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Transportation services play a crucial part in the development of modern smart
cities. In particular, on-demand ridesharing services, which group together pas-
sengers with similar itineraries, are already operating in several metropolitan areas.
These services can be of significant social and environmental benefit, by reducing
travel costs, road congestion and CO2 emissions. The deployment of autonomous
cars in the near future will surely change the way people are traveling. It is even
more promising for a ridesharing service, since it will be easier and cheaper for a
company to handle a fleet of autonomous cars that can serve the demands of differ-
ent passengers.

A special case in which ridesharing services are most applicable, is the last mile
variant. In this variant it is assumed that all the passengers are positioned at the
same origin location (e.g. an airport), and each have a different destination. In this
thesis we focus on the last mile variant. We believe that a human-centric approach
is needed for a wide-spread adaptation of ridesharing services. We thus investigate
the human-centric approach from three aspects.

First, we analyze the assignment problem where the objective is to maximize the
user satisfaction. We argue that user satisfaction should be the main objective when
trying to find the best assignment of passengers to vehicles and the determination
of their routes. Moreover, the model of user satisfaction should be rich enough to
capture the traveling time, cost, and other factors as well. We show that it is more
important to capture a rich model of human satisfaction than peruse an optimal
performance. That is, we developed a practical algorithm for assigning passengers
to vehicles, which outperforms brute-force assignment algorithms that use a simpler
satisfaction model.

The second part of this thesis investigates another major aspect of ridesharing,
which is the splitting of the ride cost among the passengers fairly. Deciding how
to split the ride cost is significant and directly impacts passenger satisfaction. For
this matter we use the Shapley value, which is one of the most significant solution
concepts in cooperative game theory, for fairly splitting the cost of a shared ride.

We consider two scenarios. In the first scenario there exists a fixed priority order
in which the passengers are dropped-off (e.g. elderly, injured etc.), and we show a
method for efficient computation of the Shapley value in this setting.

In the second scenario there is no predetermined priority order. We show that
the Shapley value cannot be efficiently computed in this setting. However, extensive
simulations reveal that our approach for the first scenario can serve as an excellent
proxy for the second scenario, outperforming other known proxies.

The last part of this thesis investigates the drop-off order aspect. Since we adopt a
human-centric approach, we would like the passengers to be able to set the drop-off
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order according to their needs. We thus present a VCG based mechanism for setting
the drop-off order that obtains the value of time from each of the passengers and
outputs a drop-off order. The mechanism is both efficient and truthful. We provide
simulations showing that the overhead cost paid to the mechanism is reasonable,
and is significantly lower than the commission charged by companies providing
ride-sourcing services.
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Chapter 1

Introduction

The National Household Travel Survey performed in the U.S. in 2009 [68] revealed
that approximately 83.4% of all trips in the U.S. were in a private vehicle (other op-
tions being public transportation, walking, etc.). The average vehicle occupancy was
only 1.67 when compensating for the number of passengers. This extremely low av-
erage vehicle occupancy entails a very large number of vehicles on the road that
collectively contribute to carbon dioxide emissions, fuel consumption, air pollution
and an increase in traffic load, which in turn requires additional investment in en-
larging the road infrastructure. In recent years, ride hailing services such as Uber
and Lyft have gained popularity and an increasing number of passengers use these
services as one of their main means of transportation [79]. Both Uber and Lyft are
now also offering ridesharing options, and other companies, such as Super-Shuttle
and Via, are explicitly targeted at customers who want to share their ride.

The deployment of autonomous vehicles in the near future will have a signifi-
cant impact on the way people are traveling. The implication of this revolutionary
way of transportation is not fully known nowadays [33], but it is safe to claim that
autonomous vehicles will have a positive effect on the development of ridesharing
services. Indeed, it will be easier and cheaper for a company to handle a fleet of
autonomous vehicles that can serve the demands of different passengers. It can also
rule-out some negative human-driver factors, such as driver’s fatigue from the long
travels and the driver’s inconvenience from having multiple pick-up and drop stops
along his route.

We note that the term ridesharing is used in the literature with different mean-
ings. As we will later define, we consider only the setting where the vehicle operator
does not have any preferences or predefined origin and destination. Instead, the ve-
hicle’s route is determined solely by the passengers’ requests.

In this thesis we focus on the last-mile setting [17], i.e., it is assumed that all the
passengers are positioned at the same origin location (e.g. airport), where all the
vehicles are also located, and must be taken to their final destination. This setting
is very important, as any mass public transportation solution must also deal with
the last (and first) mile setting. While large aircrafts and trains may transport many
people at once, each person must eventually arrive at her final destination.

Ridesharing has a true potential for improving the quality of life for many peo-
ple [18], and it is part of the general concept of sharing economy that is being evolved
nowadays. However, despite both Uber and Lyft offering ridesharing options, not
many users elect to share their rides with additional passengers [42, 14]. Following
the statement by Carnegie [15, p. 37], “There is only one way to get anybody to do
anything. And that is by making the other person want to do it.”, we believe that
the key ingredient required for a widespread adaptation of ridesharing is to focus on
user satisfaction. We therefore investigate a comprehensive human-centric approach
for ridesharing.
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In this thesis we analyze user satisfaction from three aspects: In Chapter 2, we
analyze the assignment problem. We collect information from human about the pa-
rameters affecting passenger satisfaction, and develop a learning-based function that
weighs all of these parameters and ranks the passenger’s satisfaction. In addition,
we develop an efficient algorithm for the assignment of passengers to vehicles. We
show that our algorithm, with the function we have developed, outperforms the
brute-force algorithm that uses a simpler satisfaction function.

In Chapter 3, we analyze the cost allocation problem. We use the Shapley value
and show that when passengers are prioritized, it can be calculated in polynomial
time. In contrast, when no such order exists, we show that the Shapley value cannot
be calculated in polynomial time unless P = NP, but we show that computing the
Shapley value with a priority order can serve as an excellent proxy.

In Chapter 4, we would like the passengers to be able to set the drop-off order
according to their needs. We therefore propose a VCG-based mechanism for deter-
mining the drop-off order. Our mechanism collects information from the passengers
regarding their preferences, and determines the optimal drop-off order. We show
that our mechanism is both truthful and efficient.
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Chapter 2

Human Satisfaction as the
Objective for Assignment

2.1 Introduction

The basic challenge of a ridesharing service is how to assign the passengers’ requests
for a ride to vehicles and define the routes for the fleet of vehicles in an optimal
manner. This problem belongs to the generic class of Vehicle Routing and schedul-
ing Problems (VRPs), which have been extensively studied over the past 50 years,
mainly in the operation research and transportation science communities. Several
variants with different characteristics have been developed. For example, the initial
formulation of the VRP assumes that the environment is static, i.e., all requests are
known before-hand and do not change thereafter [21]. The more complex variants,
including the rideharing problem, are dynamic, where real-time requests are grad-
ually revealed along the service operating time. In this setting the assignment of
passengers to vehicles and the determination of vehicles’ routes may be adjusted
when they are already in transit [66, 73]. Arguably, a major criterion that character-
izes each variant of the VRP is the objective function. It is very common to consider
objectives from the service provider’s perspective, for example, minimizing the to-
tal distance travelled [70, 1], minimizing the fleet size [22, 71], or maximizing the
service provider’s profit [13, 59]. However, as noted by Cordeau and Laporte[20],
one should be interested not only in minimizing the operating costs for the service
provider but also in maximizing the quality of the service and the user satisfaction.

Many works integrate quality of service and user satisfaction considerations as
additional constraints of the problem. For example, a time window restricts the wait-
ing time a passenger is willing to face before being picked up [37, 24], and it is usu-
ally combined with a bound on the maximum user ride time [56]. In addition, there
are several works that combine the aforementioned operational objectives with the
objective of maximizing the user satisfaction (or its antonym, minimizing the user
inconvenience). The common interpretation for user satisfaction is the minimization
of the total user on-board (ride) time and the total user waiting time [65], the extra
riding time due to ridesharing [44], or the amount of deviations from desired depar-
ture and arrival times [29, 82]. Notably, Lyu et al. [47], allow the users to provide
a set of constraints and to indicate the importance of each of the following features:
walking distance, waiting time, extra travel time, and travel fare. Lyu et al. make the
assumption that the user preferences are specified by each user in each ride request,
and they provide an algorithm that uses this information to maximize user satisfac-
tion. However, to the best of our knowledge, there are no works in the ridesharing
domain that develop a general user satisfaction function, and exclusively focus on
maximizing it.
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Our basic claim in this chapter is that the user satisfaction should be the main
objective of the ridesharing service. Moreover, the model of user satisfaction should
be rich enough to capture the complex inter-dependencies among several factors. In
the last-mile setting, we develop a method for modeling and maximizing a complex
user satisfaction function.

One approach for handling a rich objective function is to treat its factors as mul-
tiple objectives. Indeed, there are several methods in the literature on VRP for han-
dling multiple objectives. The most common approach is to aggregate the objectives
into a single weighted-sum objective function [49], and advanced utility model may
be used for modeling the interactions between the objectives [43]. Additional strate-
gies define hierarchical objective function [69], or return a set of non-comparable
solutions which do not weakly dominate each other [60, 50]. Since our rich objective
function models user satisfaction, we propose a different, human-centric, approach.
Specifically, we investigate machine learning methods for modeling the rich satis-
faction function from real humans. Clearly, it is unrealistic to elicit the exact user
satisfaction for each passenger and every ride, and we thus propose to build a gen-
eral model for user satisfaction, which is based on multiple features. These features
include both ride specific features (e.g. cost, travel time) and person specific features
(e.g. age, gender) and thus two people may obtain different satisfaction levels from
similar rides.

Interacting with humans and learning human behavior is a very complex task.
Research into humans’ behavior has found that people often deviate from what is
thought to be the rational behavior, since they are affected by a variety of (some-
times conflicting) factors: a lack of knowledge of one’s own preferences, the effects
of the task complexity, framing effects, the interplay between emotion and cognition,
the problem of self-control, the value of anticipation, future discounting, anchoring
and many other effects [77, 46, 6, 12]. Therefore, algorithmic approaches that use
a pure theoretically analytic objective often perform poorly with real humans [61,
8, 53]. On the other hand, several works have demonstrated that a machine learn-
ing approach, which builds upon psychological factors and human decision-making
theory, is essential for developing a good model of true human behavior. The human
behaviour model is in turn required for successfully implementing algorithms that
interact with humans [30, 36, 75, 67, 7, 4, 34]. We therefore ran experiments with ac-
tual humans and build a deep learning based function to estimate user satisfaction.
We introduce Simsat, an algorithm for assigning passengers to vehicles while max-
imizing a complex user satisfaction function as the objective. We show that Simsat
outperforms brute-force assignment methods that use a simpler objective function,
indicating that it is more important to obtain a richer model of user satisfaction, than
improving the performance of the assignment algorithm.

2.2 Related Work

We will briefly review the current literature on the broad class of Vehicle Routing
and scheduling Problems (VRPs), to place our assignment problem in an appropri-
ate context. The VRP was first introduced by Dantzig and Ramser[21]. The growing
body of research on routing problem over the past 50 years has led to the develop-
ment of several research communities, which sometimes denote the same problem
types by various names. In particular, the traditional VRP and some of its exten-
sions deal with finding an optimal set of routes for a fleet of vehicles to traverse
in order deliver or pickup some goods to a given set of costumers. We refer to the
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comprehensive survey of Parragh, Doerner, and Hartl[57] on this class of problems,
which they denote by Vehicle Routing Problems with Backhauls (VRPB). A more
recent survey, that also defines a taxonomy to classify the various variants of VRP
by 11 criteria, is given by Psaraftis, Wen, and Kontovas[66]. A second class of prob-
lems, that is denoted by Parragh et al. as Vehicle Routing Problems with Pickups
and Deliveries (VRPPD), deal with all those problems where goods are transported
between pickup and delivery customers. We refer to the survey of Parragh, Doerner,
and Hartl[58] on this class of problems. One subclass of VRPPD compromises the
dial-a-ride problem (DARP), where the goods that are transported are passengers
with associated pickup and delivery points. As noted by Cordeau and Laporte[20],
the DARP is distinguished from other problems in vehicle routing since transporta-
tion cost and user inconvenience must be weighed against each other in order to
provide an appropriate solution. Therefore, the DARP typically includes more qual-
ity constraints that aim at capturing the user’s inconvenience. We refer to a recent
survey on DARP by Molenbruch, Braekers, and Caris[49], which also makes this
distinction.

A domain closely related to ridesharing is car-pooling. In this domain, ordinary
drivers, may opt to take an additional passenger on their way to a shared destina-
tion. The common setting of car-pooling is within a long-term commitment between
people to travel together for a particular purpose, where ridesharing is focused on
single, non-recurring trips. Indeed, several works investigated car-pooling that can
be established on a short-notice, and they refer to this problem as ridesharing [2, 51].
We stress that in our ridesharing assignment problem, similar to the DARP setting,
there is a central organization that owns the vehicles, and they thus do not have
their own travel plans. Indeed,Montazery and Wilson[51] investigated the matching
of passengers to cars in the car-pooling domain, based on a user satisfaction function
that they learn. However, they use this function to build a recommendation system
that recommends a set of best possible matching to each passenger.

2.3 Basic Model and Notation

Informally, the assignment problem consists of a weighted graph, requests given by
passengers, each with an origin and a destination that are both nodes in the graph,
and a set of vehicles, each with a given capacity. All the vehicles are assumed to
be operated by a central entity. In the last-mile setting we need to assign travel
routes (on the graph) to vehicles, in order to satisfy the passenger requests while
optimizing a given objective function. In our work, we concentrate on the objective
of maximizing the user satisfaction function.

We assume to have a set of passengers, U , |U |= n, and a set of vehicles, V . Every
user, u ∈ U , is assumed to have a travel time t(u) that would take her to reach
her destination had she received a direct ride. An assignment P determines which
users are assigned to which vehicle, and the route for this vehicle. Let P v be the
set of passengers that are assigned by P to a vehicle v ∈ V , and let tvP be the total
travel time of vehicle v according to P . Clearly, the travel time of some passengers
according to P might be longer than their direct ride’s travel time. Let tP (u) be the
travel time of user u according to P .

We assume that the service provider incurs a fixed cost per minute of travel, M ,
that encapsulates the full operation cost including any desired revenue. For exam-
ple, if the fuel, tolls and any maintenance costs are estimated at 0.90 dollars per
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minute of travel, and the service provider commits to receiving only a 10% per-
centage of the user payment (as its revenue), M equals $0.90

1−0.10 = $1. Consequently,
let c(u) be the cost that a user u would have paid had she received a direct ride,
c(u) = M · t(u).

The cost for a user in a shared-ride is determined in proportion to the user’s
distance from the origin. More formally, let cP (u) be the cost of a user u according to
an assignment P . The cost for a user u that is assigned to vehicle v according to P is
determined by the proportional sharing pricing function [26], that is,

cP (u) =
c(u)∑

u′∈U,u′∈P v c(u′)
· (M · tvP )

2.3.1 The Human Satisfaction Function

Our definition of the objective of the assignment problem is to find an assignment P
that maximizes the satisfaction of all of the passengers. In order to derive the factors
that define the satisfaction function we run a short survey on Mechanical Turk. We
asked 30 subjects from the USA what the factors that affect their satisfaction of from
using a ride-sharing service are and what factors affect other people’s decision to
prefer a ride-sharing service over a private taxi ride. We obtained the following 14
factors:

1. The cost of the ride.

2. Travel time.

3. Number of passengers in the vehicle.

4. Seat.

5. Cleanliness of the vehicle.

6. Comfort of the vehicle.

7. Politeness / Friendliness / Behavior / Care / Personality of driver and other
passengers.

8. Waiting time.

9. Safety.

10. Laud music or smoking.

11. Own age.

12. Own gender.

13. Own income and wealth.

14. Own social level.

Clearly, some of these factors are not specific to a ride-sharing service, such as clean-
liness of the vehicle or its comfort, and some of these factors are not relevant to our
setting, such as waiting time. In addition, we felt that it is inappropriate to ask for
the exact income and wealth, and we replace this factor with a general question re-
garding the working status. We therefore consider the following satisfaction factors
in our work:
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• Travel cost.

• Travel time.

• Number of passengers in vehicle.

• User’s seat.

• Working status (employed or unemployed).

• User age.

• User gender.

A passenger may also have other dynamic preferences, which change from one ride
to another, but asking the passenger in each ride about all of her preferences may
be tedious. Our motivation in this work is to bring about the importance of con-
sidering the user satisfaction as an objective, even if it is not 100% accurate, and we
experimentally support this claim.

2.4 Satisfaction Model Learned from Humans

In order to develop a more realistic human satisfaction model, we use machine learn-
ing techniques based upon data collected from humans. To this end, we solicited 414
human subjects from Mechanical Turk to obtain satisfaction level data. We set na-
tionality to USA, approval rate to at least 98% and did not require the Turkers to be
masters. Based on this data, we use deep learning to build a satisfaction model.

2.4.1 Data Collection

The subjects were first asked to provide the following personal details: year of birth,
gender and whether they were employed or unemployed.

Our satisfaction model tries to predict the relative satisfaction, that is, how much
a passenger traveling by shared-ride is more or less satisfied than the same pas-
senger traveling in a private ride. However, asking users to provide their relative
satisfaction is unrealistic, and we thus split every travel scenario into two sub-parts.
In the first part we asked the subjects to determine their satisfaction level from a di-
rect private ride to some destination. In the second part the subjects were asked to
determine their satisfaction level from a shared ride to the same destination. Specif-
ically, in the first part of each scenario we described a direct private ride with a
given time (random number between 5 minutes and one hour) and price (dollar per
minute). In the second part of each scenario we described a shared ride to the same
destination, where we varied the travel time and cost. Travel time of a shred ride
can never be shorter than a direct private ride, and we thus uniformly sampled a
number from {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 3, 4} and multiplied it by the direct pri-
vate travel time. The cost of a shared ride should be lower than the cost of a direct
private ride. In the optimal sharing scenario, assuming a 4 passenger vehicle (ex-
cluding the driver), there could be 4 passengers traveling to the same destination; in
this case the cost will be reduced by a factor of 4. We thus divided the direct private
ride’s cost by a number uniformly sampled from {1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 3, 4}.
Note that we used a uniform distribution to insure that we collect data from a wide
enough range, so that our satisfaction model will be more accurate. In addition, we



Chapter 2. Human Satisfaction as the Objective for Assignment 8

randomly sampled the number of additional passengers from {1, 2, 3}, and we ran-
domly sampled the user’s seat from {front passenger, middle back, right back, left
back}. The subjects could choose one of seven satisfaction levels on a Likert scale
[3], between very satisfied (7) to very dissatisfied (1) with the middle being ‘neither
satisfied nor dissatisfied’ (4).

Each subject was asked a total of six travel scenarios (each with a private and a
shared ride), and each subject received different scenarios. In order to eliminate sub-
jects that may be selecting satisfaction levels at random, two out of the six scenarios
were sanity check scenarios. In these scenarios the cost of the shared ride was more
expensive than the private ride, and the travel time was longer. Since it is unreason-
able for a person to be more satisfied with such a ride, being both longer and more
expensive, we have disqualified any subject who expressed her satisfaction in this
question to be higher than her satisfaction from the private ride of that scenario. 131
subjects have failed one of these sanity tests, and were removed from our analysis 1.

26 subjects refused to answer the personal questions and were eliminated from
our analysis as well. Of the remaining 257 subjects 147 were females and 110 were
males. Their age ranged from 19 to 67 with an average of 32.3 and a median of 31.
Regarding their occupation status, 195 were employed while 62 were unemployed.
In total, each of the 257 subjects had 4 real scenarios, resulting with 1028 data-points.

2.4.2 Deep-Learning Based Model

Using the collected data we consider deep learning based models with a varying
depth to find a good satisfaction model, that is, a model that will accurately predict
user satisfaction levels of a new user, based on different features of the user and the
user trip. Specifically, the model predicts the relative satisfaction, i.e., how much a
passenger traveling by shared-ride is more or less satisfied than the same passenger
traveling in a private ride. Formally, let sp(u) denote the satisfaction level of a user
from private ride, and ss(u) denote the satisfaction level of the same user from a
shared ride, the relative satisfaction of the user in a shared ride is given by:

rs(u) =


ss(u)−sp(u)

7−sp(u) , for sp(u) < ss(u)
ss(u)−sp(u)
sp(u)−1 , for ss(u) < sp(u)

0, for sp(u) = ss(u).

Intuitively, the relative satisfaction measures how much the satisfaction of the user
has increased (or decreased) from the shared ride in proportion to the maximal pos-
sible increase (or decrease). For example, if a user gave a satisfaction level of 5 to a
private ride, and a satisfaction of 6 to a shared ride, the relative satisfaction is 0.5,
since 6 is half the way from 5 (the baseline satisfaction in this example) to 7 (the max-
imal satisfaction in the scale). We note that the relative satisfaction value is between
−1 and 1.

The input to our network is composed of the following 12 features (following
Section 2.3.1): direct travel time (t(u)), direct travel cost (c(u)), the shared-ride travel
time (tP (u)), the shared-ride travel cost (cP (u)), number of passengers in the vehicle
(|P v|), 4 seat indicators (front seat, left-back seat, right-back seat, middle-back seat),
and the user’s working status, age and gender. The output is a value between −1

1We use this sanity check for building our satisfaction model, as we believe that doing so results in
a more accurate model. However, in Section 2.7, when evaluated against real human subjects, we do
not disqualify any of the responses.
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Model Train-error Validation error
No hidden layers 0.245 0.241

1 hidden layer 0.213 0.226
2 hidden layers 0.206 0.235
3 hidden layers 0.204 0.230

TABLE 2.1: Train and validation error for the different model depths.
Values indicate the mean squared error (MSE) of each model.

and 1 that is a prediction for the relative satisfaction value. We used a fully con-
nected architecture, with Rectified Linear Unit (ReLU) activation function between
the hidden layers. ReLU is defined as:

ReLU(x) =

{
x if x > 0

0 otherwise.

Each hidden layer consisted of 100 neurons. The final activation level was set to tanh,
as it returns values between −1 and 1. Since our problem is a regression problem
in which our model is required to predict a value (rather than a class) we use the
mean squared error as our loss function (and as our error measurement). The neural
network depth varied from no hidden layers (i.e. only the tanh layer) to 3 hidden
layers. We used Adam optimizer [40] with a learning rate of 0.001. We used early
stopping [64], i.e., we used the validation set to determine when to stop training. We
used 70% of the data-set for training, 15% for validation and 15% for test.

First, we extracted the weights learned by the no hidden layers model, in order
to determine the contribution of each of the factors in use. The shared cost factor re-
sulted in the highest absolute weight (−0.035), while the year of birth seemed to have
the smallest influence (−0.0001). We then chose the number of hidden layers. Table
2.1 presents the results obtained by each of the models. Since the 1-hidden layer
model performed best, we use it as our satisfaction function. This model achieved
a mean squared error of 0.240 on the test set. Finally, we tested the contribution of
the factors with the chosen 1-hidden layer model. Similar to our previous finding,
removing the shared cost factor resulted in the highest increase in the mean squared
error on the test set (0.357).

2.5 Assignment Algorithms

In order to demonstrate the importance of the user satisfaction, we introduce a
stochastic algorithm for finding an assignment for our ridesharing problem. We as-
sume that there are a sufficiently large number of vehicles so that any request could
be satisfied. Indeed, since in this thesis we study the last-mile problem, this assump-
tion holds in many real-world situations. For example, in many airports there is an
agreement between the airport authorities and the official taxi company that ensures
that there will always be a sufficient number of vehicles available.

2.5.1 Stochastic Merging-Based Satisfaction Algorithm (Simsat)

We propose a practical algorithm for assigning passengers to vehicles with the ob-
jective of maximizing the satisfaction of all of the passengers: Simsat (Algorithm
2). However, we begin with a deterministic variant of Simsat, M-Sat (Algorithm
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1). M-Sat runs Floyd-Warshall [27, 80] on the graph at the initialization, to obtain the
minimal travel time between every two vertices. M-Sat then runs its main procedure
as follows. The algorithm starts with n vehicles and assigns every single passenger
to a unique vehicle. It then considers all assignments P ′ that result from merging any
pair of vehicles into a single vehicle. The assignments P ′ use the nearest neighbor
algorithm [38] for ordering the passengers drop-offs based upon the Floyd-Warshall
matrix (the greedy approach). For every new assignment P ′, M-Sat computes the
difference in the satisfaction level, sP ′ − sP . The satisfaction of an assignment is
computed with the function SatFunc, which returns the sum of satisfaction of all
passengers in a given vehicle. M-Sat considers all the assignments P ′ where sP ′−sP
is non-negative, and picks the assignment P ′ that maximizes sP ′ − sP . M-Sat con-
tinues selecting and merging pairs of vehicles until all assignments P ′ results in a
decrease in the satisfaction level. We note that the efficiency of Algorithm 1 may
heavily depend on the number of calls to SatFunc function. For clarity purpose, in
each step Algorithm 1 re-computes the satisfaction of passengers in a given vehicle,
and re-evaluates the satisfaction of many assignments that have been also consid-
ered in the previous steps. Therefore, in its current presentation Algorithm 1 calls
the function SatFunc at most n3 times. However, in practice, M-Sat stores the satis-
faction values that the SatFunc function computes and the deltaSat values, and thus
SatFunc is called at most 2n times.

Algorithm 1: M-Sat
Input: a graph with source vertex,
a set of passengers,
a satisfaction function that returns the sum of satisfaction of all passengers in a
given vehicle (SatFunc).

Result: An assignment of all passengers to vehicles.
compute Floyd-Warshall on the graph
Cabs← assign each passenger to a unique vehicle
while (true) do

maxSat← -1
for every cabA, cabB from Cabs do

mergedCab← cabA ∪ cabB
deltaSat← SatFunc(mergedCab) - (SatFunc(cabA) + SatFunc(cabB))
if deltaSat > maxSat then

maxSat← deltaSat
maxCabA← cabA
maxCabB← cabB
maxMergedCab←mergedCab

end
end
if maxSat ≥ 0 then

add maxMergedCab to Cabs
delete maxCabA, maxCabB from Cabs

end
else

return Cabs
end

end

Simast begins with running M-Sat, as a baseline. It then repeats M-Sat’s main
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procedure multiple times (n2), but instead of selecting the assignment P ′ that maxi-
mizes sP ′ − sP , it randomly picks an assignment P ′ proportionate to e(sP ′−sP ). Once
Simsat completes all of the iterations, the assignment that yields the maximal to-
tal satisfaction is selected. The number of times the main procedure is repeated
in Simsat can vary; the more times it is repeated the higher the expected perfor-
mance. Therefore, Simsat is an any-time algorithm. As with M-Sat, Algorithm 2 is a
non-optimized version of SimSat, since SimSat stores the satisfaction values that the
SatFunc function computes and the deltaSat values from previous steps.

2.5.2 Brute-Force Algorithm

We use the following brute-force algorithm to compute the assignment that maxi-
mizes a given objective function (i.e., a possible user satisfaction model). First, the al-
gorithm runs Floyd-Warshell on the graph. The algorithm then solves a coin-change
problem [35, p. 171] to obtain all possible ways to split the number of passengers
into vehicles. For example, when n = 10, we get {3, 3, 3, 1}, {2, 2, 2, 2, 2}, {4, 4, 2}
etc. For each splitting option the algorithm iterates over all possible assignments.
We explicitly handle multiple vehicles with the same number of passengers, since it
does not matter if a specific group of passengers travels in one vehicle or another.
For example, for a group of {4, 3, 3, 2, 2, 2}, the algorithm first iterates over all as-
signments of 4 passengers (there are

(
n
4

)
such assignments), then, recursively calls

the assignment function with {3, 3, 2, 2, 2} and the remaining passengers. The recur-
sive call iterates over all possible assignments of three people to each of the next two
vehicles, and preforms a recursive call with the remaining vehicles and passengers.
For each vehicle, the algorithm computes all possible options for seating and for
dropping off its passengers (this is done once for each set of users), and selects the
seating and travel order that maximize the objective function. Clearly, this algorithm
is computationally and memory extensive.

FIGURE 2.1: A graph created from a map of the city of Toulouse,
France.
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Algorithm 2: Simsat
Input: a graph with source vertex,
a set of passengers,
a satisfaction function that returns the sum of satisfaction of all passengers in a
given vehicle (SatFunc).

Result: An assignment of all passengers to vehicles.
maxP← the assignment returned by M-Sat
maxSat← satisfaction of assignment maxP (i.e. smaxP )
for 1 to n2 do

Cabs← assign each passenger to a unique vehicle
while (true) do

DeltaSat[·, ·]← -1
for every cabA, cabB from Cabs do

mergedCab← cabA ∪ cabB
deltaSat← SatFunc(mergedCab) - (SatFunc(cabA) + SatFunc(cabB))
if deltaSat ≥ 0 then

DeltaSat[cabA,cabB]← deltaSat
end

end
if DeltaSat contains a non-negative value then

choose cabA, cabB ∝ eDeltaSat[cabA,cabB]

add cabA ∪ cabB to Cabs
delete cabA, cabB from Cabs

end
else

break
end

end
currSat← satisfaction of assignment Cabs
if currSat > maxSat then

maxP← Cabs
maxSat← currSat

end
end
return maxP



Chapter 2. Human Satisfaction as the Objective for Assignment 13

2.6 Experimental Evaluation

2.6.1 Experimental Settings

For the data we use the graph of the city of Toulouse, France2 as presented in Figure
2.1. We used the Toologize module of the MicroCity 1.15 GIS program3 for generat-
ing the nodes from the city map. The generated graph includes the actual distances
between the different vertices. The graph also includes the Toulouse-Blagnac airport.
We cropped the graph to 40, 000 vertices, by running Dijkstra algorithm [23] starting
at the airport, sorting all vertices by their distance from the airport, and removing
all farther away vertices (including those that are unreachable).

Being a last-mile problem, we set the origin vertex to be the same for all passen-
gers, the Toulouse-Blagnac airport. The destination vertices were randomly sampled
for every passenger using a uniform distribution over all vertices (i.e. we uniformly
sampled a number between 1 and the number of nodes in the graph). Note that since
we use a uniform distribution, nodes within dense regions (e.g. the city center) were
sampled more often as destinations. To convert the distances to travel times we set
the average speed to 30 kph. We also set the cost per minute of travel, M , to $1. The
capacity of each vehicle was set to 4 passengers.

2.6.2 Simulation Results

In this section we compare the performance of the following five methods in terms
of relative user satisfaction (as obtain from the satisfaction model) in simulation:

1. Optimal: The brute-force algorithm with the learned satisfaction function as
the objective function.

2. M-Sat: with the learned satisfaction function.

3. Simsat: with the learned satisfaction function.

4. Cost: The brute-force algorithm that uses the travel cost only as the objective
function. Note that this algorithm does not require enumerating over the pos-
sible seating options.

5. Time: An algorithm that uses the travel time only as the objective function.
Clearly, this algorithm has trivial behavior; it assigns a private vehicle to each
passenger.

All the methods were evaluated with the learned satisfaction function, regardless of
the function actually used by the method. Since the brute-force algorithm is com-
putationally expensive, we did not run Optimal and Cost methods with more than
12 passengers. However, we evaluated the performance of M-Sat, Simsat and Time
methods with up to 30 passengers.

Figures 2.2 and 2.3 present our results. The results were obtained by averaging
over 1000 samples of passenger destinations. Note that the Time assignment yields
a constant user satisfaction of 0 since it assigns a private vehicle to each and every
passenger. Due to the high volume of the data, all differences between any two
methods are statistically significant (p < 0.0001).

2obtained from https://www.geofabrik.de/data/shapefiles_toulouse.zip
3https://microcity.github.io/index.html

https://www.geofabrik.de/data/shapefiles_toulouse.zip
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FIGURE 2.2: Relative satisfaction in simulation for each of the assign-
ment methods, averaged on 1000 assignments and 2-12 passengers.

Error bars present 95% confidence interval.
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FIGURE 2.3: Relative satisfaction in simulation for each of the assign-
ment methods, averaged on 1000 assignments, for 2-30 passengers.
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As depicted in the figures, our satisfaction oriented assignment method (Simsat)
obtains results that are very close to the optimal assignment. Simsat’s average satis-
faction level is much closer to the optimal assignment than that of the Cost and Time
assignments, which are brute-force assignments that use a simpler user-satisfaction
model. Figure 2.4 depicts the average running time of Simsat and M-sat in compari-
son to that of Optimal and Cost, which are brute-force algorithms. The running time
of the Cost assignment is slightly lower than that of the Optimal assignment since
the Cost assignment does not enumerate over the possible seating options. Clearly,
the performance of both Simsat and M-sat is much better than that of the brute-force
algorithms and both achieve very reasonable execution times and thus can be used
in practice.

FIGURE 2.4: Running time (in seconds) for a single assignment, aver-
aged on 1000 assignments, for 2-30 passengers.

We also tested the efficiency of the methods in terms of travel time and cost.
The results are shown in Table 2.2. As expected, the Time method resulted in the
lowest average travel time, but with the highest average cost. Similarly, the Cost
method resulted in the lowest average cost, but with the highest average travel time.
Our methods, as well as the optimal method, seem to balance the travel time and
travel cost. Note that our methods do not aim at balancing the travel time and cost
explicitly. Instead, they try to maximize the user satisfaction, and as a result they
generate assignments that balance the travel time and cost.

In summary, our results indicate that it is more important to obtain a richer model
of user satisfaction, than improving the performance of the assignment algorithm.
That being said, we do not disregard the importance of improving the performance
of the assignment algorithm and do intend to pursue additional algorithms that may
perform better.
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Average Time Average Cost
Optimal 16:31 minutes $10.07
Simsat 16:02 minutes $10.30
M-Sat 16:00 minutes $10.36
Cost 18:21 minutes $9.33
Time 14:38 minutes $14.64

TABLE 2.2: Travel time and cost, averaged on 1000 assignments and
2-12 passengers.

2.7 Evaluation With Humans

In this section we compare the performance of Simsat against that of Cost and Time
assignments, in terms of satisfaction, as reported by human subjects. To this end,
we uniformly sampled destinations for 12 passengers from the map of the city of
Toulouse. The passengers were assigned to vehicles according to Simsat, Cost, and
Time methods. This process was repeated 21 times, resulting in 252 travel scenarios,
that is, 252 passengers and their destinations.

We recruited 84 human subjects from Mechanical Turk. We set nationality to
USA, approval rate to at least 98% and did not require the Turkers to be masters.
Each subject was asked a total of 3 travel scenarios, where in each travel scenario the
user was asked about her satisfaction from the 3 possible assignments: that of Sim-
sat, that of Cost and that of Time (which is in fact a private ride). Overall, each user
was asked 9 questions about her satisfaction. The subjects could choose one of seven
satisfaction levels on a Likert scale, between very satisfied (7) to very dissatisfied (1)
with the middle being ‘neither satisfied nor dissatisfied’ (4).

Figure 2.5 presents our results. The results were obtained by averaging over
the 252 travel scenarios. As depicted by the figure, Simsat has significantly outper-
formed both the Cost and Time methods in terms of user satisfaction (p < 0.05).

2.8 Discussion

There are two key insights from our results. First, people are more satisfied (on aver-
age) from using a satisfaction oriented ride-sharing service, than using a private ride
(i.e, the Time assignment). More importantly, people are more satisfied (on average)
from using a satisfaction oriented ride-sharing service, than using a cost oriented
ride-sharing service (i.e, the Cost assignment). A possible critique of our model is
that it is hard to learn a good satisfaction model of people, and having a single sat-
isfaction function that aggregates all the factors is not reasonable. Another possible
critique is that there are several factors that could affect the user’s satisfaction, so
how are we sure that we chose the correct ones? Our results Section 2.7 prove that
our approach is valid and useful: even if we did not choose the best factors and even
if a single satisfaction function is too simplistic, our evaluation with humans shows
that using our satisfaction oriented assignment with a greedy algorithm outperforms
a brute-force algorithm with cost-based assignment.

There is another general critique on our approach; one may wonder why we
focus only on user satisfaction for achieving a widespread adaption of ride-sharing
services. Indeed, there are several other factors that affect the adaptation of ride-
sharing services, for example, education and technology advances. However, it is a
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FIGURE 2.5: Average satisfaction for each of the three assignment
methods, as reported by the human subjects. Error bars present 95%

confidence interval.
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well known marketing concept that customer satisfaction has a very strong impact
on adaptation, loyalty and retention (see, for example, [74]).

2.9 Conclusions and Future Work

The importance of our work lies in the fact that we exclusively concentrate on a
rich and realistic general function of user satisfaction as the objective, which is (ar-
guably) the most important aspect to consider for achieving a widespread adaption
of ridesharing services. We use deep learning to model user satisfaction based upon
data collected from actual human subjects. We present a satisfaction oriented assign-
ment method (Simsat), and show that it outperforms brute-force assignments using
simpler user-satisfaction models. These results indicate that it is more important to
obtain a richer model of user satisfaction, than improving the performance of the
assignment algorithm.

In future work we intend to extend our model from the last-mile setting to the
more general ridesharing scenario, where people may have different origins. We also
intend to build a game that will simulate an actual ride for the subjects; this should
allow us to obtain more exact satisfaction levels. This game could include additional
travel information such as the other passengers in the trip, and allow the subject to
select her seat when entering a vehicle. Since users will be playing the game more
than once, the satisfaction model can be further improved by personalization, taking
into account user’s feedback on previous rounds.
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Chapter 3

Fairly Splitting the Ride Cost using
the Shapley Value

3.1 Introduction

Most works in the domain of ride-sharing are dedicated to the assignment of pas-
sengers to vehicles, or to planning optimal drop-off routes [66, 5, 49]. In this chapter
we study a fair allocation of the cost of the shared ride in the last mile variant [17].
We concentrate on the Shapley value [72] as our notion of fair cost allocation. The
Shapley value is widely used in cooperative games, and is the only cost allocation
satisfying efficiency, symmetry, null player property and additivity. The Shapley
value has been even termed the most important normative division scheme in coop-
erative game theory [81]. However, the Shapley value depends on the travel cost of
a ride of each subset of the passengers. Therefore, as stated by Özener and Ergun
[55], “In general, explicitly calculating the Shapley value requires exponential time.
Hence, it is an impractical cost-allocation method unless an implicit technique given
the particular structure of the game can be found”.

There are two possible general structures of the last-mile ride-sharing problem.
In some cases there is a priority order in which the passengers are dropped-off. Such
prioritization may be attributed to the order in which the passengers arrived at the
origin location, or the frequency of passenger usage of the service; the latter is simi-
lar to the different boarding groups on an aircraft. Other rationales for prioritization
may include urgency of arrival or priority groups in need (e.g. elderly, disabled,
pregnant women, and the injured). Clearly, in such cases, the prioritization is pre-
served when determining the travel cost of a ride with a subset of the passengers.
We denote this problem as the prioritized ride-sharing problem. Indeed, in some sce-
narios there is no predetermined prioritization order. In such cases it is assumed that
a ride with a subset of the passengers is performed using the shortest (or cheapest)
path that traverses their destinations. We denote this problem as the non-prioritized
ride-sharing problem.

The prioritized and the non-prioritized ride-sharing problems are closely related
to traveling salesman games [63]. In these games, a service provider makes a round-
trip along the locations of several sponsors, where the total cost of the trip should be
distributed among the sponsors. Specifically, the prioritized ride-sharing problem is
similar to the fixed-route traveling salesman game, also known as routing game [83],
while the non-prioritized ride-sharing problem is similar to the traveling salesman
game. Most of the works on traveling salesman games concentrated on finding an
element of the core, a solution game concept which is different from the Shapley
value. One exception is the work of Yengin [83], who has studied the Shapley value
of routing games and has conjectured that there is no efficient way for computing
the Shapley value in routing games.
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In this chapter, we show an efficient computation of the Shapley value for the
prioritized ride-sharing problem. Our method is based on smart enumeration of the
components that are used in the computation of the Shapley value. Furthermore, our
approach can be generalized to routing games, and we thus also provide an efficient
way for computing the Shapley value in routing game. We then move to analyze
the non-prioritized ride-sharing problem and show that, unless P=NP, there is no
polynomial time algorithm for computing the Shapley value. Fortunately, we show
through extensive simulations that when the given travel path is the shortest path
the Shapley value of the prioritized ride-sharing problem can be used as an excellent
proxy for the Shapley value of the non-prioritized ride-sharing problem.

We note that the context of our work is that the assignment of the passengers
to the vehicle has already been determined, either by a ride-sharing system or by
the passengers themselves, and we only need to decide on the cost allocation. Since
we focus on the case where the assignment has already been determined, we do not
consider the ability of passengers to deviate from the given assignment and join a
different vehicle, which is acceptable since either they want to travel together or no
other alternative exists.

To summarize, the contributions of this chapter are two-fold:

1. We show an efficient method for computing the Shapley value of each user in
a shared-ride when the priority order is predetermined. Our solution entails
that the Shapley value can be computed in polynomial time in routing games
as well, which is in contrast to a previous conjecture made.

2. We show that, while there exist no polynomial algorithm for computing the
Shapley value of the non-prioritized ride-sharing problem (unless P=NP), the
Shapley value of the prioritized ride-sharing problem can be used as an excel-
lent proxy for the Shapley value of the non-prioritized ride-sharing problem
(under the assumption that the provided travel path is the shortest path).

3.2 Related Work

The ride-sharing cost allocation problems that we study are closely related to trav-
eling salesman games [63]. Specifically, the prioritized ride-sharing problem is sim-
ilar to the fixed-route traveling salesman game [26, 63, 10], also known as routing
game [83].

One variant of routing game is the fixed-route traveling salesman problems with
appointments. In this variant the service provider is assumed to travel back home
(to the origin) when she skips a sponsor. This variant was introduced by Yengin [83],
who also showed how to efficiently compute the Shapley value for this problem but
stated that his technique does not carry over to routing games.

The prioritized ride-sharing problem can also be interpreted as a generalization
of the airport problem [45] to a two dimensional plane. In the airport problem
we need to decide how to distribute the cost of an airport runway among differ-
ent airlines who need runways of different lengths. In our case we distribute the
cost among passengers who need rides of different lengths and destinations. It was
shown that the Shapley value can be efficiently computed for the airport problem,
however achieving efficient computation of the Shapley value in our setting requires
a different technique.
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The Shapley value for the traveling salesman game, which is related to our non-
prioritized ride-sharing problem, has rarely received serious attention in the litera-
ture, due to its computational complexity. Notably, Aziz et al. [9] suggested a num-
ber of direct and sampling-based procedures for calculating the Shapley value for
the traveling salesman game. They further surveyed several proxies for the Shapley
value that are relatively easy to compute, and experimentally evaluate their per-
formance. We develop a proxy for the Shapley value for the non-prioritized ride-
sharing problem which is based on the Shapley-value for the prioritized ride-sharing
problem, and compare its performance with proxies that are based on the work of
Aziz et al.

The problem of fair cost allocation was also studied in the context of logistic
operation. In this domain, shippers collaborate and bundle their shipment requests
together to achieve better rates from a carrier [32]. The Shapley value was also inves-
tigated in this domain of collaborative transportation [28, 76]. In particular, Özener
and Ergun [55] stated that “we do not know of an efficient technique for calculating
the Shapley value for the shippers’ collaboration game”. Indeed, Fiestras-Janeiro et
al. [25] developed the line rule, which is inspired by the Shapley value, but requires
less computational effort and relates better with the core. However, the line rule
is suitable for a specific inventory transportation problem. Özener [54] describes an
approximation of the Shapley Value when trying to simultaneously allocate both the
transportation costs and the emissions among the customers. Overall, we note that
the main requirements from a cost allocation in the context of logistic operation is
stability, and an equal distribution of the profit, since the collaboration is assumed
to be long-termed. The type of interaction is our setting is inherently different, as it
is an ad-hoc short term collaboration.

In another domain, Bistaffa et al. [11] introduce a fair payment scheme, which is
based on the game theoretic concept of the kernel, for the social ride-sharing problem
(where the set of commuters are connected through a social network).

3.3 Preliminaries

We are given a weighted graph G(V,E) that represents a road network; V is the
set of possible locations, and E is a set of weighted edges that represents the set
of roads. We are given a set U = {u1, u2, ..., un} of passengers (users) that depart
from the same origin, d0 ∈ V . Without loss of generality, we assume that passenger
u1 will be dropped-off first, passenger u2 will be dropped off second, etc. Each
passenger ui has a corresponding destination di ∈ V . Let D ⊂ V be the set of
destinations, D = {d1, d2, ..., dn}. We denote by δ(di, dj) the shortest travel distance
between di and dj inG and δ(di, di) = 0. To simplify the notation we define a dummy
destination, dn+1, such that for every i ∈ {0, 1, ..., n}, δ(di, dn+1) = 0. Given a set S ⊆
D, let c(S) be the cost associated with the subset S. That is, c(D) is the total travel
cost of the shared ride. We note that c(S), where S ( D, depends on the order in
which the passengers are dropped off, and therefore c(S) is defined differently in the
prioritized ride-sharing problem and in the non-prioritized ride-sharing problem.
The Shapley value for a passenger ui is formally defined as:

φ(ui) =
∑

S⊆U\{i}

|S|! (|U |−|S|−1)!

|U |!
(c(S ∪ {i})− c(S)).

That is, the Shapley value is an average over the marginal costs of each passenger.
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3.4 The Prioritized Ride-sharing Problem

In this section we assume that the passengers are ordered according to some prede-
termined priority order, and efficiently compute the payment for every passenger
using the Shapley value. Unlike other related work [63], we do not require that the
priority order will be the optimal order that minimizes the total cost.

3.4.1 Notation

Given the set of passengers U , without loss of generality, we assume that passenger
u1 has the highest priority, passenger u2 has the second highest priority, etc. Given a
set S ⊆ D, let S̃ be the set S ordered in an ascending order (according to the priority
order), and let S[i] be the destination that is in the i-th position in S̃. For ease of
notation we use S[0] to denote d0 and S[|S|+1] to denote dn+1.

Given a set S ⊆ D, let v(S) be the shortest travel distance of the path that starts
at the origin d0 and traverses all destinations di ∈ S according to an ascending order.

That is, v(S) =
|S|−1∑
i=0

δ(S[i], S[i + 1]). This value (v(S)) serves as the cost associated

with a subset of passengers, c(S), in the computation of the Shapley value.
Let R be a permutation on D and let PRi be the set of the previous destinations

to di in permutation R.

3.4.2 Efficient Computation of the Shapley Value

We are interested in determining the payment for each passenger, ui, according to
the Shapely value, φ(ui). The Shapley value has several equivalent formulas, and
we use the following formula to derive an efficient computation in the prioritized
ride-sharing problem:

φ(ui) =
1

n!

∑
R

(
v(PRi ∪ {di})− v(PRi )

)
.

Given a permutation R and a passenger ui, let dl ∈ PRi be a destination such that
l < i and ∀dj ∈ PRi , j ≤ l or i < j. If no such destination exists, then dl is defined
as d0. Similarly, let dr ∈ PRi be a destination such that i < r and ∀dj ∈ PRi , j < i
or r ≤ j. If no such destination exists, then dr is defined as dn+1. We use ` (and r)
to denote the position of dl (and dr) in the ordered P̃Ri , respectively. If dl = d0 then
` = 0, and if dr = dn+1 then r= |PRi |+1. We note that PRi [`] = dl, PRi [r] = dr and
r = `+ 1.

For example, assume D = {d1, d2, d3, d4, d5, d6} and R = {d6, d2, d5, d4, d3, d1},
we get PR4 = {d6, d2, d5} and thus P̃R4 = {d2, d5, d6}, dl = d2 (i.e., ` = 1), dr = d5 (i.e.,
r = 2), and PR4 [`] = d2.

Our first observation is that the computation of the Shapley value in our setting,
φ(ui), may be written as the sum over the distances between pairs of destinations.

Observation 3.4.1. φ(ui) = 1
n!

n−1∑
p=0

n∑
q=p+1

αip,qδ(dp, dq), for some αip,q ∈ Z.

Proof. We note that φ(ui) · n! is a sum over v(S) for multiple S ⊆ D. By definition,

v(S) =
|S|−1∑
j=0

δ(S[j], S[j + 1]), such that S[j] = dp and S[j + 1] = dq where p < q.
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We now show that we can rewrite the computation of the Shapely value in our
setting as follows.

Lemma 3.4.2.

φ(ui) =
1

n!

∑
R

(
δ(dl, di) + δ(di, dr)− δ(dl, dr)

)
Proof.

v(PRi ) =

|PR
i |−1∑
j=0

δ(PRi [j], PRi [j + 1]) =

`−1∑
j=0

δ(PRi [j], PRi [j + 1]) + δ(dl, dr) +

|PR
i |−1∑
j=r

δ(PRi [j], PRi [j + 1])

In addition,

v(PRi ∪ {di}) =
`−1∑
j=0

δ(PRi [j], PRi [j + 1])+

δ(dl, di) + δ(di, dr) +

|PR
i |−1∑
j=r

δ(PRi [j], PRi [j + 1]).

By definition,

φ(ui) =
1

n!

∑
R

[
v(PRi ∪ {di})− v(PRi )

]
=

1
n!

∑
R

(
`−1∑
j=0

δ(PRi [j], PRi [j + 1]) + δ(dl, di) + δ(di, dr) +
|PR

i |−1∑
j=r

δ(PRi [j], PRi [j + 1])−

( `−1∑
j=0

δ(PRi [j], PRi [j + 1]) + δ(dl, dr) +
|PR

i |−1∑
j=r

δ(PRi [j], PRi [j + 1])
))

=

1
n!

∑
R

(
δ(dl, di) + δ(di, dr)− δ(dl, dr)

)
Following Observation 3.4.1 and Lemma 3.4.2 we now show that we can rewrite

the computation of the Shapely value as a sum over distances, that can be computed
in polynomial time.

Theorem 3.4.3. For each i, φ(ui) =
i∑

p=0

n∑
q=i

βip,qδ(dp, dq), where q 6= p, and βip,q ∈ Q are

computed in polynomial time.

Proof. By definition, l < i < r. According to Lemma 3.4.2 φ(ui) · n! is a sum over
δ(dp, dq), where p ≤ i ≤ q. There are several terms in this sum:

• βi0,i multiplies δ(d0, di). Now, δ(d0, di) appears in φ(ui) in every permutation R
when dl = d0. That is, in all of the permutations where destination di appears
before any other destination dx such that x < i. We now count the number of
such permutations. There are

(
n
i

)
options to place the destinations d1, d2, ..., di

among the n available destinations. For each such option there are (i − 1)!
options to order the destinations d1, d2, ..., di such that di is the first destina-
tion among them. Finally, there are (n − i)! options to order the destinations
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di+1, di+2, ..., dn. Therefore, δ(d0, di) appears in
(
n
i

)
· (i − 1)! ·(n − i)! = n!

i per-
mutations, and by inserting 1

n! into the sum we get that βi0,i = 1
i .

• For each q > i, βi0,q multiplies δ(d0, dq). Now, δ(d0, dq) appears negatively in
φ(ui) in every permutation R when dl = d0 and dr = dq. That is, in all of
the permutations where destination dq appears before di (i.e., dq ∈ PRi ), but
any other destination dx such that x < q, appears after di. We now count the
number of such permutations. There are

(
n
q

)
options to place the destinations

d1, d2, ..., di, ..., dq among the n available destinations. For each such option
there are (q − 2)! options to order the destinations d1, d2, ..., di such that dq
is the first destination and di is the second destination among them. Finally,
there are (n− q)! options to order the destinations dq+1, dq+2, ..., dn. Therefore,
δ(d0, dq) appears negatively in

(
n
q

)
· (q−2)! ·(n−q)! = n!

q·(q−1) permutations, and
by inserting 1

n! into the sum we get that βi0,q = − 1
q·(q−1) .

• For each 0 < p < i, βip,i multiplies δ(dp, di). Now, δ(dp, di) appears in φ(ui) in
every permutation R when dl = dp. That is, in all of the permutations where
destination dp appears before di (i.e., dp ∈ PRi ), but any other destination dx
such that p < x < i, appears after di. We now count the number of such
permutations. There are

(
n

i−p+1

)
options to place the destinations dp, dp+1, ..., di

among the n available destinations. For each such option there are (i − p +
1 − 2)! options to order the destinations dp, dp+1, ..., di such that dp is the first
destination and di is the second destination among them. Finally, there are
(n−(i−p+1))! options to order the destinations d1, d2, ..., dp−1, di+1, di+2, ..., dn.
Therefore, δ(dp, di) appears in

(
n

i−p+1

)
·(i−p−1)! ·(n−(i−p+1))! = n!

(i−p)·(i−p+1)

permutations, and by inserting 1
n! into the sum we get that βip,i = 1

(i−p)·(i−p+1) .

• For each q > i, βii,q multiplies δ(di, dq). Now, δ(di, dq) appears in φ(ui) in every
permutationR when dr = dq. That is, in all of the permutations where destina-
tion dq appears before di (i.e., dq ∈ PRi ), but any other destination dx such that
i < x < q, appears after di. We now count the number of such permutations.
There are

(
n

q−i+1

)
options to place the destinations di, di+1, ..., dq among the n

available destinations. For each such option there are (q− i+ 1− 2)! options to
order the destinations di, di+1, ..., dq such that dq is the first destination and di is
the second destination among them. Finally, there are (n− (q− i+ 1))! options
to order the destinations d1, d2, ..., di−1, dq+1, dq+2, ..., dn. Therefore, δ(dp, di)
appears in

(
n

q−i+1

)
· (q − i− 1)! ·(n− (q − i+ 1))! = n!

(q−i)·(q−i+1) permutations,
and by inserting 1

n! into the sum we get that βii,q = 1
(q−i)·(q−i+1) .

• For each p, q such that p < i < q, βip,q multiplies δ(dp, dq). Now, δ(dp, dq) ap-
pears negatively in φ(ui) in every permutation R when dl = dp and dr = dq.
That is, in all of the permutations where destinations dp, dq appear before di
(i.e., dp, dq ∈ PRi ), but any other destination dx such that p < x < q, x 6= i,
appears after di. We now count the number of such permutations. There
are

(
n

q−p+1

)
options to place the destinations dp, dp+1, ..., di, ..., dq among the n

available destinations. For each such option there are (q−p+ 1−3)! options to
order the destinations dp, dp+1, ..., di, ..., dq such that dp is the first destination,
dq is the second and di is the third destination among them. Similarly, there are
(q−p+1−3)! options to order these destinations such that dq is the first destina-
tion, dp is the second and di is the third. Finally, there are (n−(q−p+1))! options
to order the destinations d1, d2, ..., dp−1, dq+1, dq+2, ..., dn. Therefore, δ(dp, dq)
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appears in
(

n
q−p+1

)
·2·(q−p−2)! ·(n−(q−p+1))! = 2·n!

(q−p−1)·(q−p)·(q−p+1) permuta-
tions, and by inserting 1

n! into the sum we get that βip,q = − 2
(q−p−1)·(q−p)·(q−p+1) .

We note that the prioritized ride-sharing problem is very similar to the setting
of routing games [63]. The model of routing games is of one service provider that
makes a round-trip along the locations of several sponsors in a fixed order, where
the total cost of the trip should be distributed among the sponsors. Clearly, our
problem is almost identical: the service provider corresponds to the vehicle and the
sponsors correspond to the passengers. The only difference is that in a routing game
the sponsors also pay the cost of the trip back to the origin. Indeed, the results
presented in this section carry over to routing games.

Theorem 3.4.4. The Shapley value in routing games can be computed in polynomial time.

Proof (sketch). We use our previous definitions and results with the following slight
modifications. The dummy destination dn+1 becomes d0. Thus, δ(di, dn+1) = δ(di, d0).
In Observation 3.4.1 we need to modify the bound in the outer sum (with the index
p) to n and the bound in the inner sum (with the index q) to n + 1. In addition, we

use the proof of Theorem 3.4.3, but we add
i∑

p=0
βip,n+1δ(dp, dn+1) to the calculation of

φ(ui), where for p < i, βip,n+1 = − 1
(n−p)·(n−p+1) and βii,n+1 = 1

n−i+1 .

Note that this is an unexpected result, since it refutes the conjecture in [83] that
there is no efficient way for computing the Shapley value in routing games.

3.5 Non-prioritized Ride-sharing Problem

Similar to the prioritized ride-sharing problem we are given an initial priority or-
der, which determines the drop-off order of the passengers. However, in the non-
prioritized variant we do not enforce the fixed order for every subset of passengers.
Instead, given a strict subset of passengers S, the cost associated with it, c(S), is the
length of the shortest path that traverses all of the destinations of the passengers in
S.

3.5.1 The Hardness of the Non-prioritized Ride-sharing Problem

In Section 3.4 we showed that we can efficiently compute the Shapley value for the
prioritized ride-sharing problem. In essence, the computation could be done effi-
ciently since most of the travel distances cancel out, and only a polynomial number
of terms remain in the computation. Unfortunately, this is not the case with the
non-prioritized ride-sharing problem, where the Shapley value cannot be computed
efficiently unless P = NP .

Clearly, finding the length of the shortest path (not necessarily a simple path) that
starts at a specific node, v0, and traverses all nodes in a graph (without returning to
the origin) cannot be performed in polynomial time, unless P = NP . We denote
this problem as path-TSP. We use the path-TSP to show that computing the Shapley
value for the prioritized ride-sharing cannot be done efficiently, unless P = NP .

Theorem 3.5.1. There is no polynomial time algorithm that computes the Shapley value for
a given passenger in the prioritized ride-sharing problem unless P = NP .
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Proof. Given an instance of the path-TSP problem on a graph G(V,E) we denote the
solution by x. We construct an instance of the non-prioritized ride-sharing problem
as follows. We build a graphG′(V ′, E′), where we add a node v′, i.e., V ′ = V ∪{v′}. If
e ∈ E then e ∈ E′, and for all v ∈ V , (v, v′) ∈ E′ with a weight of M , where M is the
sum of weights of all the edges in E. Finally, we set |U |= |V |, D = V ′ \ {v0}, d0 = v0,
and the drop-off order is arbitrarily chosen. Recall that c(D) is the total travel cost
associated with the chosen drop-off order. We ask to compute the Shapley value of
the user u′ that is associated with the destination v′.

Clearly, the marginal contribution of u′ to any strict subset of V is exactly M .
However, the marginal contribution of u′ to the complete set V is exactly c(D) minus
x (the length of the shortest path starting at v0 and traversing all nodes in V ). That
is,

φ(u′) =
(|U |−1)!

|U |!
(c(D)− x) +

|U |!−(|U |−1)!

|U |!
M

After some simple mathematical manipulations we get that x = |U |φ(u′)−(|U |−1)M+
c(D). Therefore, if we can compute φ(u′) in polynomial time then we can solve the
path-TSP problem in polynomial time, which is not possible unless P = NP .

3.5.2 Shapley Approximation based on a Prioritized Order

In Section 3.4 we presented a method for efficiently computing the Shapley value
when a prioritization exists. In this section we show that our solution may be also
applicable to the non-prioritized ride-sharing problem as an efficient proxy for the
Shapley value. We term our proxy SHAPO: SHapley Approximation based on a
Prioritized Order.

We compare SHAPO with the following three proxies for computing the Shapley
value in traveling salesman games, that are in use in real-world applications [9].

Depot Distance This method divides the total ride cost proportionally to the dis-
tance from the depot, i.e. Depot(ui) = δ(d0,di)∑n

j=1 δ(d0,dj)
c(D). For example, a passenger

traveling to a destination that is twice as distant from the origin as another passen-
ger has to pay twice the cost, regardless of the actual travel path. We note that this
method has outperformed all other methods in [9] on real data.

Shortcut Distance This method divides the total cost proportional to the change
realized by skipping a destination when traversing the given path. Formally, let
Cuti = δ(di−1, di) + δ(di, di+1)− δ(di−1, di+1). Then, Shortcut(ui) = Cuti∑n

j=1 Cutj
c(D).

Re-routed Margin This method is a more sophisticated realization of the shortcut
distance method. That is, instead of using the given path when skipping a destina-
tion, we compute the optimal path. Formally,Reroute(ui) = c(D)−c(D\{di})∑n

j=1 c(D)−c(D\{dj})c(D).
Note that when evaluating this proxy we need to solve n TSPs, one for leaving out
each destination. This is the only proxy we consider that requires a non-negligible
time to compute.

Experimental Settings

In order to evaluate the performance of SHAPO, we evaluated each of the methods
for 3, 4, 5, 6, 7, 8 and 9 passengers. For the road network we used the graph of the
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city of Toulouse, France1 as presented in Figure 2.1. This graph includes the actual
distances between the different vertices. To convert the distances to travel costs we
assumed a cost of $1 per kilometer. The graph also includes the Toulouse-Blagnac
airport, which was set as the origin (d0). We cropped the graph to 40, 000 vertices,
by running Dijkstra algorithm [23] starting at the airport, sorting all vertices by their
distance from the airport, and removing all farther away vertices (including those
that are unreachable). The destination vertices were randomly sampled for every
passenger using a uniform distribution over all vertices, and each of the methods
was evaluated 100 times against the true Shapley value of all passengers.

For running the simulations we assume that the given order of the passengers
is according to the shortest path. This is a reasonable assumption, since if there is
no prioritization, it is very likely that, in order to reduce the overall cost, the vehicle
would travel using the shortest path (computed once). We conjecture that the results
presented in this chapter will carry-out also to situations in which the given passen-
ger order is very close to being optimal (but not necessarily the exact optimal order),
but we leave it for future investigation.

Results

Figure 3.1 presents the running time, in seconds, required to compute the Shapley
value and its proxies for all passengers on a single instance (in logarithmic scale).
As expected, we can compute the proxies, except for the Re-routed margin proxy,
almost instantaneously. However, due to the extensive time required to compute
the Shapley value, and since we evaluate each method 100 times, we only evaluate
the performance of all methods with up-to 9 passengers.

We evaluate the performance of SHAPO against the three other proxies using 5
different statistical measures (averaged on all 100 iterations). We useX(ui) to denote
the estimated Shapley value by the evaluated proxy.

1. Percent: The average percentage of the deviation from the Shapley value. For-
mally, Percent = 1

n

∑n
i=1

|X(ui)−φ(ui)|
φ(ui)

.

2. MAE: The mean absolute error, MAE = 1
n

∑n
i=1|X(ui)− φ(ui)|.

3. MSE: The mean squared error, MSE = 1
n

∑n
i=1(X(ui)−φ(ui))

2. This measure
gives higher weight to larger deviations.

4. RMSE: The root mean squared error, RMSE =
√

1
n

∑n
i=1(X(ui)− φ(ui))2.

5. Max-Error: The maximum deviation among all passengers between the real
and estimated Shapley value, Max = maxni=1(|X(ui)− φ(ui)|).

The results are depicted in Tables 3.1, 3.2, 3.3, 3.4 and 3.5. SHAPO significantly
outperforms the other proxies in all measures, with any number of passengers eval-
uated. Despite the depot distance method outperforming the other two methods,
SHAPO is between 5.5 to 42.3 times better than the depot distance in all measures.
Note that the units of MAE and Max-Error are dollars. That is, as depicted in Ta-
ble 3.2, SHAPO deviated by only 19 cents, on average, from the actual Shapley value.
The depot distance deviated by $1.33, while the averaged shared-ride cost per pas-
senger was approximately $5. Similarly, the maximal deviation of SHAPO was less
than 44 cents (on average), while the maximal deviation of the depot distance was
more than $2.9.

1obtained from https://www.geofabrik.de/data/shapefiles_toulouse.zip

https://www.geofabrik.de/data/shapefiles_toulouse.zip
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FIGURE 3.1: Running time, in seconds, required to compute a single
instance of the Shapley value (in logarithmic-scale).

3 4 5 6 7 8 9 AVG
SHAPO 1.84% 3.44% 4.49% 4.68% 5.27% 6.53% 5.94% 4.60%

Depot Distance 20.02% 26.36% 29.52% 35.28% 35.78% 35.92% 35.91% 31.26%
Shortcut Distance 34.79% 41.55% 45.44% 53.70% 54.23% 53.35% 55.89% 48.42%
Re-routed Margin 84.59% 76.13% 79.65% 119.90% 80.57% 85.97% 72.83% 85.66%

TABLE 3.1: Average percentage of the deviation from the Shapley
value (Percent). Averaged over 100 iterations. Lower is better.

3 4 5 6 7 8 9 AVG
SHAPO $0.11 $0.18 $0.20 $0.20 $0.20 $0.22 $0.21 $0.19

Depot Distance $1.11 $1.29 $1.34 $1.53 $1.38 $1.35 $1.28 $1.33
Shortcut Distance $1.87 $2.19 $2.23 $2.47 $2.27 $2.07 $2.09 $2.17
Re-routed Margin $3.21 $2.81 $2.45 $2.43 $2.10 $2.03 $1.85 $2.41

TABLE 3.2: The mean absolute error of the deviation from the Shapley
value (MAE). Averaged over 100 iterations. Lower is better.

3 4 5 6 7 8 9 AVG
SHAPO 0.068 0.115 0.124 0.098 0.102 0.159 0.117 0.112

Depot Distance 1.988 2.634 3.054 4.130 3.327 3.366 3.066 3.081
Shortcut Distance 5.805 8.431 8.937 10.840 9.749 8.097 7.731 8.513
Re-routed Margin 15.951 12.404 9.587 10.174 7.399 7.168 5.986 9.810

TABLE 3.3: The mean squared error of the deviation from the Shapley
value (MSE). Averaged over 100 iterations. Lower is better.
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3 4 5 6 7 8 9 AVG
SHAPO 0.121 0.204 0.239 0.246 0.259 0.299 0.277 0.235

Depot Distance 1.205 1.474 1.594 1.859 1.699 1.703 1.617 1.593
Shortcut Distance 2.112 2.556 2.698 3.068 2.904 2.675 2.662 2.668
Re-routed Margin 3.540 3.200 2.866 2.951 2.517 2.508 2.292 2.839

TABLE 3.4: The root mean squared error of the deviation from the
Shapley value (RMSE). Averaged over 100 iterations. Lower is better.

3 4 5 6 7 8 9 AVG
SHAPO $0.17 $0.30 $0.39 $0.44 $0.49 $0.62 $0.58 $0.43

Depot Distance $1.66 $2.24 $2.73 $3.44 $3.32 $3.51 $3.47 $2.91
Shortcut Distance $2.81 $3.92 $4.69 $5.66 $5.77 $5.49 $5.56 $4.84
Re-routed Margin $4.81 $4.74 $4.60 $5.32 $4.67 $4.95 $4.71 $4.83

TABLE 3.5: The maximum deviation among all passengers between
the real and estimated Shapley value (Max-Error). Averaged over 100

iterations. Lower is better.

3.6 Conclusions and Future Work

The Shapley value is considered one of the most important division scheme of rev-
enues or costs, but its direct computation is often not practical for a reasonable size
game. Therefore, Mann and Shapely [48] suggest to consider restrictions and con-
straints in order to find games where the Shapley value can be efficiently computed.
The airport problem [45] is one example of these games, where the Shapley value
can be efficiently computed. Our prioritized ride-sharing problem is a generaliza-
tion of the airport problem to the 2D plane, and we showed that the Shapley can
be efficiently computed in this generalization as well. However, we show that the
non-prioritized ride-sharing problem, which is possibly the next level of general-
ization, cannot be efficiently computed (unless P = NP ). Interestingly, the prior-
itized ride-sharing can still serve as an efficient proxy for the Shapley value of the
non-prioritized ride-sharing problem where the provided travel path is the shortest
path.

There are several interesting directions for future work. One possible direction is
to compare our proxy for computing the Shapley value in the non-prioritized ride-
sharing problem to a sampling based approach [16]. It is expected that a sampling
based approach will be more accurate if there is a sufficient number of samples, but
it will certainly require a lot more computation time. It is thus interesting to analyze
when our proxy is still better than a sampling-based approach, and when it is the
point in which a sampling-based approach becomes better than our proxy. From a
theoretical perspective, we showed that computing the Shapley value for the non-
prioritized ride-sharing problem is a hard problem. However, the hardness may
be derived also from the hardness of path-TSP. There are several polynomial time
approximation and heuristics for TSP that can be adjusted for path-TSP. It is thus
interesting to analyze the computational complexity of finding the Shapley value,
where c(S) is computed using one of these approximations or heuristics.
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Chapter 4

Setting the Drop-off Order using
an Auction

4.1 Introduction

In many ride-sharing scenarios the different passengers may have different prefer-
ences regarding the possible drop-off order. For example, young people may not
mind being dropped-off last if they save a few dollars, but people in their 40’s may
be more concerned about their time and thus would like to pay more to be dropped-
off first. However, the usual approach of ride-sharing services is to determine the
drop-off order according to a specific criterion (e.g., the order that minimizes the
total travel time), disregarding the actual preferences of the passengers in a given
ride.

In this chapter we thus present a mechanism for determining the drop-off order,
which is based on the Vickrey–Clarke–Groves (VCG) mechanism [78, 19, 31]. Our
mechanism allows every passenger, who was assigned to a specific vehicle, to pro-
vide her “value of time”, and the mechanism then picks the drop-off order which
maximizes the social value. The mechanism is truthful, that is, it is a dominant strat-
egy for the passengers to provide their true “value of time”. We run simulations to
estimate the average commission charged by our mechanism, which resulted in only
8.5% of the ride cost. This value is significantly lower than the commission charged
by ride-sourcing services such as Uber and Lyft which was reported to be at least
25% [62]. Clearly, our mechanism may charge an additional fee on the ride cost,
without losing its beneficial properties.

4.2 Related Work

In this chapter we use an auction based mechanism for determining the drop-off
order. Moulin and Shenker [52] also investigate an auction mechanism when sharing
submodular costs. In their setting each agent may either receive a service or not, and
the marginal cost of serving additional agents decreases as the group of agents who
are already served increases. Moulin and Shenker investigate an auction mechanism
to decide which agents are served, and then how to share the cost among them. In
their work there is no drop-off order and each agent has a fixed value for being
served. In our work the passengers are assumed to submit their value for each drop-
off order, and are assumed to have a different value depending on the drop-off order.
The service provider, on the other hand, only selects the drop-off order and must
serve all the passengers.

Several works have considered the use of auctions in the domain of car-pooling.
Kamar and Horvitz [39] use VCG-based payment in the car-pooling domain, which
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depends on the assignments of passengers to vehicles and the chosen routes. We use
the VCG-based payment in the domain of ride-sharing, and it depends only on the
drop-off order of the passenger in a given vehicle. Kleiner, Nebel, and Ziparo [41]
provide a solution for the assignment problem in the domain of car-pooling, based
on auctions. Passengers are bidding for increasing their ranking, and thus visibil-
ity to drivers, whereas drivers can select passengers according to their preferences.
Zhao et al. [84] analyze mechanisms for designating commuters to be either drivers
or riders and calculating the payments. They show that the VCG mechanism results
in a very high deficit, and they thus propose other mechanism with deficit control.

4.3 Mechanism Design for Determining the Drop-off order

In this chapter we assume that the group of passenger should decide on the drop-
off order. Clearly, each order has a different total and personal ride cost, and the
drop-off order also affects the travel time of each passenger (and possibly additional
factors). Since each passenger may have a different value of time, we build a mecha-
nism that elicits the preferences from the passengers and outputs a drop-off order as
well as the mechanism fee for each passenger (in addition to the ride cost). We would
like the mechanism to maximize the social welfare and to be strategy-proof. That is,
the mechanism chooses an order that maximizes the sum of passengers’ values, and
truth-telling is a dominant strategy for each passenger.

We begin with some definitions. As before, let U be the set of passengers, and let
R be a permutation of U . Passenger ui has a true value vRi , for the shared-ride that
drops-off all passengers according to the order in the permutation R. Given a set of
passengers U and a drop-off order, R, a passenger ui is associated with some ride
cost cRi for this specific ride. This cost may depend on the entire set of destinations, as
well as the order in which all passengers are dropped-off, and is known in advance
to all passengers. Each passenger ui reports her value for all possible drop-off orders;
we use v̄Ri to denote each of these reported values. The mechanism selects a drop-
off order, R̂, and determines the fee, f R̂i , for passenger ui. We note that, in addition
to the fee paid by the passenger, the passenger must pay the ride cost, cR̂i . That is,
unlike the standard setting when VCG is applied, a user may have different values
for the different options as well as different costs that are associated with each of the
options. We use gR̂i to denote the utility (gain) of passenger ui, gR̂i = vR̂i − cR̂i − f R̂i .

Before we present a truthful mechanism for this problem, we show that, in our
case, the VCG mechanism that maximizes the reported values and ignores the pre-
determined ride cost is not strategy-proof. Recall that the drop-off order ultimately
selected by the VCG mechanism is R̂ = argmax

R

∑
i

(v̄Ri ), and the fee of VCG is

f R̂i = max
R

∑
j 6=i

(v̄Rj ) −
∑
j 6=i

(v̄R̂j ). Consider the example described in Table ??, where

U = u1, u2.
If u1 and u2 bid truthfully (i.e. for all R, v̄Ri = vRi ), the selected order is u1 → u2

and the utilities are gu1→u21 = 6 − 4 − fu1→u21 = 6 − 4 − (4 − 2) = 0, and gu1→u22 =
2 − 1 − fu1→u21 = 2 − 1 − (6 − 6) = 1. Now, suppose that u1 does not bid truthfully
and v̄u2→u11 = 5. The selected order in this case is u2 → u1 and the utility of u1 is
gu2→u11 = 3−2−fu2→u11 = 3−2− (4−4) = 1. That is, truth-telling is not a dominant
strategy for u1 and VCG is not strategy-proof in this case.
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Passengers

Drop-off
Order u1 → u2 u2 → u1

value (cost) value (cost)
u1 6 (4) 3 (2)
u2 2 (1) 4 (4)

TABLE 4.1: An example in which the VCG mechanism that ignores
the predetermined ride cost does not result in a truthful mechanism.

Our proposed VCG-based mechanism takes into account also the ride cost associ-
ated with every ride. It therefore selects the following drop-off order R̂ = argmax

R

∑
i

(v̄Ri −

cRi ). In addition, given the selected order R̂, we define f R̂i = max
R

∑
j 6=i

(v̄Rj − cRj ) −∑
j 6=i

(v̄R̂j − cR̂j ).

We now show that the proposed mechanism is truthful for every passenger ui.

Intuitively, given the selected order R̂, gR̂i = vR̂i −cR̂i −f R̂i = vR̂i −cR̂i −
(

max
R

∑
j 6=i

(v̄Rj −

cRj ) −
∑
j 6=i

(v̄R̂j − cR̂j )

)
. Therefore, given the selected order, the utility of a passenger

does not depend on her reported values.

Theorem 4.3.1. For any passenger ui, reporting the true values vRi is a dominant strategy.

Proof. We need to show that for any reported values of the other passengers, the
utility of ui when she reports her true values, vRi , is greater than or equals her util-
ity when she reports any other values. We fix v̄Rj for all R and j 6= i. Let R∗ be

argmax
R

(
vRi −cRi +

∑
j 6=i

(v̄Rj −cRj )

)
. That is, the selected order when ui bids truthfully.

Let R̄ be the selected order when ui bids v̄Ri . We show that

gR
∗

i ≥ gR̄i
By definition,

gR
∗

i = vR
∗

i − cR
∗

i −max
R

∑
j 6=i

(v̄Rj − cRj ) +
∑
j 6=i

(v̄R
∗

j − cR
∗

j ).

In addition,

vR
∗

i − cR
∗

i +
∑
j 6=i

(v̄R
∗

j − cR
∗

j ) = max
R

(
vRi − cRi +

∑
j 6=i

(v̄Rj − cRj )

)
.

Therefore,

gR
∗

i = max
R

(
vRi − cRi +

∑
j 6=i

(v̄Rj − cRj )

)
−max

R

∑
j 6=i

(v̄Rj − cRj )

≥ vR̄i − cR̄i +
∑
j 6=i

(v̄R̄j − cR̄j )−max
R

∑
j 6=i

(v̄Rj − cRj )

= vR̄i − cR̄i − ( max
R

∑
j 6=i

(v̄Rj − cRj )−
∑
j 6=i

(v̄R̄j − cR̄j ))

= gR̄i .
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A possible limitation of our approach is that each passenger needs to specify her
value for each drop-off order. This can be a tedious task for a human to specify
her exact value for each order. Furthermore, even specifying the value of a single
drop-off order may be challenging for a human passenger, as this value requires an
estimation of the monetary value of arriving at the destination. Instead, our mecha-
nism can request a passenger to bid only on her value of time. That is, the amount
(per minute) that a passenger would be willing to pay in order to save travel time.
The mechanism can then automatically compute the values for each drop-off order
based on the value of time, since the value of arriving to the destination is the same
for each order. This results in a desirable property: a mechanism that encourages
passengers to report their true value of time, and chooses the route accordingly.

4.3.1 Simulations

We now turn to evaluate the performance of our mechanism in a simulated envi-
ronment. Our mechanism requires the definition of the ride cost (for each passenger
and every drop-off order), as well as the valuation of each ride. Since our mecha-
nism is truthful, we assume that v̄Ri = vRi . For every passenger, ui, and drop-off
order, R, we set the ride cost, cRi , to the Shapley value of that ride φ(ui) (according
to Section 3.4). Let tRi be the travel time from d0 to di by the order R. Let cpi be the
cost of a private and direct ride from d0 to di, and tpi be the time of this ride. Each
passenger is assumed to have a “value or time” V oti. In order to evaluate the value
of a shared ride, we assume that the passenger’s utility from a private ride equals
0. That is, the value of a passenger arriving at her destination, vdesti , is given by her
“value of time” multiplied by the travel time of a private ride, added to the cost of a
private ride, i.e., vdesti = tpi ·V oti+cpi . Therefore, given a passenger ui, and a drop-off
order R, the value of the shared ride vRi = vdesti − tRi · V oti.

We use the graph of the city of Toulouse, France1. This graph includes the actual
distances between the different vertices, and it also includes the Toulouse-Blagnac
airport. We cropped the graph to 40, 000 vertices, by running Dijkstra algorithm [23]
starting at the airport, sorting all vertices by their distance from the airport, and
removing all farther away vertices (including those that are unreachable).

Being a last mile problem, we set the origin vertex (d0) to be the same for all
passengers, the Toulouse-Blagnac airport. To convert the distances to travel times
we set the average speed to 30 kph. We also set the cost per minute of travel to $1.
The capacity of each vehicle was set to 4 passengers. We repeat the following process
1000 times. We sample 12 destination vertices using a uniform distribution over all
vertices. We assign the passengers associated with the destinations to vehicles such
that the total cost of the rides would be minimized. From this assignment we choose
the vehicles which have 4 passengers assigned to them, but disregard the drop-off
order determined by the assignment algorithm. The value of time was randomly
sampled from an average income per minute, computed using US data of income
and hours of work for each decile2. This process resulted in a total of 7424 passengers
assigned to 1856 vehicles.

The main factor that we wanted to evaluate is the overhead of our mechanism.
That is, we would like to ensure that the fees from the mechanism are not too high so

1The graph of Toulouse was obtained from https://www.geofabrik.de/data/shapefiles_
toulouse.zip.

2Data was obtained from: https://dqydj.com/income-percentile-calculator.

https://www.geofabrik.de/data/shapefiles_toulouse.zip
https://www.geofabrik.de/data/shapefiles_toulouse.zip
https://dqydj.com/income-percentile-calculator
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that the total cost of the shared-ride would become inexpedient for the passengers.
Indeed, the average fee in our simulations was only 8.48% from the overall cost
(cR̂i + f R̂i ). This overhead is significantly less than the commission charged by ride-
sourcing services such as Uber and Lyft, which was reported to be at least 25% [62].
In addition, the average utility, gR̂i (which considers the travel time, the cost and the
service fee) was 4.92. Recall that we assume that the utility of a private ride is 0,
which entails that our proposed ride-sharing mechanism seems quite beneficial for
the passengers.

4.4 Conclusions and Future Work

We consider a VCG based mechanism for determining the drop-off order. The pro-
posed mechanism obtains the value of time from each of the passengers and outputs
a drop-off order. The mechanism is both efficient and truthful, and can easily be
modified in order to take into account additional properties such as the travel dis-
tance, the number of additional passengers in the vehicle, and other properties that
may affect the passengers’ value from each drop-off order. Moreover, we provide
simulations showing that the cost paid to the mechanism service is reasonable.

For future work, we would like to extend our mechanism so that it will also de-
termine the assignment. That is, the mechanism should elicit the preferences of the
passengers before the assignment, and assign the passengers to vehicles accordingly.
A bigger challenge would be to develop such a mechanism that will determine both
the assignment and the drop-off order, while still being truthful and efficient.
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