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Abstract 

 
This work deals with several uses of deep-learning-based agents in real world 

settings. 

 

The first use concerns correction detection. Intelligent agents that can interact with 

users using natural language are becoming increasingly common. Sometimes an 

intelligent agent may not correctly understand a user command or may not perform it 

properly. In such cases, the user might try a second time by giving the agent another, 

slightly different command. Giving an agent the ability to detect such user corrections 

might help it fix its own mistakes and avoid making them in the future . 

We considered the problem of automatically detecting user corrections using deep 

learning. We developed a multimodal architecture that detects such user corrections. 

It takes as inputs the user's voice commands as well as their transcripts. Voice inputs 

allow the architecture to take advantage of sound cues, such as tone, speed, and word 

emphasis. 

 

Another use that we considered is related to file compression. File compression is 

increasingly important in the internet age. Internet traffic coming from social 

networks, mobile apps, and the Internet of Things (IoT) cause enormous amounts of 

data to be stored every minute. This ever-increasing volume of data requires the usage 

of both physical and energy resources. In this work we used deep Reinforcement 

Learning (RL) methods to improve compression efficiency as well as processing time. 

We focused on lossless encoding techniques, in which reinforcement learning had not 

been applied before.  

 

Finally, we considered the problem of keyboard layout optimization. 

Since the keyboard is the most common method for text input on computers today, the 

design of the keyboard layout is very significant. Even though the QWERTY 

keyboard layout was designed more than 100 years ago, it is still the predominant 

layout in use today. There have been several attempts to design better layouts, both 

manually and automatically. We improved previous works on automatic keyboard 

layout optimization, by using a deep neural network to assist in a genetic search 

algorithm, which enables the use of a sophisticated keyboard evaluation function that 

would otherwise take a prohibitive amount of time. We also showed that a better 

choice of crossover routine greatly improves the genetic search. Finally, to test how 

users with different levels of experience adapt to new keyboard layouts, we conducted 

layout adaptation experiments with 300 participants. 
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Introduction 

 
Deep Learning is part of a broader family of machine learning methods based on 

artificial neural networks. Deep learning architectures such as deep neural networks, 

and deep reinforcement learning, have uses in many fields including computer vision, 

speech recognition, natural language processing, machine translation and more. 

 

Reinforcement Learning (RL) is a machine learning paradigm, in which an agent 

employs trial and error to come up with a solution to a problem, obtaining rewards or 

penalties for the actions it performs. The goal of the agent is to maximize the total 

reward. The agent starts with random trials and might finish with sophisticated tactics 

and skills. Deep RL based methods have recently gathered great success in several 

domains, such as playing Atari games, the game of Go, and self-driving cars.  

 

Many times there is interaction between deep learning methods and other techniques, 

such as genetic algorithms. Genetic algorithms belong to the larger class of 

evolutionary algorithms. They are a technique inspired by the process of natural 

selection, which are commonly used to generate high-quality solutions to optimization 

and search problems by relying on the biologically inspired operations of mutation, 

crossover and selection. In a genetic algorithm there is a “population” of candidate 

solutions, each of which has a set of characteristics that can be altered. There is an 

objective function that assigns a “fitness” value to each solution. One typically starts 

with an initial random population, which will probably have very low fitness. The 

algorithm proceeds in “generations”; each generation is obtained from the previous 

one by selecting the most fit candidates and generating new candidates by a process of 

crossover. In addition, random mutations are performed on the selected candidates 

before being added to the next generation. While most of the crossovers and 

mutations are likely to reduce the fitness of the candidates, a small fraction of them 

will yield more-fit candidates, and the improved traits will gradually spread 

throughout the population. Hence, as the generations progress, the overall fitness of 

the population will increase.  

 
In this work we deal with several uses of deep-learning-based agents in real world 

settings. 

 

The problems considered in this work 

 

The first use concerns correction detection. When humans interact with one another, it 

often happens that one person misunderstands the other. This person might then 

realize that she made a mistake by the other person's reaction. Therefore, she will not 

only correct her mistake, but she will also learn for the future what the other person's 

intentions were in such a situation. For personal agents to be truly useful, they should 

have abilities associated with human intelligence, such as the ability to detect their 

own mistakes from user reactions. This is an instance of implicit feedback, which is 

the gathering of information from users' behavior, as they go along normally using the 

agent. Implicit feedback has received a great deal of attention. It encompasses many 

types of user behavior: the amount of time the user spends seeing a document or a 

web page, her scrolling and clicking behavior, whether she copies parts of it, creates a 

bookmark, and so on. There have been several previous works on aspects like the 

correction detection problem. Levitan and Elson [1] described a method for detecting 



5 

 

retries of voice search queries. Heeman and Allen [2] considered the problem of 

recognizing speech repairs in spoken sentences. Paraphrase detection is closely 

related to our Correction Detection problem. It is the task of deciding whether two 

given sentences have the same meaning even though they use different words. There 

are several works on paraphrase detection. In particular, Kiros et al. [3] developed an 

off-the-shelf sentence-to-vector encoder called Skip-Thoughts, which they applied to 

paraphrase detection.  

 

Another use that we considered is related to lossless file compression. Lossless data 

compression methods can be partitioned into two main encoding families, statistical 

methods, which include Huffman and arithmetic coding, and dictionary methods, in 

which LZ77 and LZ78 are the most famous ones. Lempel–Ziv–Welch (LZW), a 

practical implementation of LZ78, was developed by Welch [4] as a variant of the 

previous algorithm LZ78 by Abraham Lempel and Jacob Ziv. LZW employs a 

dictionary of strings. The dictionary is traditionally initialized by the alphabet, e.g., 

the set of 256 ascii characters. The dictionary is dynamically updated as the input file 

is processed. Klein, Opalinsky, and Shapira [5] studied a variant of LZW in which 

new strings are not always added to the dictionary but only sometimes. They found 

that this variant has the advantage of reducing the processing time without adversely 

affecting the compressing ratio.  

Several works applied deep learning to data compression. In most cases, these 

methods use deep learning strategies to predict the upcoming characters or set of 

characters [6]. Combining RL and data compression has only been applied on lossy 

compression [7,8,9]. However, to the best of our knowledge, no previous work has 

introduced RL to dictionary-based compression methods. 

      

Finally, we considered the problem of keyboard layout optimization. Even though the 

QWERTY keyboard layout was designed more than 100 years ago, it is still the 

predominant layout in use today. In the early 1930's, August Dvorak introduced the 

keyboard layout known today as Dvorak, which he hoped would be more ergonomic 

and lead to faster typing. Dvorak has not gained much popularity, probably because 

QWERTY is already so entrenched. There have been several attempts to design better 

layouts, both manually and automatically. A popular alternative to QWERTY and 

Dvorak is the Colemak layout, introduced by Shai Coleman in 2006. Subsequently 

there were several attempts to find better keyboard layouts by automating the process 

[10,11]. Fadel et al. developed a genetic-based algorithm that is used to find better 

layouts than QWERTY and Dvorak. Their algorithm works by iteratively performing 

the operations of Selection, Crossover and Mutation, on a population of candidate 

layouts. Yin and Su considered several scenarios for the general keyboard 

arrangement problem, such as single-character and multi-character keyboards, single-

finger and multi-finger typing, and optimization according to different criteria, such 

as typing ergonomics, word disambiguation, and prediction effectiveness. They 

offered an evolutionary approach using a cyber swarm method and showed that it 

produces keyboard layouts that are better than existing ones. Other works that use 

genetic algorithms for keyboard optimization are [12,13,14]. 
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Our contributions 

 

Regarding the correction detection problem, we developed a multimodal architecture 

that detects user corrections. It takes as inputs the user's voice commands as well as 

their transcripts. Voice inputs allow the architecture to take advantage of sound cues, 

such as tone, speed, and word emphasis. We also release a unique dataset in which 

users interacted with an intelligent agent assistant, by giving it commands. This 

dataset includes labels on pairs of consecutive commands, which indicate whether the 

latter command is in fact a correction of the former command. 

 

Regarding file compression, we present a reinforcement learning based agent, RLZW, 

that decides when to add a string to the LZW dictionary. The agent is first trained on a 

large set of data, and then tested on files it has not seen previously (i.e., the test set). 

We show that on some types of input data, RLZW outperforms the compression ratio 

of a standard LZW. 

 

Finally, regarding the problem of keyboard layout optimization, we improved on the 

previous works by using a deep neural network to assist in a genetic search algorithm, 

which enables the use of a more sophisticated keyboard evaluation function than was 

used in previous work. We also showed that a better choice of crossover routine 

greatly improves the genetic search. Finally, to test how users with different levels of 

experience adapt to new keyboard layouts, we conducted layout adaptation 

experiments with 300 participants. 

 

The papers 

 

1. Amos Azaria and Keren Nivasch, SAIF: A Correction-Detection Deep-Learning 

Architecture for Personal Assistants, Sensors 20(19):5577 (2020). 

 

2. Keren Nivasch, Dana Shapira and Amos Azaria, Deep Reinforcement Learning 

for a Dictionary Based Compression Schema, Thirty-Fifth AAAI Conference on 

Artificial Intelligence, AAAI 2021: 15857-15858. 

 

3. Keren Nivasch and Amos Azaria, Keyboard Layout Optimization and Adaptation, 

to appear in IJAIT. 
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Abstract: Intelligent agents that can interact with users using natural language are becoming
increasingly common. Sometimes an intelligent agent may not correctly understand a user command
or may not perform it properly. In such cases, the user might try a second time by giving the agent
another, slightly different command. Giving an agent the ability to detect such user corrections might
help it fix its own mistakes and avoid making them in the future. In this work, we consider the
problem of automatically detecting user corrections using deep learning. We develop a multimodal
architecture called SAIF, which detects such user corrections, taking as inputs the user’s voice
commands as well as their transcripts. Voice inputs allow SAIF to take advantage of sound cues,
such as tone, speed, and word emphasis. In addition to sound cues, our model uses transcripts to
determine whether a command is a correction to the previous command. Our model also obtains
internal input from the agent, indicating whether the previous command was executed successfully
or not. Finally, we release a unique dataset in which users interacted with an intelligent agent
assistant, by giving it commands. This dataset includes labels on pairs of consecutive commands,
which indicate whether the latter command is in fact a correction of the former command. We show
that SAIF outperforms current state-of-the-art methods on this dataset.

Keywords: human–agent interaction; correction detection; deep learning; implicit feedback;
multimodal architecture

1. Introduction

Intelligent agents that can interact with users using natural language are becoming increasingly
common. Popular operating systems now come with built-in virtual assistants, such as Siri for Apple’s
MacOS and iOS, and Cortana for Microsoft’s Windows. As another example, Amazon’s Echo speakers
include the Alexa virtual assistant. However, these assistants do not learn from their own mistakes,
in contrast to real human assistants.

When humans interact with one another, it often happens that one person misunderstands
the other. This person might then realize that she made a mistake by the other person’s reaction.
Consequently, she will not only correct her mistake, but she will also learn for the future what the
other person’s intentions were in such a situation. For example, when a manager tells her human
assistant “I would like to promote Mary”, the assistant might reply “Sure. I sent an email to Mary
with the subject ‘You’re promoted’.” Then the manager might reply “I would like to set a meeting
to promote her”. The human assistant will then probably recall the email and schedule a meeting
with Mary for the promotion. The next time the manager tells the assistant she would like to promote
someone, the assistant will remember to set up a promotion meeting.

Sensors 2020, 20, 5577; doi:10.3390/s20195577 www.mdpi.com/journal/sensors
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For personal agents to be truly useful, they should have abilities associated with human
intelligence, such as the ability to detect their own mistakes from user reactions. This is an instance
of implicit feedback, which is the gathering of information from users’ behavior, as they go along
normally using the agent.

A personal agent with the ability to detect user corrections might be able to fix some of the
mistakes it makes. For example, suppose a user says “create an email for Tom”, and the agent creates
a new email and sets the address to Tom’s address. Then the user says “create an email and set the
subject to ‘for Tom’.” The agent might erase the email it created and create a new email in which the
subject is set to “For Tom”.

In addition, an agent might learn for the future what a particular user means when giving a
certain kind of request. In the above example, if later on the user says “create an email for Nancy”,
the agent will create a new email and set the subject to “For Nancy”.

In this paper, we address the problem of detecting an agent’s mistakes by identifying when the
user tries to correct the agent. We refer to this problem as the Correction-Detection task. We develop
an architecture that can detect whether given interactions constitute corrections on the part of the
user or not. More precisely, the architecture works on pairs of consecutive commands. We call our
architecture Socially Aware personal assistant Implicit Feedback correction detector (SAIF). It sees only the
user’s commands, and not the agent’s responses to those commands, as we would like the architecture
to be independent of the agent to which it is applied: A pre-trained version of the architecture should
be applicable to any social agent, even though different agents have different responses.

Each pair of consecutive commands can have one of three possible labels: “new command” if
the user was satisfied with the agent’s action to the previous command and issued a new command;
“command correction” if the user was not satisfied with the agent’s action and tried to correct it;
and “ASR correction” if the first command was not carried out properly due to wrong transcription
by the Automatic Speech Recognition (ASR) system (for example, “set subject to Johnny” instead of
“set subject to join me”).

It is important to separate command corrections from ASR corrections since the actions to be taken
by the agent are very different. With an ASR correction, the agent should adjust the ASR component
and improve it, so that it does not fail next time. However, when dealing with a command correction,
the agent should undo the previous command, and execute the learning process, as it has implicitly
learned another way to say the second command.

Our architecture is multimodal, using both the voice (acoustics and non-verbal sounds) as well
as the transcript of the user’s spoken commands. This multimodal approach is important, since the
voice input can hold important cues such as tone, speed, or emphasis on certain words. Furthermore,
voice input can be especially useful in cases where the wrong command was executed due to a fault in
the ASR.

Related Work

Implicit feedback has received a great deal of attention. It encompasses many types of user
behavior: the amount of time the user spends seeing a document or a web page, her scrolling and
clicking behavior, whether she copies parts of it, creates a bookmark, and so on. Oard and Kim [1]
developed an early classification system for types of implicit feedback, based on the type of behavior,
as well as based on its scope, which could be part of a document, a whole document, or a whole class
of documents. Kelly and Teevan [2] later expanded this classification system. Their paper gives a
broad survey of previous work on implicit feedback. Recently, Jannach et al. [3] further updated and
expanded this classification system, and gave an updated survey of this area.

Search engines can use implicit feedback, such as clicking behavior, follow-up search queries and
even eye-tracking, to improve the ranking of search results. The act of down-ranking one search result
and up-ranking another can be considered a correction performed by the search engine in response to
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the user’s behavior. Implicit Feedback in search engine results often relies on the user choice among
the ordered search results. Hence, it differs from the task in this work.

Levitan and Elson [4] described a method for detecting retries of voice search queries. Their task
is quite similar to the one in this work, as their recognizer takes as input pairs of consecutive search
commands to be classified. However, their recognizer takes as input only the transcripts of the
commands. More significantly, their classification system is different, since it is binary and furthermore,
if the ASR transcribed correctly, the instance is labeled as “no error”, even if the user subsequently
tried to correct the agent.

Zweig [5] proposed some methods for improving the accuracy of ASR translation when the user
repeats her search command. In his work, recognition of repetitions is based on the fact that the user
did not choose any of the options that were shown to him after his first search command. In contrast,
we try to recognize user corrections from the commands themselves. Furthermore, sometimes a
correction may not look like a repetition of the previous command.

Heeman and Allen [6] considered the problem of recognizing speech repairs in spoken
sentences, which occur when the speaker goes back and changes or repeats something she just
said. However, in our case we try to recognize when a complete command is a correction of a previous
complete command.

Bechet and Favre [7] aimed to detect errors in ASR output using a combination of ASR confidence
scores, and lexical and syntactic features. If the system detects a problem, it requests the user for a
clarification. Ogawa and Hori [8] also aimed to detect ASR errors, using deep bidirectional RNNs.
In our work, the objective is broader, since we want to detect not only ASR errors, but also user
corrections unrelated to the ASR.

Paraphrase detection is the task of deciding whether two given sentences have the same meaning
even though they use different words. The Microsoft Research Paraphrase Corpus [9] is a database of
labeled pairs of sentences, some of which are paraphrases of one another. There are several works on
paraphrase detection based on this corpus.

In particular, Kiros et al. [10] developed an off-the-shelf sentence-to-vector encoder called
Skip-Thoughts, which they applied to paraphrase detection, as well as to several other learning
tasks. Skip-Thoughts tries to reconstruct the surrounding sentences of an encoded passage, using the
continuity of the training text. Sentences that share semantic and syntactic properties are thus mapped
to similar vector representations. Skip-Thoughts also includes a vocabulary expansion method to
encode words that were not seen as part of training.

Agarwal et al. [11] developed a paraphrase detection method that works well with short noisy
data such as Twitter texts. See also [10,12–17].

Paraphrase detection is closely related to our Correction-Detection problem. Indeed, a user might
try to correct an agent by repeating the previous command in slightly different words. For example,
the user might give the command “remove the contact Tom” and the agent might not understand or
not perform it correctly. The user might try again in different words by saying “delete the contact
named Tom”.

However, there are several differences between paraphrase detection and the Correction-Detection
task. The second command might constitute a correction of the first, even though it has a slightly
different meaning: The two commands might differ in proper names (e.g., Tom vs. John) or in
numerical quantities, and the user’s tone of voice might indicate that he got confused in the first
command. Furthermore, in our task the order of the commands might be significant. For example,
the agent might understand the word “create” but not the word “compose”. Hence, the order between
the commands “create an email for Tom” and “compose an email for Tom” is very significant.

Another similar task is the Quora Question Pairs competition, which challenges participants to
tackle the problem of identifying duplicate questions [18]. Choudhary addressed this problem using
BERT [19] (See also [20,21]).
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Multimodal deep learning has been applied to tasks such as speech recognition, speech synthesis,
emotion and affect detection, media description, and multimedia retrieval [22–27]. To the best
of our knowledge this is the first research on multimodal voice and transcript deep learning for
Correction Detection.

2. Materials and Methods

2.1. Formal Problem Definition

Assume a dataset of size n coming from multiple users interacting with a personal assistant agent.
Let C = {c1, c2, . . . , cn} be a set of commands given to a personal agent. Each of the commands, c,
is composed of a transcript of the command, ct, the command voice, cv, and an indicator of the agent’s
success in executing the command, cs. Let t(ci, cj) be a function that associates commands ci and cj
with a type in {new, asr, cc}, where new denotes no relation between two commands (that is, the cj is a
new command), asr denotes that cj was given in order to correct a malperformance of the transcription
performed by the agent, and cc denotes that cj is an attempt of the user to refine and correct ci.

In this paper, we focus on the consecutive multimodal correction-detection problem, in which
for each command ci, the value of t(ci, ci+1) must be determined.

2.2. Dataset Description

To develop our architecture, we use a set of real interactions that users had while experimenting
with the social agent LIA (Learning by Instruction Agent) [28,29]. This dataset contains a series of
2540 pairs of spoken commands given to LIA by 20 different users, of which 11 were male and 9 were
female. The users’ ages ranged from 18 to 62, with a mean of 36.9. For each command we have the
original voice file and the written transcript produced by the ASR. The average command consists of
3.6 words and it lasts 4.2 seconds. Each command is followed by a response from the agent.

We manually labeled each pair of consecutive commands according to whether the second one is a
correction of the first. As we mentioned, there are three possible labels: no correction (“new command”),
a correction in which the user provides a different command (“command correction”), and correction
due to incorrect ASR transcription (“ASR correction”). At first we tried to have the labeling done
through the Mechanical Turk. However, we got very poor results, so we had to perform the labeling
ourselves. Out of the 2540 commands, 568 commands are labeled as a “command correction”, 236 of
them are labeled as an “ASR correction”, and the rest are as “new command”. See Table 1 for
some examples.

Table 1. Dataset examples.

Command 1 Agent Response Command 2 Label

Create a new email
Composing new email. “outgoing email” fields are: set the recipient to Tom’s “new command”subject, body and recipient list. What shall I do email address
next (when executing: “tell Tom to buy milk”)?

Create a contact Concept “contact” was defined successfully. a contact has an “new command”Please add fields to it. email address

I’m running late Sorry, but I don’t understand. Would you tell Tom I’m running late “command correction”like to teach me (say yes or just ignore)?

How long can a whale Sorry, but no answer was found. how long can whale “command correction”stay underwater wait underwater

Play the email execute command {playYouTube} read email “command correction”

Who was the present Tuesday, 20 June 2017 who was the president “ASR correction”of the United States of the United States

In for Mariam late Sorry, but I don’t understand. Would you inform Mary I’m late “ASR correction”like to teach me (say yes or just ignore)?
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When labeling each command, we relied on the previous command as well as on the agent’s
response to it to decide whether the command is a correction (even though as we mentioned,
the architecture sees only the commands themselves but not the agent’s responses). We also have an
indicator from LIA that specifies whether the command was executed successfully or not. The dataset
is available at [30].

2.3. SAIF Architecture

To address the correction-detection problem, we developed a multimodal architecture, SAIF.
SAIF uses both voice and transcript inputs. Each input instance (c) consists of the voice (cv) and
transcripts (ct) of two consecutive commands (ci, ci+1).

SAIF first converts the inputs to vector representations and encodes each command transcript
(ct

i ) as a vector si of length 4800 using the Skip-Thoughts encoder [10] (see Section 2.4 below).
SAIF then computes the component-wise product and the absolute difference of these two vectors
and concatenates the results, obtaining a single vector vtranscript of length 9600, i.e., SAIF computes
vtranscript = (si ◦ si+1, |si − si+1|). To this vector, SAIF appends the feature cs

i (marked as exe in Figure 1),
which indicates whether the agent executed the first command or not, resulting in a vector v′transcript of
length 9601.
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Figure 1. SAIF Architecture.

Additionally, SAIF converts the voice commands (cv
i ) into vectors. For this, it uses a model

from DataFlair [23] for emotion recognition (see Section 2.4 below). Using this pre-trained model,
SAIF encodes each voice file into a vector of length 300. SAIF then concatenates the encodings of the
two voice commands, obtaining a vector vvoice of length 600. To this vector, SAIF appends a feature
VAD related to voice activity detection: Using the WebRTC library [31], SAIF measures the length `i of
the portion within each sound command cv

i which constitutes actual speech. The feature VAD equals
the difference `i+1 − `i. Denote the resulting vector of length 601 by v′voice.

The vector v′transcript is then fully connected to a Hidden Layer H1 of 30 neurons and ReLu
activation. Similarly, the vector v′voice is fully connected to another Hidden Layer H2 of 30 neurons
and ReLu activation. This vector of length 60 is then fully connected to a third Hidden Layer H3 of
30 neurons with dropout of 0.5 and ReLu activation.
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The output of H3 is linearly fully connected to a layer of size 3 which corresponds to the three
possible label values. Finally, we apply SoftMax on this layer, resulting in a vector with three
probabilities. The architecture is illustrated in Figure 1.

2.4. Pre-Training Methodologies

SAIF uses pre-trained models for encoding both the transcript and voice inputs. Pre-trained
models enable transfer of learning and can boost accuracy without taking much time to converge,
as compared to training a model from scratch.

The model used for encoding the transcripts is Skip-Thoughts by Kiros et al. [10]. This model is
trained on the BookCorpus dataset which is a large collection of novels written by yet unpublished
authors. The dataset has books in 16 different genres, e.g., Romance (2865 books), Fantasy (1479),
Science fiction (786), Teen (430), etc. Altogether, it contains more than 74 million sentences. Along with
narratives, books contain dialogue, emotion and a wide range of interaction between characters. With a
large enough collection, the training set is not biased towards any particular domain or application.

Kiros et al. then expand their model’s vocabulary by learning a linear mapping from a word in
word2vec space to a word in the encoder’s vocabulary space. The mapping is learned by using all
words that are shared between vocabularies. After training, any word that appears in word2vec can
then get a vector in the encoder word embedding space. Thus, even though their model was trained
with only 20,000 words, after vocabulary expansion it can successfully encode almost one million
possible words.

The model used for encoding the voice inputs is based on the emotion recognition model
by DataFlair [23] which is pre-trained on the RAVDESS database [25] and uses a multi-layer
perceptron (MLP) classifier. The RAVDESS database contains 7356 voice files from 24 actors, rated by
247 individuals 10 times on emotional validity, intensity, and genuineness. The files are labeled
into eight different types of emotions (neutral, calm, happy, sad, angry, fearful, disgust, surprised).
SAIF takes the last activation layer of this model to obtain a vector of size 300. The entire dataset is
24.8 GB.

3. Results

SAIF was trained and tested on the dataset mentioned in Section 2.2, as follows: An array
containing all the input instances (each of which contains the voice and transcripts of two consecutive
commands) was created and randomly shuffled. A 5-fold cross validation was performed: Five rounds
were run, where in each round, 2032 input instances were used as training data and 508 input instances
were used as test data. The training used minibatches of size 128, employing TensorFlow’s Adam
algorithm for optimization with a learning rate of 0.001. The training loop ran for 10000 iterations
or until the train accuracy exceeded 0.995. Hence, each input instance belonged once to the test data.
After averaging the results of the five tests, the obtained average test accuracy was 0.818. Since the
“new command” instances constitute 68% of the data, guessing all the time “new command” would
yield an accuracy of only 0.68. The SAIF code is available at [30]. Table 2 shows the confusion matrix
of the results. As shown in the table, SAIF is correct most of the time.

Table 2. Confusion matrix of SAIF test results.

Actual Values Predicted Values
New Command Command Correction ASR Correction

New command 1637 71 28
Command correction 151 378 39

ASR correction 95 78 63

In addition, Table 3 shows two groups of baselines. The first group shows some transcript-only
approaches while the second group shows some voice-only approaches.
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We modified SAIF to use only voice inputs or only transcripts. In these cases, the accuracy and
F1 measures decreased, showing the importance of the multimodal approach. The “transcript+exe”
architecture gave an accuracy slightly lower than SAIF. However, the F1 measures were noticeably
lower, in particular the F1 measure of “ASR correction”.

In the first group of baselines, we show the result given by the Skip-Thoughts paraphrase
detection code of [10], which was slightly modified to match our methodology. We also tried replacing
Skip-Thoughts by BERT [32] in two different ways. We first tried using BERT as a text encoder,
encoding each sentence separately. We also tried entering the transcript pairs in parallel following the
BERT-based architecture of Choudhary [19]. In both cases, we got worse results. See Table 3.

Table 3. Comparison between different experiments.

Accuracy Command Correction F1 ASR Correction F1

SAIF (multimodal) 0.818 0.69 0.344

transcript+exe 0.805 0.678 0.255
transcript only 0.755 0.575 0.212
Skip-Thoughts 0.742 0.563 0.076
BERT (encoder) 0.73 0.564 0.186

BERT (2-parallel) 0.709 0.497 0.335

voice+VAD 0.68 0.03 0.047
voice only 0.677 0.006 0.015

DTW 0.681 0.012 0

In the second group of baselines, we show the result given by the Dynamic Time Warping (DTW)
method [33], which measures the similarity between the two voice commands; these values then
served as an input to a neural network.

We note that the Skip-Thoughts baseline method results in an accuracy of 0.742 only. Moreover,
it correctly predicted only a very small number of ASR corrections. This deficiency is reflected in the
very low F1 score for the “ASR correction” label. The voice-based architectures (“voice+VAD” and
“voice only”) gave very poor results, and so did the DTW baseline. These three architectures guessed
“new command” almost exclusively.

Clearly, SAIF achieved the best results. Among the three voice-based architectures that were
tested, the “voice+VAD” slightly outperformed the other two voice-based methods, especially in
detecting ASR corrections. We note that adding the voice features to the transcript features seems to
help mostly in detecting ASR corrections, but also the command correction F1 slightly improves.

Discussion

As stated, the correction-detection problem is different from paraphrase detection. One difference
is reflected in the fact that the order of the sentences is significant. To highlight this difference, we ran
another evaluation in which we switched the order of the inputs during the test phase. This act
decreased the accuracy to 0.713.

The voice component of the architecture relies on a model that is pre-trained on the RAVDESS
database, which contains 7356 voice files. For comparison, the Skip-Thoughts model, which we used
for the transcripts, is pre-trained on more than 74 million sentences. We believe that using a larger voice
database for the pre-training will produce better voice features, which will improve the performance
of the voice part of SAIF.

It might be possible to improve SAIF’s performance by making it look at three or more consecutive
commands, instead of only two. For example, if the user says “set the subject to hello” and the agent
responds that it does not know to which email to set the subject, then the user might try to correct
the agent using two further commands: “create new mail”, and “set the subject to hello”. In cases
like these, SAIF would be in a much better position if it had access to all three commands. If we refer
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back to the formal definition of the correction-detection problem (See section 2.1), in the more general
correction-detection problem, t(ci, cj) must be determined for every i < j and is no longer limited to
j = i + 1 (as it is in the consecutive correction-detection problem). Furthermore, we may define t(ci, S)
as a function that determines for every set (or sequence) of commands S ⊂ C whether it is a correction
of the command ci, and, if so, what type of correction it is. It may also be possible to improve the ASR
performance using the techniques of Bechet and Favre [7] and Ogawa and Hori [8], and in case of
repeated utterances by using also the techniques of Zweig [5].

4. Conclusions and Future Work

In this paper, we considered the problem of automatically detecting user corrections using deep
learning based on multimodal cues, i.e., text and speech. We developed a multimodal architecture
(SAIF) that detects such user corrections, which takes as inputs the user’s voice commands as well
as their transcripts. Voice inputs allow SAIF to take advantage of sound cues, such as tone, speed,
and word emphasis. We released a labeled dataset of 2540 pairs of spoken commands that users
had with a social agent. The dataset includes three types of labels: “new command”, “command
correction”, and “ASR correction”. We ran SAIF on the dataset; SAIF achieved an accuracy of 0.818
and F1 measures of 0.69, 0.344 for the “command correction” and “ASR correction” labels, respectively.
We showed that SAIF outperforms several other architectures, including architectures based on BERT.
We believe that releasing the dataset will lead to further work on this problem.

The multimodal correction-detection problem presented in this work has many implications to
social interactive agents and personal assistants. Therefore, in future work we intend to assemble SAIF
in a personal agent, and use the implicit feedback obtained by correction detection to learn aliases to
commands and to undo commands that were unintentionally given by the user. However, SAIF must
be adjusted so that it has very high precision for the agent to be effective. High precision is required
since undoing commands that the user did not intend to undo, or learning incorrect aliases, may impair
the use of the agent. Assuming a high precision, the agent can learn from the examples marked as
command corrections, even if the recall is relatively low. Alternatively, when suspected, the agent
may explicitly ask the user whether a given command is indeed a correction, or, treat a command as a
correction only if it appears as a correction more than once, or by more than a single user.
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Abstract

An increasingly important process of the internet age and
the massive data era is file compression. One popular com-
pression scheme, Lempel–Ziv–Welch (LZW), maintains a
dictionary of previously seen strings. The dictionary is up-
dated throughout the parsing process by adding new encoun-
tered substrings. Klein, Opalinsky and Shapira (2019) re-
cently studied the option of selectively updating the LZW
dictionary. They show that even inserting only a random sub-
set of the strings into the dictionary does not adversely affect
the compression ratio. Inspired by their approach, we pro-
pose a reinforcement learning based agent, RLZW, that de-
cides when to add a string to the dictionary. The agent is first
trained on a large set of data, and then tested on files it has
not seen previously (i.e., the test set). We show that on some
types of input data, RLZW outperforms the compression ratio
of a standard LZW.

Introduction
Reinforcement Learning (RL) (Sutton and Barto 2017) is a
machine learning paradigm, in which an agent employs trial
and error to come up with a solution to a problem, obtaining
rewards or penalties for the actions it performs. The goal of
the agent is to maximize the total reward. The agent starts
with random trials, and might finish with sophisticated tac-
tics and skills.

Deep RL based methods have recently gathered great suc-
cess in several domains, such as playing Atari games, the
game of Go, and self-driving cars. However, most domains
in which deep RL has been applied enjoy a fairly straightfor-
ward translation to the agent and RL domain. In this work,
we apply RL techniques to the field of data compression. We
propose to view both the encoder and the decoder as agents
which, in different compression schemes, may be able to
pick among several actions. In the context of data compres-
sion, we must use a deterministic agent so that both the en-
coder and the decoder take the exact same actions, and there-
fore are synchronized with the same world states. This is es-
sential as the decoder must reconstruct the original uncom-
pressed data. Therefore, in the test phase, either any element
of exploration must be completely removed, or any form of
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exploration must be deterministic, for example, being based
upon some shared seed.

Related Work
Lossless data compression methods can be partitioned into
two main encoding families, statistical methods, which in-
clude Huffman and arithmetic coding, and dictionary meth-
ods, in which LZ77 and LZ78 are the most famous ones.
Lempel–Ziv–Welch (LZW), a practical implementation of
LZ78, was developed by Welch (1984). LZW employs a dic-
tionary D of strings. D is traditionally initialized by the al-
phabet, e.g. the set of 256 ASCII characters. D is dynami-
cally updated as the input file is processed by extending ex-
isting strings in D by a single character, with new encoun-
tered strings that are seen in the input file for the first time.
Specifically, at each stage in the compression, substrings of
the input file are incrementally extended with the follow-
ing character until the resulting sequence does not appear
in D. The code for the sequence (without the new charac-
ter) is added to the output, and a new code (for the sequence
concatenated to the new character) is added to D. Thus, the
output is a sequence of pointers to the changing dictionary.
Each time the dictionary size reaches a power of 2, the num-
ber of bits used to represent the pointers increases by 1. Usu-
ally there is a bound on the dictionary size. When D reaches
this bound, no more strings are added to it and D remains
static. Alternatively, D may be restarted. Klein, Opalinsky,
and Shapira (2019) studied a variant of LZW in which new
strings are not always added to D. Rather, there exists a pa-
rameter k, and a new string is added to D only every kth
time. They found that this variant has the advantage of re-
ducing the processing time without adversely affecting the
compressing ratio. In this work, we develop RLZW, a vari-
ant of LZW, in which an RL component decides whether
to insert each new string into D or not. Our agent uses the
Q-Learning algorithm (Sutton and Barto 2017).

While, to the best of our knowledge, no previous work
has introduced RL to dictionary-based compression meth-
ods, several works applied deep learning to data compres-
sion. In most cases, these methods use deep learning strate-
gies to predict the upcoming characters or set of characters
(Shermer, Avigal, and Shapira 2010; Liu et al. 2018). Com-
bining RL and data compression has only been applied on
lossy compression (e.g. (Xu, Nandi, and Zhang 2003; Zhu,
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Lan, and van der Schaar 2013; Oladell and Huber 2012)).
We note that several works have used compression in order
to speed up deep learning (Ba and Caruana 2014; Amado
and Meneguzzi 2018).

RLZW: Applying RL to LZW
RLZW is a neural network Q-Learning compression algo-
rithm based on LZW. An RL agent must define states, ac-
tions and a reward function. RLZW follows the LZW algo-
rithm, except when encountering a string that does not ap-
pear in the dictionary. Each time RLZW encounters a new
string, w, RLZW is required to select between two actions:
inserting it into D or not. The reward function is set to the
difference, in bits, between the length of the uncompressed
string and the length of the corresponding pointer to the dic-
tionary: r = 8|w| − dlog2 |D|e, where |w| denotes the size
of w, and |D| denotes the number of words in the dictionary.

The state consists of the following three parameters: A
1-hot representation of the string w, a representation of D,
and the number of strings that may still be added to D. The
representation of D is composed of 0’s and 1’s indicating,
for each possible string, whether it exists in the dictionary.

The neural network is composed of the input layer (in-
cluding the encoding of the state), a hidden layer of size 30,
and two output neurons (one for each action).

Experimental Settings
Due to the large size of the representation of D, we used a
simplified model in which the files to be compressed contain
only 5 characters Σ = { , e, g, h, t}. Therefore, the initial-
ized size of D is 5. We limited the maximum size for D to
32 and the length of the strings in D to 4; hence the number
of possible strings in this model is 51 + 52 + 53 + 54 = 780
(which is the length of the representation of D).

Our dataset was composed of the ENGLISH text collec-
tion obtained from the Pizza&Chili corpus. We removed all
the characters except those in Σ and created 30 files of size
18KB each. To make the compression task more challeng-
ing, we added to each file a “header” of length 50 that also
contains only characters from Σ but with a different distri-
bution than the remainder of the file. Hence, during the pro-
cessing of the header, the regular LZW algorithm was ex-
pected to fill D with strings that do not appear much in the
remainder of the file. We hypothesised that RLZW will learn
to avoid these strings.

We used 24 files for training and the remaining 6 for test-
ing. The training was performed in 50 epochs, where in each
epoch a parameter ε determined the probability of exploring
(as opposed to exploiting). In the first 6 epochs ε was set
to 1, and then linearly decreased until, at the last epoch, it
reached 0.

Results
RLZW learned to insert into D several commonly used
strings (such as the, whereas LZW added less relevant
strings. Moreover, sometimes RLZW did not fillD to its full
capacity, showing that it learned that with a smaller dictio-
nary it needs fewer bits for encoding. In contrast, LZW filled
D quickly to its full capacity.

Algorithm Compression Ratio
LZW 0.389
RLZW (train) 0.288
RLZW (test) 0.309

Table 1: Comparison between LZW and RLZW

Overall, RLZW succeeded to compress the training files
26% better than LZW, and the test files 21% better than
LZW. See Table 1.

Conclusions and Future Work
In this paper we presented RLZW, an RL based agent that
decides whether to insert the current string to the LZW dic-
tionary or not. We showed that on some types of input data,
RLZW outperformed the compression ratio of LZW.

The next steps are to extend this method to a larger alpha-
bet and a larger dictionary size. We will consider additional
reinforcement learning methods, such as a deep Actor-Critic
learner. To the best of our knowledge, this work is the first
to use a reinforcement learning agent in a dictionary based
compression schema.
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Since the keyboard is the most common method for text input on computers today, the

design of the keyboard layout is very significant. Despite the fact that the QWERTY

keyboard layout was designed more than 100 years ago, it is still the predominant layout
in use today. There have been several attempts to design better layouts, both manually

and automatically. In this paper we improve on previous works on automatic keyboard

layout optimization, by using a deep neural network to assist in a genetic search al-
gorithm, which enables the use of a sophisticated keyboard evaluation function that

would otherwise take a prohibitive amount of time. We also show that a better choice of
crossover routine greatly improves the genetic search. Finally, in order to test how users

with different levels of experience adapt to new keyboard layouts, we conduct some lay-

out adaptation experiments with 300 participants to examine how users adapt to new
keyboard layouts.

Keywords: Keyboard Layout; Genetic Algorithm; Neural Network.

1. Introduction

The modern QWERTY keyboard layout was introduced in the 1870’s by Christo-

pher Latham Sholes1. It has been suggested that the rationale behind the QWERTY

design was to minimize type-bar jams by placing common letters far away from each

other2.

In the early 1930’s, August Dvorak introduced the keyboard layout known today

as Dvorak3, which he hoped would be more ergonomic and lead to faster typing.

Even though the QWERTY layout is still the most common layout in use, most

major operating systems offer the option of switching to the Dvorak layout. Nev-

ertheless, Dvorak has not gained much popularity, probably because QWERTY is

already so entrenched.

1
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Despite recent advances in automatic speech recognition, keyboard input still

remains the most common method of text communication used today. While people

do not pay much attention to the keyboard layout, it has a tremendous impact not

only on the typing speed, but also on wrist pain and repetitive strain injury (RSI)4.

Unfortunately, the QWERTY layout so popular today was designed for typewriters

rather than keyboards; therefore, it is very likely that it is sub-optimal for modern

use.

There have been several other attempts at creating better keyboard layouts. A

popular alternative to QWERTY and Dvorak is the Colemak layout5, introduced by

Shai Coleman in 2006. It maintains the position of 17 keys of QWERTY, including

many keys commonly used for keyboard shortcuts, with the hope of making it

easier to learn for people accustomed to the QWERTY layout. While Colemak is

not officially supported by Windows, creating and installing a custom layout in

Windows can be easily done with the Microsoft Keyboard Layout Creator. Once

a layout is installed, the characters appearing on the physical keys will not match

the virtual characters, but this is a very minor issue; on the contrary, it encourages

early adoption of touch typing.

Subsequently there were several attempts to find better keyboard layouts by

automating the process6,7. While a brute-force search over all possible arrangements

is not feasible, due to the astronomically large number of different arrangements,

there are many optimization algorithms that can be used instead. One example

of a commonly used and efficient class of optimization algorithms is the genetic

algorithm.

Genetic algorithms belong to the larger class of evolutionary algorithms. They

are a technique inspired by the process of natural selection, which are commonly

used to generate high-quality solutions to optimization and search problems by

relying on the biologically inspired operations of mutation, crossover and selection.

In a genetic algorithm there is a “population” of candidate solutions, each of which

has a set of characteristics that can be altered. There is an objective function that

assigns a “fitness” value to each solution. One typically starts with an initial random

population, which will probably have very low fitness. The algorithm proceeds in

“generations”; each generation is obtained from the previous one by selecting the

most fit candidates and generating new candidates by a process of crossover. In

addition, random mutations are performed on the selected candidates before being

added to the next generation. While most of the crossovers and mutations are

likely to reduce the fitness of the candidates, a small fraction of them will yield

more-fit candidates, and the improved traits will gradually spread throughout the

population. Hence, as the generations progress, the overall fitness of the population

will increase.

In this paper we present a method for optimizing keyboard layouts using a hy-

brid approach of deep learning and genetic algorithms. Our method is fast and

therefore allows the use of large corpora for training, as well as the use of complex

fitness functions. One of the features of our method is the use of the cycle crossover
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routine8, which greatly enhances the performance of the genetic part of the algo-

rithm. We show that our method outperforms the state-of-the-art methods from

the literature even when using their own metricsa.

As mentioned in7, keyboard layout optimization techniques might be useful for a

wider class of problems in which there are objects that must be placed in predefined

locations, the objects will be accessed one after the other in some order, and the

goal is to optimize the placement of the objects. Real-life examples of this scenario

include books in a library and products in a vending machine.

Finally, we tackle the issue of keyboard adaptation. We examine whether expe-

rienced QWERTY typists adapt better to new layouts than inexperienced typists,

whether, once experimenting with a new layout, users find it easier to adapt to

another new layout, and whether it is easier or harder to adapt to common letter

combinations compared to rare letter combinations. For that end, we run an ex-

periment with 300 participants and three different keyboard layouts, namely, the

standard QWERTY layout and two new layouts for three different keys.

To summarize, our contribution in the area of automatic layout optimization is

three-fold.

(1) We propose the use of deep learning to assist in a genetic algorithm process for

finding an improved keyboard layout.

(2) We show that the cycle crossover routine significantly outperforms the crossover

routine that was previously used in the literature.

(3) We conduct a user study with 300 participants to examine how users adapt to

new keyboard layouts.

2. Related Work

Genetic algorithms have been used for keyboard design optimization. Yin and Su6

considered several scenarios for the general keyboard arrangement problem, such as

single-character and multi-character keyboards, single-finger and multi-finger typ-

ing, and optimization according to different criteria, such as typing ergonomics,

word disambiguation, and prediction effectiveness. They offered an evolutionary

approach using a cyber swarm method and showed that it produces keyboard lay-

outs that are better than existing ones. Other works that use genetic algorithms for

keyboard optimization are9,10,11,7.

In particular, in their recent work, Fadel et al.7 developed a genetic-based al-

gorithm that is used to find better layouts than QWERTY and Dvorak. Their

algorithm works by iteratively performing the operations of Selection, Crossover

and Mutation, on a population of candidate layouts. They measure the fitness of a

layout using a simple objective function that sums the Euclidean distances between

aA link for installing the keyboard layout generated by our method on Windows is available at:
https://github.com/kerenivasch/MKLOGA
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` 1 2 3 4 5 6 7 8 9 0 - =

m y d g a r e s f ; [ ]

k t n i o x c z v j '

b p l u q h w , . /

` 1 2 3 4 5 6 7 8 9 0 - =

g v z e h i u p y ; [ ]

w c d t o r m l b j '

q x n s a f k , . /

` 1 2 3 4 5 6 7 8 9 0 - =

m v d g h r e s y ; [ ]

w t n i o x c z b j '

q p l u a f k , . /

Parent 1 Parent 2

Child

Fig. 1. Example of the cycle crossover routine.

initial generation (random)

crossover

mutation randomcopy

estimation fine-tune

model

selection

new generation

Fig. 2. MKLOGA flowchart.

every single character in the training corpus and the nearest finger to it. Using their

method they find layouts that are better than QWERTY and Dvorak according to
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m' m

crossover + mutations

copy

r

m

Fig. 3. The construction of the new generation from the previous one. First, r layouts are gener-

ated randomly. The best m layouts of the previous generation (according to the model estimate)

are directly copied to the new generation, and the best m′ of them (according to the true effort
value) are used to generate new layouts through crossover and mutations.
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Fig. 4. A comparison between the performance of the genetic algorithm using the crossover
method proposed by Fadel et al., and the cycle crossover method. The performance is measured
according to the objective function defined in Fadel et al., (lower is better).
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` 1 2 3 4 5 6 7 8 9 0 - =

q k u l w c g y b ; [ ]

r s a t n h o e i d '

z x f m j p v , . /

` 1 2 3 4 5 6 7 8 9 0 - =

q g d l m p u y b ; [ ]

r s o t n h a e i w '

z x c v j f k , . /
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. b l u m p c y q j [ ;
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(a) (b)

(c)

Fig. 5. (a) Best keyboard layout found by MKLOGA when moving only letter positions. (b)

Best keyboard layout found by MKLOGA when moving also punctuation symbols. (c) Another
keyboard layout found by MKLOGA, with ZXCV in place.

their objective function. They call the best keyboard layout they found “}.?BZQ”.
Krzywinski12 introduced carpalx, which includes a more realistic and complex

objective function for evaluating layouts. The carpalx typing effort model is based

on triads, which are three-character substrings formed from the training text. The

effort associated with typing a triad has two components: effort to hit a key (inde-

pendently of preceding and successive strokes) and effort to hit the group of keys.

Independent effort is based on finger distance and includes hand, finger, and row

penalties associated with that key. The effort associated with the group of keys con-

siders their stroke path, which is evaluated by taking into account hand-alternation,

row-alternation, and finger-alternation.

The carpalx model is highly parameterized, as the formula for the effort involves

many weights whose value can be adjusted. Hence, the user can decide what is

important to her layout, so the model can be made highly subjective. For more

details on the computation of the carpalx effort model see12. For this project we

left all the carpalx parameters with their default values and did not change them.

Due to its high complexity, the carpalx objective function requires excessive

computing power (approximately 0.6 seconds on a computer with Intel Core i7

CPU).

The carpalx project also includes an implementation of a simulated annealing

based method for finding good keyboard layouts. Carpalx has been used to construct

layouts optimized for the Filipino13 and Latvian languages14.

A problem related to the keyboard layout optimization problem is the Quadratic

Assignment Problem (QAP). In this problem there are n facilities and n locations,
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and there is a distance between each pair of facilities, as well as a flow between each

pair of locations. The objective is to assign the facilities to different locations in

order to minimize the sum of the distances multiplied by the corresponding flows.

This problem is somewhat similar to the keyboard layout optimization problem: If

the function we wish to minimize is the total movement of the fingers, then the keys

and the finger base positions correspond to the facilities. There are several works

that tackle the QAP problem with genetic algorithms15,16,17.

There are also several previous works that combine genetic algorithms with deep

learning. Sehgal et al.18 use a genetic algorithm to find the values of parameters

used in a reinforcement learning task related to robotic manipulation. Potapov

and Rodionov19 implement a genetic algorithm with a crossover operator that uses

a deep neural network. Hu et al.20 combine a genetic algorithm and deep neural

network models to construct property diagrams for grain boundaries.

Recently, Klein21 developed a multi-step approach for generating keyboard lay-

outs, with which he designed a new layout called Engram.

3. The MKLOGA Model

In this paper, we present our Method for Keyboard Layout Optimization using a

deep Genetic Algorithm (MKLOGA). The method improves the one described by

Fadel et al.7 in several aspects. First, MKLOGA uses a better crossover routine

for generating a new layout from its parents, as explained in section 3.1 below.

In addition, MKLOGA uses the complex and more realistic objective function of

carpalx12 for evaluating layouts. Due to the excessive computing power required

by the carpalx objective function, MKLOGA includes several improvements to the

genetic algorithm process, one of which is the use of deep learning. All MKLOGA

software is available at https://github.com/kerenivasch/MKLOGA.

3.1. The Cycle Crossover Routine

As mentioned above, MKLOGA uses the cycle crossover routine of8 for generating

a new keyboard layout K3 out of two given keyboard layouts K1,K2. The crucial

property of this routine (as opposed to the crossover routine of7) is that each key

placement in K3 is copied from either K1 or K2. As we show in Section 5, the cycle

crossover routine alone provides a significant improvement to the performance of

the algorithm of7.

We proceed to explain the cycle crossover routine for the sake of completeness.

Let S be the set of symbols whose placement is allowed to change, and let P be the

set of keys that can take symbols. We first pick a random parent K from among

K1,K2, we call the other parent K ′. Then we pick a random key p1 ∈ P and copy

its symbol s1 from K to K3. Now we check in which key p2, the symbol s1 is located

in K ′. We copy the symbol s2 of the key p2 in K. Then we check in which key p3,

the symbol s2 is located in K ′. We continue this way until we return to p1 and thus

close a cycle. Hence, all the symbols in this cycle were copied from K.
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If additional keys are left, we make another random choice for K,K ′ between

K1,K2, and pick another random available key and repeat the process. This way

every placement in K3 has been copied from either K1 or K2.

Figure 1 shows an example of the cycle crossover routine. Here, the routine first

picked parent 1, picked from it the letter n, and copied the letter n to the child. The

routine checked the location of the letter n in parent 2; in that location, parent 1

has the letter l. The routine copied the letter l to the child, and checked its location

in parent 2. In that location, parent 1 has the letter z. Continuing this way, the

routine copied the letter z and then the letter d to the child, and then came back

to the letter n, which was the initial letter copied from parent 1. This finished one

cycle of the crossover routine. The routine then picked parent 2, and picked from it

the letter b. Continuing as described before, the routine copied from parent 2 to the

child the letters b, q, a, h, f, y, and v, and then came back to b and closed another

cycle. This process continued until the child layout was complete.

3.2. Using The Carpalx Objective Function

As mentioned, in order to obtain an improved keyboard layout, MKLOGA uses

the complex and more realistic keyboard effort model of carpalx12 for evaluating

layouts. Since the keyboard effort model requires excessive computing power to

evaluate, MKLOGA also includes a neural network for fast estimation of the effort.

The neural network is initially trained on randomly generated layouts. After the

training, the model is saved in order to be used as the initial model for the genetic

part of the algorithm. During the genetic algorithm process, the neural network

is fine-tuned by retraining it with some of the best layouts found in the current

generation using their true effort value. The input layouts for the neural network

are represented using a one-hot representation, as a square 0/1-matrix whose size

corresponds to the number of key positions that are allowed to change. The use

of the neural network allows us to evaluate the expensive effort function only on a

small number of layouts, leading to a significant speedup of the running time.

The genetic algorithm of MKLOGA proceeds as a sequence of generations. Each

generation consists of a population of n layouts. The first generation is generated

randomly. In each generation the layouts are evaluated and sorted according to the

neural network’s estimation. In order to construct the new generation, r layouts

are first generated randomly. The best m layouts of the previous generation pass

automatically to the new generation, and they are also evaluated according to the

true effort function. The best m′ of these are used to generate n − r − m new

layouts using the cycle crossover routine. Each new generated layouts also undergoes

a random number between 0 and t of random mutations. Each mutation consists

of selecting 2 random keys and swapping them. Figure 2 shows a flowchart of the

MKLOGA algorithm, and Figure 3 shows how a generation is constructed from the

previous one.
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4. Experiments

We first evaluated the effect of using the cycle crossover routine. For this, we took

the code of7, and replaced their crossover routine with the one described in Section

3.1. We carried out the two types of experiments that were made by7: changing only

the positions of the letters of the standard layout (called “Letters Only” in7), and

changing also the positions of the punctuation symbols (“Letters and Punctuation”).

We then proceeded to implement MKLOGA. The first step of the implementa-

tion was to train a neural network on a data-set of 4800 randomly generated layouts

labeled with their effort values. The neural network had a hidden layer of size 64

with ReLU activation. For the genetic part, we used a population size of n = 5000,

the number of random layouts added in each generation was r = 1000, the param-

eter m was 250, and m′ was 100. The maximum number of mutations was t = 5.

We ran the genetic algorithm for 30 generations.

As a first step, we allowed to change only the positions of the letters, except

for one difference: Following the lead of some previous keyboard designs (carpalx12,

colemak5) we moved one letter from the top row of letters to the middle row, so

that the top row contains 9 letters and the middle row contains 10 letters. As a

second step, we also allowed to change the positions of the punctuation symbols as

in7.

The effort value was calculated using a corpus provided by12 of size 267KB.

Table 1. Results with the cycle crossover

Letters Only Letters & Punct.
effort gens effort gens

Fadel et al. 1394663.75 88 1312948.02 97

cycle crossover 1394663.75 16 1311932.84 27

5. Results

5.1. The Cycle Crossover Routine

The cycle crossover routine led to a significant improvement in the performance of

the genetic algorithm. As depicted in Figure 4, with the cycle crossover the objective

function decreased much faster. Furthermore, for the case of Letters Only, with the

old crossover routine, the genetic algorithm reached the final objective function

value at generation 88, whereas with the cycle crossover routine this same value

was achieved at generation 16. For the case of Letters and Punctuation, the cycle

crossover yielded a lower final objective function value and it was also achieved in

a much earlier generation. See Table 4.

5.2. MKLOGA

As mentioned above, MKLOGA fine-tunes the neural network model during the

course of the genetic algorithm. In our experiments, the loss of the model decreased
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from 0.048 to 0.0028 when moving only the letter positions, and from 0.076 to

0.00098 when moving also the punctuation symbols. Hence, the neural network

model’s prediction accuracy improved during the course of the execution.

When we ran MKLOGA moving only the letter positions, MKLOGA found a

layout with an effort value of 1.625, and it did so already at generation 19. See Figure

5 (a). When we let MKLOGA move also the punctuation symbols, it found a layout

with an effort value of 1.612, at generation 42. See Figure 5 (b). For comparison,

the layout found by Fadel et al.7 has an effort value of 2.508 (though, as mentioned

above, they optimized for a different objective function). We also ran the simulated

annealing code of12 using its default parameters. We did so 10 times and took the

average effort value of the produced layouts. See Table 5.2, which also shows the

effort value of a few other well known layouts, for comparison. Moreover, the neural

network model of MKLOGA takes approximately only one millisecond to estimate

the effort value of a layout, which is much faster than calculating the true effort.

Table 2. The carpalx effort value of different

keyboards.

keyboard effort

Qwerty 2.962

Dvorak 2.046
Colemak 1.796

Carpalx Sim. Ann. 2.038
}.?BZQ (Fadel et al.) 2.508

MKLOGA Letters Only 1.625

MKLOGA Letters & Punct. 1.612

6. New Layout Adaptation Experiments

In this section we study the ability of humans to adapt to new layouts. For that

end we carry out an experiment conducted with humans using multiple keyboard

layouts.

6.1. Working Hypotheses

Our primary goal of the new layout adaptation experiments is to test the following

hypotheses:

(1) Do experienced QWERTY typists adapt better to new layouts than inexperi-

enced typists?

(2) Once experimenting with a new layout, would the users find it easier to adapt

to another new layout?

(3) Do users find it easier to adapt to common letter combinations than to rare

letter combinations, when presented with a new layout? On the one hand, the

user might recognize more quickly common letter combinations, and will also
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learn more quickly to type them. On the other hand, perhaps the old ingrained

habits might cause the user to get confused.

6.2. Experimental Design

We conduct an experiment in which users are requested to type certain letter com-

binations using different keyboard layouts. In the first phase of the experiment,

the users are presented a random text of length 60 that is composed of letters and

spaces. The users are requested to type this text using the standard QWERTY

layout. The experiment then continues with two additional phases (phases two and

three), each focusing on a different partial keyboard layout.

One partial layout consists of the letters A,E,R located in the positions of

D,K, S of the QWERTY layout. The second partial layout consists of the letters

J, Z,Q located in these same positions. For each partial layout, the users are given

two typing assignments. The first assignment is only used as a warm-up and con-

tains a random collection of the three letters and spaces, of length 60. The second

assignment, for which we record results, consists of 20 triplets, separated by spaces.

For the AER partial layout, the triplets are ear, are, and era, which are actual En-

glish words. For the JZQ partial layout, the triplets are zjq, jqz, and zqj, which use

the same keys in the same order. One of the partial layouts is used for phase two

and the other for phase three, but the order between them is chosen at random for

each user. Figure 6 depicts the different phases and assignments of the experiment.

In all the phases, the user cannot proceed to type the next letter until she typed

correctly the current letter.

Each user is asked a few questions about themselves (age, gender, education,

and previous experience with touch typing).

We use the Mechanical Turk to run this experiment with 300 different people.

A software bug caused four of the users’ data records to become invalid. Therefore,

296 data records are used in our analysis.

6.3. Experimental Results

As expected, users made significantly fewer mistakes with the QWERTY layout

(average 6.4) than with the two new layouts (average 54.5) (p < 0.0001).

Quite surprisingly, we found a very small correlation between the number of

errors in QWERTY and the number of errors in the two new layouts (correlation

coefficients of 0.08 and 0.11 for AER and JZQ respectively). In other words, users

that were good at QWERTY were not necessarily good in other new layouts. On the

other hand, we found a very strong correlation between the number of errors in the

two new layouts (correlation coefficient of 0.89). Hence, users that were good at one

new layout were also good at the other one. We also note that learning the second

new layout seems faster than learning the first new layout (regardless of which

layout is being learned). Indeed, users completed the second phase significantly

faster than the first (80.3s for the first and 63.2s for the second). This difference is
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statistically significant (p < 0.05 using one-tail t-test). Interestingly however, there

was no statistically significant difference between the number of mistakes in the first

and second phases (53.2 and 55.7 respectively).

We were expecting a more significant difference between the AER and JZQ

experiments, since in the former the triplets consisted of common characters forming

actual English words, but not in the latter. However, the difference in the number

of mistakes was not statistically significant (average 56.2 for AER, 52.7 for JZQ),

nor was the difference in the total typing times (average 74.7s for AER, 68.8s for

JZQ). A more in-depth study is required here.

Interestingly, we found no significant correlation between the users’ performance

(number of errors or typing time) and their age, gender, education or experience

with touch typing.

Table 3. Number of mistakes made by users in each letter: QWERTY layout (top), AER layout (middle), JZQ layout (bottom).

a b c d e f g h i j k l m n o p q r s t u v w x y z space

48 66 8 22 78 32 103 49 20 131 94 71 20 46 83 71 31 31 25 41 31 134 79 49 60 88 336

a e r space

3297 3751 3695 5908

j z q space

2966 3966 3291 5401

Table 4. Average typing time (seconds) of each letter in the QW-
ERTY phase (first row) compared to the Euclidean distance used by

Fadel et al. (second row).

a b c d e f g h i j k l m

1.43 0.89 0.91 0.82 1.53 0.98 1.1 1.3 0.64 1.16 1.09 0.98 0.65

1.08 2.37 1.1 1.08 2.65 1.08 1.34 2.76 2.65 1.08 1.08 1.08 1.1
n o p q r s t u v w x y z

0.72 0.77 1.01 1.02 0.76 0.75 0.88 0.74 1.59 0.91 0.97 0.98 0.98

1.98 2.65 2.65 2.88 2.65 1.08 2.65 2.88 1.1 2.65 1.1 3.58 1.1

Observations on specific keys

We took a look at the number of mistakes users made on typing each letter while

using the different layouts. See Table 6.3. In the QWERTY phase, users made most

mistakes in keys V and J (134 and 131 respectively), and they made the fewer

mistakes in keys M and I (20 for each). Interestingly, in the two other phases, users

made the most mistakes in the letter located in the K position (letters E and Z

of the new layouts), and the fewest mistakes in the letter located in the D position

(letters A and J of the new layouts).



February 13, 2023 10:13 WSPC/INSTRUCTION FILE output

Keyboard Layout Optimization and Adaptation 13

Since users made many mistakes when typing J in the QWERTY layout but

they made few mistakes when typing this letter using the JZQ layout, this seems

to indicate that the location of the letter is more significant than the letter itself.

Finally, we looked at the average time taken to type each letter during the

QWERTY phase. See Table 6.3. For comparison, the table also shows the Euclidean

distances used by7 for evaluating layout fitness. There is a correlation of −0.147,

which seems to indicate that the Euclidean distance is a poor measure of keyboard

layout fitness.

7. Discussion & Future Work

As mentioned above, the best keyboard layout found by MKLOGA achieves an

effort value of 1.612. In comparison, the best layout offered by the carpalx project12

(the one they refer to as “qgmlwb”) achieves an effort value of 1.629 (in their website

they give a value of 1.668, the difference being due to the use of a larger corpus).

However, the layout that they recommend (which they refer to as “qgmlwy”) leaves

the keys Z, X, C, V, in the classical QWERTY positions due to their frequent use

in keyboard shortcuts, and it achieves an effort value of 1.635 (1.670 according to

their website). Interestingly, in one run, MKLOGA produced a keyboard with the

keys Z, X, C, V, in place, with an effort value of 1.633. See Figure 5 (c). Finally, it

is worth noting that the above-mentioned carpalx layouts were probably built with

human assistance and not purely with a computer algorithm.

MKLOGA may be useful in developing good keyboard layouts for languages

other than English. Also, as mentioned in7, there is a need for left-hand only and

right-hand only layouts for handicapped people. There is an increasing need for

good layouts for smartphone keyboards, in which people type with only one finger.

In current form, MKLOGA calculates the effort value with a relatively small

corpus; we plan to switch to a larger corpus in order to get more accurate results.

In addition, we plan to implement an even more realistic objective function

that takes into account other relevant factors in typing. Also, we suspect that the

carpalx effort model is not realistic enough, because it assigns a much better score to

the Dvorak keyboard than to QWERTY, despite the fact that research shows that

among experienced typewriters, it does not make much of a difference whether they

use the Dvorak or the QWERTY layout. We would like a more realistic function

that will explain this counter-intuitive fact so we can construct a keyboard layout

that is truly better.

In the adaption experiments, we tested three different keyboard layouts. The

results obtained seem to point that experienced QWERTY typists do not adapt

better to new layouts, that once experimenting with a new layout users find it

easier to adapt to another layout, and that the use of common letter combinations

does not have a major impact on the difficulty to adapt to a new layout. However,

the two new keyboard layouts were limited to three keys, since we did not want to

require the participants to commit to a long-term study, and asking the participants
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to learn a full keyboard layout in a short time-frame seems infeasible. In future work,

we intend to perform a longitudinal study and hope to extend the results obtained

in this paper to an entire keyboard layout.

8. Conclusion

Despite the fact that the QWERTY keyboard layout was designed more than 100

years ago, it is still the predominant layout in use today. There have been several

attempts to design better layouts, both manually and automatically. In this paper

we proposed MKLOGA, which improves on previous works on automatic keyboard

layout optimization, by using a deep neural network to assist in a genetic search

algorithm. As we showed, MKLOGA enables the use of a sophisticated keyboard

evaluation function that would otherwise take a prohibitive amount of time. We

also showed that the cycle crossover routine greatly improves the genetic search.

MKLOGA produced a better keyboard layout than previous algorithms, according

to the realistic typing effort model of carpalx12. MKLOGA might be useful for

developing good layouts for languages other than English, and for other situations

in which objects must be placed in predefined locations.

Finally, we conducted some layout adaptation experiments with 300 participants

in order to examine how users adapt to new keyboard layouts. We found that

experience in QWERTY typing does not seem to make a difference in adapting

better to new layouts, that once experimenting with a new layout users find it

easier to adapt to another layout, and that the use of common letter combinations

does not have a major impact on the difficulty to adapt to a new layout.

Acknowledgment

This research was supported in part by the Ministry of Science, Technology & Space,

Israel.

References

1. J. Stamp, Fact of fiction?
the legend of the QWERTY keyboard (2013), https://www.smithsonianmag.com/
arts-culture/fact-of-fiction-the-legend-of-the-qwerty-keyboard-49863249.

2. J. Noyes, The qwerty keyboard: A review, International Journal of Man-Machine
Studies 18(3) (1983) 265–281.

3. N. Baker, Why do we all use qwerty keyboards? (2010), https://www.bbc.com/news/
technology-10925456.

4. The Age, Wrist pain? try the Dvorak keyboard (2004), https://www.theage.com.au/
technology/wrist-pain-try-the-dvorak-keyboard-20041210-gdka9g.html.

5. S. Coleman, Colemak (2006), http://colemak.com.
6. P.-Y. Yin and E.-P. Su, Cyber swarm optimization for general keyboard arrangement

problem, International Journal of Industrial Ergonomics 41(1) (2011) 43–52.
7. A. Fadel, I. Tuffaha, M. Al-Ayyoub and Y. Jararwch, Qwerty keyboard? .?BZQ is

better!, in 2020 International Conference on Intelligent Data Science Technologies
and Applications (IDSTA) (Virtual, 2020), pp. 81–86.



February 13, 2023 10:13 WSPC/INSTRUCTION FILE output

Keyboard Layout Optimization and Adaptation 15

8. I. Oliver, D. Smith and J. R. Holland, Study of permutation crossover operators on
the traveling salesman problem, in Genetic algorithms and their applications: proceed-
ings of the second International Conference on Genetic Algorithms (Massachusetts
Institute of Technology, Cambridge, MA, 1987).

9. C. Liao and P. Choe, Chinese keyboard layout design based on polyphone disambigua-
tion and a genetic algorithm, International Journal of Human–Computer Interaction
29(6) (2013) 391–403.

10. M. Govind and V. V. Panicker, Optimization of a single finger keyboard layout us-
ing genetic algorithm and topsis, International Journal of Scientific & Engineering
Research 7(2) (2016) 102–105.

11. A. H. H. Onsorodi and O. Korhan, Application of a genetic algorithm to the keyboard
layout problem, PLOS ONE 15 (01 2020) 1–11.

12. M. Krzywinski, Carpalx keyboard layout optimizer (2005), http://mkweb.bcgsc.ca/
carpalx/.

13. J. M. R. Salvo, C. J. B. Raagas, M. T. C. M. Medina and A. J. A. Portus, Ergonomic
keyboard layout designed for the filipino language, in Advances in Physical Ergonomics
and Human Factors (Springer, 2016) pp. 407–416.

14. V. Vitolins, Modernized latvian ergonomic keyboard, arXiv preprint arXiv:1707.03753
(2017).

15. H. Azarbonyad and R. Babazadeh, A genetic algorithm for solving quadratic assign-
ment problem (qap), in Proceeding of 5th International Conference of Iranian Opera-
tions Research Society (ICIORS) (Tabriz, Iran, 2012).

16. R. K. Ahuja, J. B. Orlin and A. Tiwari, A greedy genetic algorithm for the quadratic
assignment problem, Computers & Operations Research 27(10) (2000) 917–934.

17. A. Hameed, B. Aboobaider, M. Mutar and N. Choon, A new hybrid approach based
on discrete differential evolution algorithm to enhancement solutions of quadratic
assignment problem, International Journal of Industrial Engineering Computations
11(1) (2020) 51–72.

18. A. Sehgal, H. La, S. Louis and H. Nguyen, Deep reinforcement learning using genetic
algorithm for parameter optimization, in 2019 Third IEEE International Conference
on Robotic Computing (IRC) (Naples, Italy, 2019), pp. 596–601.

19. A. Potapov and S. Rodionov, Genetic algorithms with dnn-based trainable crossover
as an example of partial specialization of general search, in International Conference
on Artificial General Intelligence Springer, (Seattle, WA, 2017), pp. 101–111.

20. C. Hu, Y. Zuo, C. Chen, S. P. Ong and J. Luo, Genetic algorithm-guided deep learn-
ing of grain boundary diagrams: addressing the challenge of five degrees of freedom,
Materials Today 38 (2020) 49–57.

21. A. Klein, Engram: a systematic approach to optimize keyboard layouts for touch
typing, with example for the English language (2021).



February 13, 2023 10:13 WSPC/INSTRUCTION FILE output

16 Keren Nivasch and Amos Azaria

Fig. 6. The typing experiments



35 

 

 

Discussion and Conclusions 

 
In this work we considered the problem of automatically detecting user corrections 

using deep learning based on multimodal cues, i.e., text and speech.   

We developed a multimodal architecture (SAIF) that detects such user corrections, 

which takes as inputs the user’s voice commands as well as their transcripts.  

Voice inputs allow SAIF to take advantage of sound cues, such as tone, speed, and 

word emphasis. We released a labeled dataset of 2540 pairs of spoken commands that 

users had with a social agent. We believe that releasing the dataset will lead to further 

work on this problem. 

The multimodal correction detection problem presented in this work has many 

implications to social interactive agents and personal assistants. Therefore, future 

work might include assembling SAIF in a personal agent, and using the implicit 

feedback obtained by correction detection to learn aliases to commands and to undo 

commands that were unintentionally given by the user.  

 

We also presented RLZW, an RL based agent that decides whether to insert the 

current string to the LZW dictionary or not. We showed that on some types of input 

data, RLZW outperformed the compression ratio of LZW. To the best of our 

knowledge, this work is the first to use a reinforcement learning agent in a dictionary-

based compression schema. Future work might include extending this method to a 

larger alphabet and a larger dictionary size as well as employing additional 

reinforcement learning methods, such as a deep Actor-Critic learner. 

Regarding keyboard layout optimization, our solution may be useful in developing 

good keyboard layouts for languages other than English. Also, there is a need for left-

hand only and right-hand only layouts for handicapped people. There is an increasing 

need for good layouts for smartphone keyboards, in which people type with only one 

finger.  

We suspect that the typing effort model that we used is not realistic enough, because it 

assigns a much better score to the Dvorak keyboard than to QWERTY, even though 

research shows that among experienced typewriters, it does not make much of a 

difference whether they use the Dvorak or the QWERTY layout. We would like a 

more realistic function that will explain this counter-intuitive fact so we can construct 

a keyboard layout that is truly better. 

In the typing adaption experiments, we tested three different keyboard layouts. The 

results obtained seem to point that experienced QWERTY typists do not adapt better 

to new layouts, that once experimenting with a new layout users find it easier to adapt 

to another layout, and that the use of common letter combinations does not have a 

major impact on the difficulty to adapt to a new layout. However, the two new 

keyboard layouts were limited to three keys, since we did not want to require the 

participants to commit to a long-term study, and asking the participants to learn a full 

keyboard layout in a short time-frame seems infeasible. Future work might include 

performing a longitudinal study and hope to extend the results to an entire keyboard 

layout. 
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 תקציר 

 על למידה עמוקה בבעיות מהעולם האמיתי. במספר שימושים של סוכנים המבוססים עבודה זו עוסקת 

. סוכנים חכמים שיכולים ליצור אינטראקציה עם משתמשים  וניםהראשון נוגע לזיהוי תיק שימושה

עלול לא להבין נכון פקודת  חכםבאמצעות שפה טבעית הופכים נפוצים יותר ויותר. לפעמים סוכן 

משתמש או לא לבצע אותה כראוי. במקרים כאלה, המשתמש עשוי לנסות פעם שנייה על ידי מתן פקודה 

לסוכן לזהות תיקוני משתמשים כאלה עשוי לעזור לו לתקן את   נוספת, מעט שונה לסוכן. מתן היכולת

שקלנו את הבעיה של זיהוי אוטומטי של תיקוני אנו  .הטעויות שלו ולהימנע מלעשות אותן בעתיד

מודאלית שמזהה תיקוני משתמשים  -משתמשים באמצעות למידה עמוקה. פיתחנו ארכיטקטורה מולטי

כקלט את הפקודות הקוליות של המשתמש כמו גם את התמלילים שלו. הארכיטקטורה מקבלת כאלה. 

 .קול, כגון טון, מהירות והדגשת מיליםב שנמצאים םרמזיכניסות קוליות מאפשרות לארכיטקטורה לנצל 

קשור לדחיסת קבצים. דחיסת קבצים חשובה יותר ויותר בעידן האינטרנט. תעבורת  קרנונוסף שח שימוש

גורמת לאחסנת   (IoT) ות חברתיות, אפליקציות סלולריות ואינטרנט של הדבריםאינטרנט המגיעה מרשת

כמויות אדירות של נתונים בכל דקה. נפח הנתונים ההולך וגדל הזה דורש שימוש במשאבים פיזיים  

כדי לשפר את יעילות הדחיסה כמו גם   (RL) למידת חיזוק עמוקה ואנרגיה. בעבודה זו השתמשנו בשיטות

 .וד. התמקדנו בטכניקות קידוד ללא אובדן, שבהן למידת חיזוק לא יושמה קודם לכןאת זמן העיב

אמצעי מכיוון שהמקלדת היא ה .מקלדתעיצוב פריסת לבסוף, שקלנו את הבעיה של אופטימיזציה של 

ביותר להזנת טקסט במחשבים כיום, עיצוב פריסת המקלדת הוא משמעותי ביותר. למרות שפריסת   ץהנפו

שנה, היא עדיין הפריסה השולטת בשימוש   100-תוכננה לפני יותר מ)באנגלית(  QWERTY-ה מקלדת

שיפרנו אנו כיום. היו מספר ניסיונות לעצב פריסות טובות יותר, הן באופן ידני והן באופן אוטומטי. 

אופטימיזציה אוטומטית של פריסת מקלדת, על ידי שימוש ברשת עצבית עמוקה כדי של עבודות קודמות 

במצב אחר היה  ש שוכללתסייע באלגוריתם חיפוש גנטי, המאפשר שימוש בפונקציית הערכת מקלדת מל

משפרת מאוד את החיפוש הגנטי. לבסוף,  חלוףפרק זמן עצום. הראינו גם שבחירה טובה יותר של ש לוקח

כדי לבדוק כיצד משתמשים בעלי רמות ניסיון שונות מסתגלים לפריסות מקלדת חדשות, ערכנו ניסויים  

 .משתתפים 300להתאמת פריסה עם 
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