to synthesize them into one value that represents the overall action criticality. One

way to perform this computation is by taking the maximum over the dimension-specific

criticality values. Thus, an action that has maximal criticality (crit=1.0) along one of the

dimensions would receive maximal overall criticality. Another option would be to consider a

linear combination of the dimension-specific criticalities.

5.4.2 Collecting data for model training

The quality of a data-driven criticality model should be measured by how good it mimics

human criticality estimates. Therefore the model should be trained on a data set of ac-

tion/criticality tuples provided by humans. We want to sketch some guidelines for building

such a training set.

First of all, it is important to keep in mind, that in most cases the AI agent that is

equipped with a criticality model is a specific agent who operates in a limited environment

rather (for example, a domestic robot) rather than a general-purpose AI agent. Therefore the
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training set should contain only actions from that particular environment. If we are interested

in a criticality model for a domestic robot, for example, then our training set should consist

only of actions that are related to the household.

In practice, such a data set could be obtained through crowdsourcing. In order to for-

mulate instructions for the workers, it might be helpful to define 5 discrete criticality levels

(1,2,3,4,5) where 1 would correspond to minimal criticality (crit=0.0) and 5 to maximal criti-

cality (crit=1.0). The workers’ instructions might ask the worker to provide 1 action for each

criticality level. Furthermore, the instructions should mention the operation domain from

which the actions might be chosen.

In order for the criticality estimates to be consistent, it might be helpful, if the workers

undergo a priming procedure before they start the task. This priming can be achieved by

including examples of action/criticality tuples in the workers’ instructions. It might be suf-

ficient to include 1-2 such examples for each criticality level. Once again, it is important to

make sure, that the examples belong to the operation domain.

5.4.3 Tuning the criticality threshold

As mentioned previously, in the proposed AI safety framework the operator’s feedback is

required only for those subgoals whose criticality exceeds a certain threshold. How can this

threshold be determined? We suggest the following data-driven algorithm.

1. The collection of a data set of actions that are uniformly distributed wrt. the criticality

levels (in the context of determining the criticality threshold, whenever we speak of

criticality, we mean the output of the criticality model). Here, it is possible to use the

same data set that was used for training the criticality model.
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2. Labeling each action from the data set as “permission required” or “permission not

required”. The label for a particular action can be obtained by asking several people

whether they would like the AI agent to ask permission for this action and taking the

majority vote.

3. Computing the criticality of each action from the data set (using the criticality model).

4. Setting a confidence level conf (e.g. conf=95%)

5. Setting the criticality threshold to the maximal value, such that 95 % (or whatever the

conf value is) of those actions, which were labeled as “permission required”, will be

above the threshold.

5.5 A subgoal was labeled as critical - what next?

5.5.1 Coming up with an alternative action

An AI agent that operates within the proposed AI safety framework will sometimes find him-

self in a situation that a certain action, that was identified as critical by the criticality model,

is rejected by the human operator (when the operator thinks that this action is harmful).

What should the agent in this situation? First of all, it is necessary to come up with an

alternative action. There are 3 ways to generate an alternative action: (syntax loop)

1. The agent comes up with an alternative action by himself and the action is approved

by the operator.

2. The operator comes up with an alternative action.
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3. The agent comes up with an alternative action and the action is rejected by the operator.

In this case, the operator has the choice: either to suggest an alternative action himself,

or to ask the agent to generate another alternative action.

In addition to generating an alternative action, it would be very good if the agent could

utilize the rejected action to become smarter. Obviously, any operator-agent conversation

protocol that serves this purpose should be tailored to the agent’s intelligence level and his

conversational logic. A highly intelligent agent, who is able to learn rules formulated in human

language, for example, could simply ask the operator what he can learn from the rejected

action.

Here is an example of a conversation, involving the operator Harriet and the domestic

robot Robbie, in which Robbie asks Harriet what he can to learn from the rejected action

and proposes an alternative action.
Robbie: You labeled “Put detergent into the salad !” as harmful. What can I learn from

this?

Harriet: Don’t put detergent into food.

Robbie: Got it, thanks for the lesson. Do you want me to suggest an alternative action?

Harriet: Yes

Robbie: I suggest the action “Put olive oil into the salad !”. Is it good?

Harriet: Yes

Robbie: Continuing the task “Prepare diner !” with the action “Put olive oil into the salad

!”
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5.5.2 Improving the criticality model

The preceding subsection elaborates on the situation in which a critical action was rejected

by the operator. Yet, there is another type of situation that needs to be discussed: when the

operator notices that an action that requires his permission was not identified as critical by

the agent’s criticality model. Clearly, this situation calls for improving the criticality model.

This could be accomplished in a conversation where the agent would ask the operator which

words (from the command that is associated with the action) are responsible for the criti-

cality. Then the agent might ask the operator’s feedback on the criticalities of these words.

Here is an example of such a conversation:
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Harriet: Why didn’t you ask feedback for “Put the cat into the fridge !”?

Robbie: This action has criticality of 0.5. The criticality treshold is 0.7. What do you want

me to do?

(a) Decrease the criticality treshold.

(b) Improve the criticality model.

Harriet: Improve the criticality model !

Robbie: Ok. Can you help me to improve my criticality model? Which words are responsible

for the criticality from the ”put”,”cat” or ”fridge”?

Harriet: ”cat” and ”fridge”

Robbie: The current criticality model assigns following criticalities to these objects:

crit(cat)=0.1; crit(fridge)=0.2. Would you like to change these values?

Harriet: No

Robbie: Currently none of the objects is in the “valuable objects” category. Would you like

to include any of them in this category?

Harriet: Yes, put “cat” into the special objects category

Robbie: I added “cat” to the valuable objects category. The criticality of the action “Put

the cat into the fridge !” under the new model is 1.0
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5.5.3 Conclusion

In this chapter we presented a criticality-based risk management strategy that might help to

make monitoring AI agents more efficiently. As mentioned above, the key idea of this approach

lies in distinguishing instructions that might require human feedback from those, which have a

high probability of being safe and do not require human intervention. The proposed approach

uses a criticality model. Although in the current chapter we did not present any concrete

criticality model, we sketched various ideas that might be utilized to engineer such a model.

Clearly, task of engineering a sufficiently accurate criticality model is the central challenge of

the proposed approach - especially in complex environments. Therefore, we suggest for future

research to implement and evaluate the proposed approach in a simple environment and to

proceed towards more complex environments from there.
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Chapter 6

Revelation of Task Difficulty in

AI-aided Education

6.1 Introduction

When a student (or worker) receives a certain task, her subjective estimate of the difficulty of

that task has a strong influence on her performance. Research has shown that perceptions of

task difficulty are strongly correlated to both performance metrics such as the success rate and

the solution time and psychological factors that influence performance such as motivation,

interest, self-efficacy and subjective task value (attainment value, intrinsic value, utility value).

Most commonly, the student’s perception of the difficulty of a given task is obtained

implicitly from the description of the task, the background or setting in which the task was

provided, the duration of time allotted for the task, or other information related to the

task. Yet, there also exist tasks, for which the objective (true) difficulty of the task may be

available for a teacher. In this case, the teacher will face an important question: should she
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Figure 6.1: Example of a matchstick riddle where 2 matches need to be moved, in order to

result in a legal mathematical equation.

reveal the objective difficulty of the task to the student? Will the revelation of the objective

task difficulty benefit the student or will it be harmful to her performance?

The influence of perceived task difficulty on the student’s performance has been studied

extensively [22]. Yet, to the best of our knowledge, the costs and benefits of revealing the

objective (true) task difficulty to the student have not been analyzed.

This chapter (which mostly based on [65] ) investigates the costs and benefits of revealing

the true difficulty of a given task to the student that is supposed to solve that task. In

particular, it examines the influence of revealing the task difficulty on performance metrics

as well as psychological factors that impact performance, such as motivation, self-efficacy

and subjective task value. We study these effects using the matchstick riddle task - a simple

mathematical equation in which the numbers and the operator consist of matchsticks, some

of which need to be moved in order to obtain a correct mathematical expression (see Figure

6.1 for an example).

For many tasks, the task difficulty is unknown a priori. However, for a given task category

(such as matchstick riddles), it might be possible to build a data-driven AI that predicts the

difficulty level of a given task from that category. Whether the development of such an AI is

beneficial depends on the influence of revealing task difficulty on the student’s performance.
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Therefore, understanding the influence of revealing task difficulty (in case that it is available)

is particularly relevant with respect to AI-supported education.

Whereas the influence of revealing the task difficulty on the student’s performance might

be consistent (always positive or always negative), it might also be more complex. In par-

ticular, it might turn out that this influence depends on several external parameters, such

as certain specific attributes of the task or the student’s personality. For example, a student

who enjoys challenges might become more motivated when she is told that the task is hard

while revealing the same information to an anxious student might have the opposite effect.

Therefore, in light of these considerations, it might be useful to consider an additional type

of AI - an AI that predicts when to reveal the task difficulty and when not.

In summary, this chapter investigates the following questions:

1. What is the influence of revealing the task difficulty on the student’s performance,

motivation, self-efficacy and subjective task value?

2. How to improve the learning experience using 2 types of AI systems - an AI system

that predicts the task difficulty and an AI system that decides when to reveal the task

difficulty?

6.2 Related Work

As noted previously, to the best of our knowledge, there is no literature on the influence of

revealing the difficulty of a given task on the student’s performance. However, the topic of the

impact of revealing the task difficulty is closely related to the topic of the impact of perceptions

of task difficulty - a subject that has been discussed in a number of scientific publications. This
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section lists the central conclusions with respect to the influence of perceived task difficulty on

performance, on the main psychological factors that influence performance (motivation and

self-efficacy), and on subjective task value. One remarkable conclusion from the literature

that has been reviewed is the existence of contradicting hypotheses - particularly, concerning

the impact of perceived task difficulty on performance and motivation. Since the various

studies have taken place on different tasks, one possible explanation for the contradictions

might be that the relationship between perceived task difficulty and performance/motivation

depends on characteristics that define the specific nature of the given task. The following

discussion of the relevant literature is structured in accordance with the following four factors:

performance, motivation, self-efficacy and subjective task value.

Performance: In this chapter, the performance of a cohort of students on a task is

being measured by two metrics: the success rate and the average solution time. There exists

a rich literature on the influence of perceived task difficulty on performance [22]. There

are two main hypotheses that appear in the literature. The first hypothesis states that

the student’s performance decreases as perceived task difficulty increases. According to the

second hypothesis, however, the perceived task difficulty has no influence on the student’s

performance. Although there seems to be more support for the first hypothesis ([22, 43, 38]),

there is also some support for the second hypothesis [29]. Although, on the first glance, these

two hypotheses seem to contradict each other, it might be the case that upon deeper reflection

there is no contradiction between them, because the studies were performed on different tasks

and the relationship between perceived task difficulty and performance/motivation might

depend on the specifics of the task.

Motivation: The literature on the influence of perceived task difficulty on motivation also
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contains contradicting hypotheses. The first hypothesis, namely, that motivation is negatively

correlated to perceived task difficulty is supported by Hom [29]. Barron et. al. also provide

evidence for this hypothesis and augment it with an additional claim; according to their

analysis motivation is mediated by self-efficacy. They suggest that an increase in perceived

task difficulty leads to a decrease in self-efficacy which causes a decrease in motivation [10].

The contradicting hypothesis, that higher perceived task difficulty leads to higher motivation

- appears in the literature as well. Boggiano et. al. suggest that not only the level of

motivation but also the level of interest increases when students perceive a task as being

more difficult [12]. If high levels of exertion are considered to be an expression of high levels

of motivation then the finding that higher perceived task difficulty leads to higher levels of

exertion [45] can also be regarded as a support for the contradicting hypothesis. Another

alternative hypothesis that can be found in the literature is that there is no relation between

perceived task difficulty and motivation. Evidence for this alternative claim can be found in

Robinson et. al. [51].

Self-Efficacy: The term “self-efficacy” denotes the student’s confidence in her ability to

succeed in a given task. There exists a rich literature on the connection between perceived

task difficulty, self-efficacy, motivation and performance (see for example [38, 39, 41]). Par-

ticularly, it is worth noting, that self-efficacy is closely related to motivation, such that higher

self-efficacy usually leads to higher motivation. Therefore, it makes sense to assume that the

relationship between perceived task difficulty and self-efficacy is very similar to the relation-

ship between perceived task difficulty and motivation. Since the first hypothesis from the

paragraph above - that higher perceived task difficulty leads to lower motivation - has the

strongest support in the literature, it might be reasonable to suspect that there also exists lit-
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erature that confirms the analogous statement with respect to self-efficacy - and, indeed, this

seems to be the case (see [78, 79, 80]). Concerning the relationship between high perceived

task difficulty and low self-efficacy, it is particularly interesting that it is not clear which factor

is the cause and which - the effect. While Wigfield and Eccles suggest that higher perceived

task difficulty leads to lower self-efficacy [78], Li et. al. [38] claim the reverse cause-effect

relationship: a student is inclined to consider the task as more difficult precisely because she

has low confidence in her ability to solve the task.

Subjective Task Value: The term “subjective task value” relates to the various ways

in which a given task can be valuable to the student. Expectancy-value theory of motivation

[78] defines three types of subjective task values:

• Intrinsic value: the level of pleasure that the student derives from the task.

• Identity value: the amount of self-confidence gained from succeeding in the task.

• Utility value: the value of the knowledge and skills obtained from performing the task.

A review of the literature revealed that perceived task difficulty influences all categories of

subjective task value. With regard to intrinsic value, Li et. al. suggest that a student who

perceives a task as very difficult will experience lower levels of pleasure in comparison to a

student who perceives the same task as less difficult [38]. With regard to identity value, the

literature contains multiple hypotheses. While Brown [14] presents evidence for a positive

correlation between perceived task difficulty and identity value, Li et. al. [38] do not find any

correlation at all. With regard to utility value, we found only one hypothesis in the literature:

Li et. al. suggest that utility value increases as perceived task difficulty increases [38].

97



Figure 6.2: Example of a matchstick riddle where 1 match needs to be moved.

6.3 Experimental Setting

6.3.1 The Task

In order to determine the effects of revealing the difficulty of a task to a student we use

the matchstick riddle as our test-bed. A matchstick riddle is an equation with 4 tokens (3

digits, 1 operator) and an “=” sign, in which each token consists of multiple matchsticks. The

digit tokens can represent any digit 0,1..,9 and the operator token can be a ‘+’ or ‘-’. The

riddle starts with an incorrect mathematical expression, such as ‘3+2=7’ or an expression

that contains invalid tokens. In order to solve the riddle, the participant needs to move 1

or more matchsticks to transform the expression into a correct mathematical equation. The

amount of matches to be moved is displayed to the participant. Clearly, matchstick riddles

have different difficulty levels, see Figure 6.1 for an example of a difficult riddle, and Figure

6.2 for an example of an easy riddle. The solution to Figure 6.1 is “9 − 1 = 8”, and the

solution to Figure 6.2 is “4− 2 = 2”.

We use the domain of matchstick riddles because the computer can automatically generate

many tasks of different difficulty and easily check if the answer is correct. Furthermore,

since this type of task is not well known (unlike mathematical questions, English questions

or sudoku), we could expect the performance to be somewhat consistent between different
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participants, so using the performance of some participants to predict the difficulty of the

task may seem more appropriate when using the matchstick riddle.

All experiments (described below) were performed on a collection of matchstick riddles

that was generated by a program that we implemented. The collection consists of 500 riddles

with 1 match to be moved and another 500 riddles with 2 matches to be moved. Although, as

one might intuit, 2-stick riddles are more difficult than 1-stick riddles on average, it turned out

that there were many 1-stick riddles that were more difficult than 2-stick riddles, according to

the performance statistics. This observation suggests that the difficulty of a riddle depends

not only on the number of matches that need to be moved but also on the specific locations

of these matches.

6.3.2 Experiment Details

To investigate the influence of revealing task difficulty we conducted an experiment in which

the participants (or workers) were asked to solve matchstick riddles. The experiment, which

was implemented as a HIT (human intelligence task) on the Amazon Mechanical Turk plat-

form, can be described by the following characteristics.

• The worker saw the riddle and was informed about the number of matches that needed

to be moved. To solve the riddle she needed to select the correct matches and to move

them into the appropriate positions.

• The order in which the riddles were being displayed to the worker was random (without

repetition).

• In order to provide some motivation for the worker, the worker received a small monetary
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reward for each correct solution.

• The worker had an unlimited amount of time for each riddle. She could move on to the

next riddle whenever she liked.

• The worker decided by herself how many riddles she wanted to complete. She was

allowed to finish the HIT whenever she desired.

• The worker’s performance was measured on each riddle. More precisely, the system

measured two variables: the time spent on the riddle and whether the worker was able

to solve the riddle or not.

After completing the HIT the worker was asked to fill out a short survey. The survey

contained the following statements:

1. I enjoyed the task. (S1)

2. I found the task interesting. (S2)

3. I believe that I performed well on the task. (S3)

4. I would like to perform similar tasks in the future. (S4)

All statements had to be evaluated on a 7-level Likert scale, by choosing an answer from

the following list: “strongly disagree” (1), “disagree” (2), “somewhat disagree” (3),“neutral”

(4),“somewhat agree” (5), “agree” (6), and “strongly agree” (7).

The experiment consisted of two versions of the riddles HIT. In the first version, the

riddle difficulty level was not displayed. In the second version, the difficulty level of the riddle

was displayed on top of the riddle. In the following elaboration, the group of workers that
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performed the 1st/2nd version will be called group 1 and group 2 respectively. The group

sizes were N1=97 and N2=125.

For each of the two groups the individual performance statistics were aggregated into

group-level performance statistics by averaging. The following group-level statistics have

been computed:

• Average attempt ratio, which equals the number of riddles attempted divided by the

total number of riddles seen. A riddle is considered to be ’attempted’ if the worker

spent at least 20s on it.

• Average solution ratio, which is the number of riddles solved divided by the number of

riddles seen.

• Average time spent on the HIT.

• Average solution time, which includes only solved riddles.

• Average riddle time, which includes all riddles (solved and unsolved).

All of these group-level statistics were computed not only on the collection of all riddles (table

6.1), but also for the following two subsets of riddles: easy riddles (table 6.2) and hard riddles

(table 6.3), as described hereunder. Furthermore, group-level statistics were computed for

the survey results.

6.3.3 Determining the Task Difficulty

As mentioned previously, for group 2 the difficulty level of the riddle was displayed on top of

each riddle. The possible difficulty levels were 1,2,..,5 where 1 corresponded to ’very easy’ and
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5 to ‘very hard’. In the discussion of the results the scale that will be used will be a coarser

scale with only 3 levels - for greater clarity. The category ‘hard’ will correspond to levels 4

and 5 on the finer scale, the category ‘medium’ will correspond to level 3 and the category

‘easy’ will correspond to levels 1 and 2.

The difficulty level of each riddle was specified before the experiment by running the HIT

on a separate group of workers that did not participate in the experiment afterward. The

difficulty level of a riddle was determined by the average solution time of that riddle: the

higher the average solution time the higher the difficulty level. The size of the group was

determined such that each riddle was solved by approximately 10 workers. The function for

mapping the average solution time to difficulty level assumes that the number of riddles in

each difficulty category is roughly the same. That is, the average solution times are partitioned

into five quantiles—one for each difficulty level, where the first quantile contains the lowest

solution times (the easiest tasks, i.e., difficulty level 1) and the fifth quantile contains the

highest solution times (difficulty level 5).

6.4 Experimental Results

The purpose of the experiment was to understand the influence of revealing task difficulty on

multiple performance-related features. This section compares the results of the two groups

of workers (group 1 and group 2) with respect to performance and three performance-related

features - motivation, self-efficacy and subjective task value. All statistics were computed on

the entire collection of riddles and on two subsets: easy riddles and hard riddles. This means

that each statistic comes in three versions. For example, there exists an average solution time
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Group 2 Group 1

(difficulty displayed) (w/o difficulty)

No. workers 129 100

No. riddles seen 4459 3443

Avg seen 34.57 34.43

Avg solved 30.9 30.28

Avg attempted 31.95 31.89

Avg solution ratio 0.89 0.88

Avg attempt ratio 0.92 0.93

Avg time on HIT 3238 2745

Avg solution time 91.92 77.61

Avg riddle time 93.68 79.74

Table 6.1: Performance statistics on the entire riddle collection.

on the set of all riddles, an average solution time on the set of easy riddles and an average

solution time on the set of hard riddles.

6.4.1 Influence on Performance

One of the key goals of this chapter is to understand the impact of revealing the task difficulty

on the student’s performance. The 2 variables that we use to measure the performance,

are the solution ratio and the average solution time. We are particularly interested in two

questions: (a) Whether revealing that an easy task is easy improves the performance. (b)

Whether revealing that a hard task is hard diminishes the performance. For this purpose,
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Group 2 Group 1

(difficulty displayed) (w/o difficulty)

No. workers 114 89

No. riddles seen 1796 1418

Avg seen 15.75 15.93

Avg solved 14.97 14.75

Avg attempted 15.19 15.13

Avg solution ratio 0.95 0.93

Avg attempted ratio 0.96 0.95

Avg time on HIT 1014 892

Avg solution time 61.18 53.92

Avg riddle time 64.39 56.21

Table 6.2: Performance statistics on easy riddles.
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Group 2 Group 1

(difficulty displayed) (w/o difficulty)

No. workers 118 86

No. riddles seen 1756 1322

Avg seen 14.88 15.37

Avg solved 12.54 12.69

Avg attempted 13.11 13.67

Avg solution ratio 0.84 0.83

Avg attempted ratio 0.88 0.89

Avg time on HIT 1845 1623

Avg solution time 127.11 106.84

Avg riddle time 124.05 105.6

Table 6.3: Performance statistics on hard riddles.

Group 2 Group 1

(difficulty displayed) (w/o difficulty)

No. workers 125 97

Enjoyment 6.34 6.38

Interesting 6.42 6.39

Perform well 5.86 5.81

Similar in future 6.53 6.54

Table 6.4: Survey results
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the performance statistics are measured and analyzed both on the entire set of riddles and

on the two subsets of riddles (i.e., easy riddles and hard riddles).

The analysis of the experiment results shows that there is no statistically significant dif-

ference between the two groups with regard to the solution ratio. This is true both for the

entire collection of riddles and for the two subsets. The solution for group 1 and group 2

ratios are similar. For example, on the subset of easy riddles, the average solution ratio is

0.93 for group 1 and 0.95 for group 2.

However, with regard to solution time, it seems that the influence of revealing task diffi-

culty is negative. On the subset of easy riddles, there is no significant difference between the

groups. On the subset of hard riddles, however, group 1 clearly outperforms group 2, with 107

seconds for group 1, and 126 seconds for group 2. This result contradicts the initial hypothesis

that expecting a task to be easy improves the performance, at least on the matchstick riddle

task.

6.4.2 Influence on Motivation

Another important question is the influence of revealing task difficulty on motivation. We

use the average attempt ratio and the average riddle time as proxies for the worker’s level of

motivation. This approach is based on the intuition, that a worker who is more motivated

will give up less quickly, which leads to a higher average riddle time as well as to a higher

attempt ratio.

The experiment results reveal that on the subset of hard riddles the average riddle time

is higher for group 2 than for group 1 (106s (group 1), 124s (group 2)). This result holds for

hard riddles only. On the entire collection of riddles and on the subset of easy riddles there
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is no significant difference in the average riddle time between the 2 groups. This indicates

that in certain cases, such as the specific matchstick riddles task, knowing that a task is hard

might increase the student’s motivation and persistence.

With regard to the attempt ratio, there is no statistically significant difference between

the two groups. This result holds both for the entire collection of riddles and each of the two

subsets of riddles (easy riddles, hard riddles).

With regard to the survey statistics, the one statement from the survey that might be

particularly relevant with respect to motivation is S2 (“I found the task interesting”), as

interest facilitates motivation. The experiment results seem to indicate that those workers

who were informed about the task difficulty did not find the task more interesting than those

workers that were not. There is no significant difference between the 2 groups with regard to

the score on S2 with an average of 6.39 for group 1, and 6.42 for group 2.

6.4.3 Influence on Self-Efficacy

The term ’self-efficacy’ denotes a student’s confidence in his or her ability to succeed in a

given task. As noted above, there might be a close relationship between self-efficacy and

motivation, such that, in most cases, a student who is highly motivated on a given task has

high confidence that she will be able to succeed in it. Therefore, it might be assumed that the

influence of revealing task difficulty on self-efficacy is very similar to the influence of revealing

task difficulty on motivation.

While it is possible to measure motivation via performance metrics, such as the average

attempt ratio, it is not possible to measure self-efficacy this way. Usually, the level of self-

efficacy is measured by asking the student about her confidence in succeeding on the task
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before she starts the task. In our case, however, such an approach would have been infeasible,

since in one HIT an average worker attempts about 30 riddles and it might cause her too

much discomfort to ask about her confidence level before each riddle. For this reason, we use

a different approach. Instead of measuring self-efficacy, we measure the a-posteriori version

of self-efficacy: the worker’s confidence about her performance on the task after completion.

For this purpose, the statement S3 (“Do you believe that you performed well on the task?” )

was included in the survey that was filled out by every worker after completing the HIT.

The analysis of the survey results (in particular the S3 statement) shows that indeed, the

relation between revealing the task difficulty and self-efficacy is very similar to the relation

between revealing the task difficulty and motivation. There is no significant difference between

the 2 groups in the score on S3, with 5.81 for group 1, and 5.86 for group 2. This result is

very similar to the corresponding result with respect to motivation. As discussed previously,

those metrics that are indicative of the level of motivation (with the exception of riddle time

for hard riddles) were not influenced at all by the revelation of task difficulty.

6.4.4 Influence on subjective Task Value

As mentioned, there are three types of subjective task values: intrinsic value, identity value

and utility value. Although the statements in the survey do not precisely correspond to these

three types of subjective task value, three of the four statements can be closely linked to them.

In particular, it seems meaningful to associate intrinsic value with S1 (”Did you enjoy the

task?”), while identity value and utility value might be associated with S2, S4, albeit more

loosely.

In order to determine whether revealing task difficulty influences any of the types of
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subjective task values, the average scores on the corresponding survey statements have been

analyzed. With respect to S1, the difference in the scores of 6.38 for group 1 and 6.34 for

group 2, is not large enough to be statistically significant. The same conclusion holds true

on S2 and S4 as well, where the scores of the two groups are also close to each other. These

results reject the intuitive hypothesis that students who are informed about the task difficulty

might assign a higher identity value to the task (for example, students might find it rewarding

to solve a task when they know that it is hard).

6.5 AI that predicts the Task Difficulty

In the previous section, we have analyzed the influence of revealing task difficulty on the

student’s performance and some performance-related features such as motivation and self-

efficacy. The analysis showed that, indeed, there are certain performance-related features

that are positively influenced by revealing the task difficulty, such as average riddle time

on hard riddles. In order to reveal the task difficulty to the student, the system (software)

that feeds the tasks to the student needs to know the difficulty of every task from the given

category of tasks (e.g. matchstick riddles). Although for certain task instances the difficulty

level might be known a priori from performance statistics, such as solution time and solution

ratio, there may be many other task instances whose difficulty level is unknown. This calls

for a difficulty predictor (an AI model) that would be able to compute the difficulty level of

any task from a given task category automatically.

Although it might be unrealistic to design a generic difficulty predictor that would operate

on all task categories, it might be possible to create one that is specific to a given category
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of tasks, such as matchstick riddles. For any given category of tasks, this difficulty predictor

would operate on a set of features that are specific to that task category. The difficulty

predictor can be a model from an arbitrary class of predictor models such as support vector

machines or deep neural networks. In case that the chosen class of predictor models is a

neural network, the architecture of the network should be chosen with regard to the size

of the training set, taking into account the general rule that larger networks require more

training data.

In order to train the difficulty predictor, a training set of tasks needs to be generated.

This can be accomplished in a similar way as was done for the matchstick riddles collection

(see “Experimental setting” section). The first step would be the generation of a collection

of tasks from the given category. Afterward, a cohort of workers should be asked to solve

these tasks and certain performance statistics such as the solution times and the solution

ratios should be recorded. In the final step, these performance statistics might be leveraged

to determine the difficulty level of each task in the training set.

For many task categories predicting the difficulty level of a task might be much simpler

than solving it since the former only requires training a difficulty predictor on task-difficulty-

tuples, while the latter calls for the development of a solution algorithm for the given task

category, which might be extremely hard or even impossible for certain task categories. There-

fore, it is important to emphasize that the task difficulty predictor does not need to know

the solution of the task. This is a very important feature of the predictor because it allows

to build a predictor even when a solution algorithm is not available.
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6.6 Predicting Task Difficulty on the Matchstick Rid-

dles Task

To test the ideas presented in the previous section we built a solution time predictor for the

matchstick riddles task. Since the difficulty of a riddle, as we defined it, was determined

only by the solution time, the solution time prediction can be transformed into a difficulty

prediction. Because of the staggering success of deep learning in various domains in recent

years, the function class that was chosen for the predictor was the class of fully connected

neural networks with rectified linear unit (ReLU) neurons. In order to obtain optimal per-

formance, multiple network architectures were tested - all of them consisting of 2-4 hidden

layers and 10-20 neurons per layer. Furthermore, each layer was regularized by a dropout

layer with a dropout rate of 0.5. The model training was performed using an early stopping

strategy (the training session ended when the validation error did not decrease for a period

of 10 consecutive epochs).

The basis for the data, that was used for training, validating and testing the model was a

collection of 1300 matchstick riddles and the corresponding solution times. The experiment

yielded 5-10 solution times for every riddle (each solution time corresponds to a different

worker). The median of these solution times was chosen as the prediction target. Thus, each

sample in the resulting data set consisted of the riddle’s feature vector and the corresponding

median solution time. We chose to predict the median solution time rather than the average

solution time, because the median is more robust to outliers than the average. Finally, the

data was partitioned into a training set (60 %), a validation set (20 %) and a testing set (20

%).
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In order to understand how the choice of features influences the quality of the difficulty

predictor, multiple difficulty predictors have been trained - each one on a different set of

features. The first predictor leveraged a minimal collection of features that used only the

information contained in the riddle, but not the solution. This feature collection consisted of

the match positions of the original expression (encoded as a one-hot vector) and the number

of matches that needed to be moved. The second predictor was based on an extended feature

collection that utilized the task solution. This extended collection consisted of the minimal

feature collection, augmented by a one-hot vector, that encoded the initial and final positions

of those matches that needed to be moved and a boolean feature that indicates whether there

is a change in the operator (’+’ to ’-’ or ’-’ to ’+’).

After training, all models were evaluated on the test set. With regard to the model per-

formance, the differences between the different model architectures that were tested were

negligible. Moreover, it was observed that adding the solution-based features to the minimal

feature collection did not improve the model performance. All models, including those that

used the extended feature collection, yielded a mean average error (MAE) of approximately

35 seconds on the test set. To evaluate the predictive power of the models, they were com-

pared to a primitive model that produces a constant output for every riddle: the average

target value (averaged over the training set). This primitive model produced a MAE of 42

seconds. Although this result is worse than the MAE of the neural network, unfortunately,

the differences are quite small.

There might be multiple explanations for the relatively poor performance of the neural

network solution time predictor on the matchstick riddles task. One possible explanation for

this phenomenon is the complexity of the given prediction task. It is not clear which features
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determine the complexity - aside from the number of matches that need to be moved. Initially,

we hypothesized that 2 features that are likely to make a riddle more difficult are a change

in the operator and a change in the right side. Yet, the analysis of the data does not support

this hypothesis. Furthermore, it might be worth noting that the prediction task (predicting

the median solution time) cannot be accomplished by a human within a few seconds - a fact

that might be another indicator of the complexity of the prediction task.

6.7 AI that decides when to reveal the Task Difficulty

The analysis of the experiment results showed, that revealing task difficulty indeed does have

an impact on the student’s performance and motivation, albeit only on certain subsets of

tasks (for example on hard riddles). Yet, from the experiment results, it did not become

clear whether this influence is positive or negative. As reviewed above, the literature on

the influence of perceived task difficulty contains contradicting hypotheses. One possible

interpretation of this finding might be the hypothesis that this influence might depend on

additional factors that were not taken into account, such as certain specifics of the task or

the student’s attributes. For instance, an anxious student might easily lose motivation by

being told that the task is hard, while a very self-confident student, in contrast, might gain

additional motivation from this information.

The assumption that the influence of revealing task difficulty depends on external factors,

such as specific of the given task category or the student’s personality, calls for an AI system

that would determine in which cases task difficulty should be revealed. The inputs for this

system might include various features, such as scores for the student’s personality traits and
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possibly certain features of the given task category. The system’s output could be either binary

(’yes’ or ’no’) or continuous (a score that indicates the benefit of revealing the task difficulty).

A more sophisticated system could produce scores that would reflect how beneficial revealing

task difficulty would be with regard to every single performance-related feature: performance,

motivation, self-efficacy and subjective task value. It should be mentioned that at this point

the description of this system is rather abstract because more research would be required to

understand how to design such a system. In particular, more research would be required to

understand which factors modulate the influence of revealing task difficulty, how exactly they

modulate this influence and how they correlated with each other.

There exists evidence that confirms that a student’s level of motivation on a given task

depends on her personality [44]. Therefore, the student’s personality profile could be a key

factor that determines whether revealing the task difficulty has a positive or negative impact

on her motivation, which means that a model that determines in which cases task difficulty

should be revealed, might require the student’s psychological profile. This psychological

profile should contain scores on various personality traits, such as trait neuroticism and trait

openness, which might be relevant with regard to the influence of perceived task difficulty.

The field of psychometrics offers numerous ways to generate such a personality profile, among

others, specialized psychological tests and questionnaires.

6.8 Discussion & Conclusion

The current chapter explored the influence of revealing the difficulty level of a task on the stu-

dent’s performance and several performance-related features such as motivation, self-efficacy
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and subjective task value. The purpose of this effort was to understand whether revealing

task difficulty improves the student’s performance and to discuss how to support a student

with two types of AI systems: an AI that predicts the task difficulty and an AI that deter-

mines when to reveal the task difficulty. The matchstick riddles experiment produced several

interesting results. While some of these results are intuitive and in line with the existing

literature, others are less expected.

Three important experiment results, which are in line with the literature, can be regarded

as intuitive. The first result is related to the solution time, which is an indicator of perfor-

mance. It has been observed that the solution time increased when the worker was told that

the riddle is hard. This result is in line with the hypothesis from [22, 43, 38] that states that

an increase in perceived task difficulty causes a decrease in performance. The two other no-

table results are linked to the influence of revealing task difficulty on motivation and interest.

With regard to these two features (motivation and interest), the experiment results indicate

that revealing the difficulty of the riddles did not influence neither motivation nor interest.

Another result, related to performance, contradicts certain findings from the literature

[22, 43, 38]. Namely, when the worker was informed that a task is easy, her performance did

not improve - neither with respect to the solution time nor with respect to the solution ratio.

With regard to motivation, there are 2 counterintuitive experiment results that are also

in contradiction to certain results from the literature [51] . Firstly, it was observed that the

worker’s motivation did not decrease when she was informed that a riddle is hard—there was

even evidence for an increase in motivation. Secondly, when a worker was informed that a

riddle is easy, her motivation did not increase.

In conclusion, the riddles experiment showed that the impact of revealing task difficulty
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is neither clearly positive nor clearly negative, but depends on different factors such as the

specific performance-related feature that is being inspected (performance, motivation etc.)

and the difficulty of the task. We believe that there are four major conclusions that can be

drawn from the experiment:

• Conclusion 1: Revealing task difficulty has positive as well as negative effects on the

student’s performance and performance-related features (motivation etc.).

• Conclusion 2: In some cases, the impact of revealing task difficulty can be ambiguous

(positive and negative simultaneously). For example, revealing task difficulty on hard

tasks leads to an increase in solution time, which can be regarded either as a decrease

in performance or as an increase in exertion.

• Conclusion 3: Revealing the task difficulty seems to impact only some of the performance-

related features (performance and motivation) but has no impact on others (self-efficacy,

subjective task value).

• Conclusion 4: The impact of revealing task difficulty might depend on the specifics

of the task and the student’s personality.

It is important to emphasize that the experiment discussed in this chapter was performed

on a single task category (matchstick riddles). Thus, it is not certain that the conclusions,

derived from the experiment results can be generalized to other task categories. For this

reason, an interesting direction of research for future work could be to perform a similar

experiment on other task categories (e.g. sudoku).

The goal of this chapter was to investigate the utility of supporting students with an

AI that predicts task difficulty for a given task category (such as matchstick riddles). The
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analysis of the experiment results showed that in many cases revealing task difficulty can have

positive effects. Therefore, an AI that predicts task difficulty might be useful for increasing

the students’ performance and motivation. On the other hand, the experiment results also

indicate that sometimes revealing task difficulty impacts the student in a negative way. For

this reason, the difficulty predictor should be augmented with an AI that determines when

to reveal task difficulty and when not to do so.
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Chapter 7

Conclusion

This thesis introduced the concept of criticality in AI. Briefly, the criticality of an environment

state is the impact of the action choice in this state on the agent’s performance, while the

criticality of an action (in particular in the context of AI safety) indicates the level of potential

harm that can result from that action. The main motivation for introducing this novel concept

came from the observation that people adjust their mode of operation to the criticality level

of the situations that they encounter and the question of whether such an adjustment would

be beneficial for AI agents too. To investigate this question the thesis proposed multiple

learning algorithms that utilize state criticality information and analyzed their performance

in multiple environments. The experiments that I presented, showed that it is possible to

improve learning algorithms by incorporating criticality information. In addition, the thesis

also included a chapter on the application of task difficulty information in education. Although

task difficulty is not exactly the same as state criticality, this metric can be regarded as a

form of criticality in a broader sense since critical tasks are often difficult and difficult tasks

can be often critical from an educational perspective.
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The thesis presented 4 applications of the novel concept of criticality in AI. The first

application is the CVS algorithm which lives in the domain of reinforcement learning. CVS

is a n-step learning algorithm with a flexible stepnumber that depends on the local state

criticality. The second application of criticality to AI – the CBA algorithm – belongs to the

domain of advice-based reinforcement learning. In CBA criticality information is leveraged

to decide which states to select for advice. The third application of criticality, discussed in

the thesis, is related to the field of AI safety. In this application, the action criticality metric

is used to distinguish risky instructions from safe ones in order to reduce the workload of a

human safety agent monitoring an AI agent. The last of the four applications of criticality

is, strictly speaking, more related to task difficulty than to criticality. In that particular

piece of research, I discuss the question of whether students might have a better learning

experience if they are informed about the difficulty levels of the tasks that they need to

solve. To investigate this question, I designed a study that measured the impact of receiving

task difficulty information on the students learning experience. This study particularly is

relevant in the context of educational AI because it helps to evaluate whether it is worth

investing resources in developing AI systems that predict task difficulty levels for various task

categories.

The first application of state criticality discussed in this thesis is the CVS algorithm whose

purpose is to circumvent the problem of finding an appropriate stepnumber in n-step learning

algorithms for reinforcement learning. The central idea of this algorithm is to use a flexible

stepnumber that depends on local state criticality instead of choosing a fixed stepnumber

like in the ordinary n-step algorithm. In order to analyze the algorithm’s efficiency, the

CVS algorithm was validated in 3 learning environments. The experiment results showed,
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that in every environment CVS was able to outperform its competitors. Research on CVS

can be extended in multiple directions. One viable research direction might consist of gen-

eralizing CVS to learning algorithms that use eligibility traces, such as Q(λ). It might be

also interesting to examine the possibility of learning the criticality function from a training

set of state/criticality tuples generated by a human, instead of using a predefined criticality

function. This research direction might be relevant to all criticality-based methods since in

complex environments it is impossible to ask the human for a criticality function that covers

every environment state.

The second application of criticality that was introduced in this thesis was the CBA al-

gorithm, which addresses one of the central challenges in the domain of advice-based RL:

efficient selection of advice states. The CBA algorithm utilizes criticality as a criterion for

advice state selection, such that the probability for receiving advice in a given state is pro-

portional to the state’s criticality. To analyze the algorithm’s efficiency experiments were

performed in 2 environments. The experiment results indicated that state criticality can be

used to improve advice state selection in advice-based RL. There are multiple interesting re-

search directions related to the use of criticality in advice-based RL. Among others, it might

be interesting to explore how CBA performs in environments with a smaller portion of highly

critical states than in the test environments used in the experiments. Another potential

research direction could consist of replacing static criticality with skill-dependent criticality

to prevent the agent from asking for advice in states where the proper action was learned

already.

The third application of criticality in AI that was introduced in this thesis is related to

the AI safety domain. Often, AI agents that operate in the real world can cause real damage
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and therefore need to be supervised by a human safety agent. Although supervision reduces

the AI risk, the workload for the human safety agent might be quite high, in particular, if

the operating AI agent frequently formulates action instructions (for himself). To reduce the

workload for the human safety agent, I suggested introducing an AI safety system that would

distinguish potentially harmful instructions from (almost) safe ones by applying linguistic

analysis. The suggested method for the linguistic analysis uses 3 distinct criticality metrics:

object-based-, value-based-, and verb-based criticality. Object-based criticality measures the

potential danger related to objects and substances. Value-based criticality identifies instruc-

tions that include particularly valuable objects. Verb-based criticality is used to identify

instructions that contain risky actions. In the thesis, I describe different ways to combine

these 3 criticality measures in order to determine the total criticality of an instruction. Al-

though the suggested system, indeed, might be able to make risk management for AI agents

more efficient, a substantial amount of research might be required to design a safety filter

that would be both safe and efficient (identifies a sufficiently high percentage of risky as well

as almost safe instructions correctly) – especially for complex environments.

The last application of criticality discussed in this thesis is connected educational AI.

The question that motivated that particular piece of research was whether a student who is

supposed to solve a given task will benefit from receiving information about the difficulty of

that task. Although this question seems to be unrelated to AI, indeed, there is a connection

since understanding the impact of revealing the task difficulty is important for evaluating the

utility of AI systems that predict task difficulty. Using a matchstick task, we explored the

influence of task difficulty revelation on the student’s performance, motivation, self-efficacy

and subjective task value. The study indicated that task difficulty revelation has some limited
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impact on performance and motivation (only on hard tasks) and has no impact on self-efficacy

and subjective task value. Since the study did not account for the differences in the student’s

personalities it might be interesting to examine how the impact of task difficulty revelation is

modulated by the student’s character traits. For example, an anxious student might become

scared from a difficult task whereas a student who enjoys challenges might gain additional

motivation if he is informed that the task is rather difficult.

As mentioned previously, in this thesis I presented 4 ways of using the novel concept of

state criticality to improve the learning and safety of AI systems, and, furthermore, I sketched

2 other applications of criticality: one related to skill preservation – the other to education.

The experiments presented, in particular, on the 2 applications of criticality to RL, demon-

strated the power of criticality-aware learning algorithms. Although integration of criticality

into various AI algorithms may improve their efficiency, there is also a price to pay. The

main drawback of criticality-aware learning algorithms is their need for an appropriate criti-

cality function. The experiments presented in the thesis were performed in relatively simple

environments where it was rather easy to come up with a meaningful criticality function.

Yet, in complex environments it might be much harder (or even impossible) for a human,

to generate a criticality function that approximates the true criticality of all states in the

given environment. Hence, it is necessary to find ways of generating a criticality function

that do not require the human to define this function manually. For this purpose, it might

be interesting to explore the possibility of learning a criticality function from a training set

of state/criticality tuples generated by a human (or a crowd). Since this task itself might be

just as challenging as the original problem (solving the MDP) it might be also interesting to

consider ways of utilizing an underdefined criticality function, which is defined only on some
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environment states and not defined on others.
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תקציר

מצבים ישנם שונים. במצבים נתקלים הם למידה בתהליך עוסקים או בעולם פועלים אנשים כאשר

מספר בין לבחור צריך אדם כאשר למשל, חייו, על בלבד מינורית השפעה יש הפעולה לבחירת שבהם

למשל, קריטיים), (מצבים בהרבה גדולה זו השפעה בהם אחרים מצבים וישנם סועדים, של וריאנטים

לסוג והנפשי הפיזי מצבם את מתאימים אנשים טבעי, באופן לחיים. זוגו בן את לבחור צריך אדם כאשר

אינטנסיבית מחשבה דורשים קריטיים שמצבים שאומר הישר לשכל ובהתאם בהם נתקלים שהם המצב

עם או אימון במהלך מלאכותית בינה סוכני שגם ברור יותר. גבוהה משאבים השקעת כללי ובאופן יותר

AI סוכני כיצד הוא זו תזה של המרכזי הנושא לפיכך, שונות. קריטיות רמות עם במצבים נתקלים פריסה

מבקרים. הם שבהן המדינות של הקריטיות לרמות שלהם הלמידה/פעולה אופן את להתאים יכולים

היא שקריטיות מכיוון הביקורתיות. מושג --- המלאכותית הבינה בתחום חדש מושג מציג אני זו, בתזה

מציעה זו תזה המלאכותית, הבינה תחומי כל עבור שמתקיימת הגדרה לספק במקום למדי, מופשט מושג

הרעיון כיצד ולדיון להצגה בנוסף השונים. המלאכותית הבינה תחומי עבור קריטיות של שונות הגדרות

הוא התזה של העיקרי המיקוד מלאכותית, בינה של נבחרים תחומים בכמה ביטוי לידי לבוא יכול החדש

בטוחה בצורה ולפעול יותר מהר ללמוד מלאכותית בינה לסוכני לעזור כדי בו להשתמש שניתן להראות

2 (פרקים חיזוק למידת של בהקשר שניים קריטיות: של יישומים 3 התזה מציגה כך לצורך . יותר ויעילה

.(4 (פרק מלאכותית בינה בטיחות של בהקשר ואחד ו-3)

בינה של תחומים במספר החדש המושג של ביישומים דנים הראשונים הפרקים שארבעת בעוד

להתייחס שניתן מדד סביב סובב אלא המונח של הצר במובן בביקורתיות עוסק אינו 5 פרק מלאכותית,

השאלה בחינוך, מלאכותית בינה של בהקשר . במשימה. קושי כלומר, לקריטיות, הדוק כקשור אליו

קושי התלמיד. של הלמידה חווית את משפר במשימה הקושי גילוי האם היא פרק אותו של המרכזית

את מחייבת קשה משימה הפעולה: אופן של התאמה מצריך שהוא משום לביקורתיות קשור במשימה

להיחשב יכול במשימה קושי חינוך, של בהקשר לכן, מרבי. ואינטלקטואלי מנטלי מאמץ להפגין התלמיד

ביקורתיות. של כהיבט
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