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In this thesis, we explore an existing linear inter-functional relationship,

between two families of porous media characteristic curves: a wetting curve,

and a drying curve, in order to develop a model predicting a function of

family B, from a known function of A and a dataset consisted from couples

of curves from families A and B.

This study concerns with developing a novel machine learning approach to

modeling the relationship between two families of pairwise associated func-

tions. This relationship includes both regular and random constituents, and

it is represented by a limited set L of N known pairs of associated func-

tions, a function of the first family and a function of the second family in

each pair. The suggested approach is applied to the subject of capillary hys-

teresis, for predicting the boundary drying function (BDF), pertaining to the

second family, from the known boundary wetting function (BWF), pertaining

to the first family, resting on the regularity found in training set L (L ⊆ L)

of k (k ≤ N ) pairs. Set L is defined on the principle of k nearest neighbors

in the sense that the k functions of the first family within set L appear to be

the nearest neighbors of the known BWF, associated with the sought BDF.

Prediction of the desired BDF from its associated known BWF is obtained as

a product of two mappings: (a) a nonlinear mapping of the known BWF (be-

longing the first family) to its corresponding hypothetical drying function (as

defined in the hysteresis theory of Mualem, 1984), and (b) a linear mapping

of this latter function to the desired BDF (belonging the second family). The

latter mapping is based on (i) optimization of the k functions of the second

family within set L, using the leave-one-out cross-validation procedure, in

order to minimize the influence of the statistical scattering of the pairs on the

predictive reliability, and (ii) obtainment of the sought BDF as a linear combi-

nation of the optimized k functions. The predicted boundary drying curves
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indicate a generally acceptable agreement with the measured ones. An im-

portant advantage of the proposed approach is a possibility of permanent

updating the suggested predictive model by incorporating new measured

data, what enhances its trustworthiness.

Keywords: Hysteretic Systems, Machine Learning, Supervised Learning Al-

gorithms, Linear Combination, k-Nearest Neighbors.
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Chapter 1

Introduction

In this thesis, we develop a predictive machine learning model describing

a linear inter-functional relationship between two families of porous media

characteristic curves: wetting curve, denoted by Sw(ψ), and drying curves,

denoted by Sd(ψ). Both of the curves are representing a state of water sat-

uration S, as function of capillary pressure (denoted by ψ). The suggested

approach is a deterministic one in sense that different characteristic func-

tions of each individual porous medium (such as Sw(ψ), Sd(ψ) being water

permeability, as well as K(S), which defines a grain size distribution curve)

are deterministically interrelated to each other, since they are all defined by

the same pore space topology.

Our work focuses on the prediction of a Sd(ψ) curve, given a Sw(ψ) one,

based on a dataset consisted from N couples of 〈Swi
(ψ), Sdi(ψ)〉Ni=1 curves,

by learning the transformation G between them (as presented in Figure 1.1).

As will be presented later (in Chapter #2), the relationship between Sw(ψ)

and Sd(ψ) curves is not linear, hence we will use in an intermediate curve

(denoted by S◦d(ψ)), which can be easily computed from Sw(ψ), and defined

as a hypothetical drying curve, assuming that all of the hysterons are paral-

lely connected, i.e. independent of each other. Since such a scenario is almost

surreal, the S◦d(ψ) curves are serving as a baseline for prediction of a Sd(ψ)

curve, and in Chpater #2 we will prove that there exist a linear relationship
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between Sd(ψ) and S◦d(ψ) curves, and will explain how to convert the data

set into S◦d(ψ) curves, in order to exploit this relationship.

The two curves Sw(ψ), Sd(ψ) are creating a capillary hysteresis loop, described

physically by presentation of the porous space as a system of a large num-

ber of elementary hysterons, together with the hypothetical drying curve, in

Fig.[1.2].

FIGURE 1.1: Illustration of the dataset consisted from nwetting
and drying curves, where final goal is to predict a new drying

curve, based on its matching wetting curve and known data.

FIGURE 1.2: Schematic representation of the hysteretic loop
created by wetting (blue) and drying (red) curves Sw(ψ) and
Sd(ψ), respectively, and hypothetical drying curve (brown)
S◦d(ψ) according to Mualem (1984). Arrows show the directions

of processes.

A hysteron, defined as an element having two parameters: (1) entry and

(2) exit, is a fundamental element in hysteretic systems. In capillary hystere-

sis, the entry parameter is a pressure of water filling ψw - wetting, whereas

the exit parameter, is a pressure of emptying ψd - drying (see Figure 1.3). Of

these two parameters, the drying pressure is higher.
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FIGURE 1.3: Illustration of a capillary hysteron. Capillary pres-
sure value ψw is associated with the position of the “water-air”
interface directly preceding the infill; Capillary pressure value
ψd is associated with the position of the “water-air” interface

directly preceding the air entry.

A system of a large number of hysterons would behave hysteretically

even if all of the hysterons will be independent of each other. However,

the real hysteresis is manifested much more pronouncedly, because of inter-

dependence of the hysterons. When two hysterons are connected in series,

then one of them can be blocked by another. By arranging all of the hys-

terons on the plane (ψd, ψw), we obtain a probability density function of the

hysteron volume distribution, denoted by f(ψd, ψw). The domain of defini-

tion of f(ψd, ψw), is a triangle on (ψd, ψw) plane, where ψd ≥ ψw.

FIGURE 1.4: Domain of definition of f(ψd, ψw).
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Using one of the admissible assumptions regarding the volume distri-

bution of hysterons (e.g. hysteresis model of Mualem, 1984), the function

f(ψd, ψw) can be determined by Sw(ψ) only. Knowledge of function f(ψd, ψw)

is necessary for describing the function Sd(ψ). However, the function f(ψd, ψw)

is not sufficient for this purpose, because of inter-dependence of the hys-

terons manifested as the blockage phenomenon. If we assume independence

of the hysterons (i.e. their parallel connection), the usage of function f(ψd, ψw)

leads to the hypothetical drying curve S◦d(ψ) that underestimates the real ex-

tent of the hysteretic loop.

The objective of the suggested work is to develop a machine learning model

predicting the main drying curve Sd(ψ) from the known main hypothetical

drying curve S◦d(ψ), which is inferred from its appropriate Sw(ψ) curve. This

model should take advantage of the ability to convert the Sw(ψ) curves into

S◦d(ψ) ones, in order to explore the linear relationship between the two fam-

ilies of functions: S◦d(ψ) and Sd(ψ). The solution is based on finding an op-

timal linear combination of a number of hypothetical drying curves S◦d(ψ),

with coefficients {ki}ti=1 (for some natural number t, which represent the

number of vectors considered on linear combination) in order to use the same

coefficients for predicting Sd(ψ) curves. To do this, we suggest a supervised

machine learning algorithm, namely k−Nearest−Neighbors by computing

the t nearest neighbors given a specific S◦d(ψ) curve, and then integrate linear

algebra tools into the model, by exploiting the coefficients extracted from the

linear combination, and then use them on predicting a Sd(ψ) curve.

Clearly, exploitation of the relationship between Sw(ψ) and Sd(ψ) curves,

which is based on the linear relationship between S◦d(ψ) and Sd(ψ) curves,

must be mathematically proven, and will be presented in Chapter #2.
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Chapter 2

Linear Relationship Between

Source and Image Functions

The following section will be dedicated for explaining the linear relationship

between the discussed source and image functions, then we will give a direct

proof for a conversion of those families of functions into another such a fam-

ilies, that is denoted by U .

The HDF (Figure 1.2) obtained in the hypothetical drying process when as-

suming mutual independence of the hysterons, is calculated according to the

hysteresis theory of Mualem (1984):

S◦d(ψ) = 2Sw(ψ)− S2
w(ψ) (2.1)

Suppose we have at our disposal a set L of N porous media, each of them

with its pair of known functions Swi
(ψ) and Sdi(ψ) (i = 1, 2, ..., N ). Let set L

be a representative sample of an infinite collection of porous media. There-

fore, this collection defines three families of functions: the boundary wetting

functions (BWF), the hypothetical drying functions (HDF) and the bound-

ary drying functions (BDF). The functions of these families (as presented in

Figure 2.1) are monotonically decreasing from 1 to 0 with zero derivative

(from right) at ψ = 0 (Figure 1.2) and single inflection point. As follows from
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Eq.(2.1), the relationship between the families of BWF and HDF is a non-

linear mapping. Regarding the relationship between the families of HDF and

BDF, in the following we consider a linear mapping between them, including

its physical meaning.

FIGURE 2.1: Schematic representation of differential water ca-
pacity function g◦(ψ) and blockage function b(ψ).

The hysteresis between Sw(ψ) and S◦d(ψ) is explained by the cumulative ef-

fect of individual hysteretic behaviors of all the hysterons constituting the

porous space, when assuming their mutual independence. The observed

hysteresis loop, created by Sw(ψ) and Sd(ψ) is significantly wider (Figure 1.2)

than that existing between Sw(ψ) and S◦d(ψ), because actually in the drying

process an interdependence of some part of the hysterons is involved, due

to specific morphology of the porous medium. This interdependence has

a form of blockage phenomenon occurring when several hysterons prevent

their adjacent ones from emptying. The extent of the blockage phenomenon

is expressed by the blockage function defined by Mualem (1984) as:

b(ψ) =
1− Sd(ψ)

1− S◦d(ψ)
(2.2)

Define also a differential water capacity function (DWC):

g◦(ψ) = −dS
◦
d(ψ)

dψ
(2.3)
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that has a meaning of a probability density function. Functions b(ψ) and

g◦(ψ) are illustrated in Fig. [2.1]. Using Eq.(2.3) we rewrite Eq.(2.2) as follows:

1− Sd(ψ) =

ψ∫
0

b(ψ)g◦(ϕ)dϕ (2.4)

For function b(ψ) we define its bivariate extension B(ϕ, ψ):

B(ϕ, ψ) =

{b(ψ) ϕ≤ψ

0 ϕ>ψ

(2.5)

which is illustrated in the next figure (Figure 2.2):

FIGURE 2.2: Schematic illustration of function B(ϕ,ψ).

According to Eq.(2.5) we have b(ψ) = B(0, ψ). Function B(ϕ, ψ) enables

to rewrite Eq.(2.4) for each ith medium in the following form:

1− Sdi(ψ) =

ψ∫
0

Bi(ϕ, ψ)g◦i (ϕ)dϕ (i = 1, 2, .., N) (2.6)
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where ψ denotes a minimal value, common for all of the N media, at which

every Sdi(ψ) as well as every g◦i (ψ) attains zero.

Taking into account that
ψ∫
0

g◦i (ϕ)dϕ = 1 (i = 1, 2, .., N ), we obtain from Eq.(2.6):

Sdi(ψ) =

ψ∫
0

[1−Bi(ϕ, ψ)]g◦i (ϕ)dϕ (i = 1, 2, .., N) (2.7)

Along with the N individual functions 1 − Bi(ϕ, ψ), (i = 1, 2, .., N), there

exists a set of kernel functions equally satisfying N equations (2.7) at once.

Function D(ϕ, ψ) of the form:

D(ϕ, ψ) =
N∑
j=1

λj(ψ)hj(ϕ) (2.8)

will belong to this set if it would satisfy N equations:

Sdi(ψ) =

ψ∫
0

[
N∑
j=1

λj(ψ)hj(ϕ)]g◦i (ϕ)dϕ (i = 1, 2, .., N) (2.9)

where hj(ϕ), (j = 1, 2, .., N) are are the first N elements of a certain orthonor-

mal basis (e.g. the Fourier trigonometric basis, Legendre polynomials) and

λj, (j = 1, 2, .., N) are the unknown functions to be found from this system of

N equations.

Denote αij by:

αij =

ψ∫
0

g◦i (ϕ)hj(ϕ)dϕ (2.10)

With this designation Eqs.(2.9) are rewritten into the following system of lin-

ear algebraic equations:

Sdi(ψ) = αi1λ1(ψ) + ..+ αijλj(ψ) + ..+ αiNλN(ψ) (2.11)
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that yields solution λj(ψ), (j = 1, 2, .., N) for each prescribed value of ψ.

Therefore, we have the linear mapping:

Sdi(ψ) =

ψ∫
0

D(ϕ, ψ)g◦i (ϕ)dϕ (i = 1, 2, .., N) (2.12)

Function D(ϕ, ψ) can be thought of as a generalized modified blockage func-

tion, common for the set of the N measured media. Other functions of the

above set of kernel functions can be written in the form
M∑
j=1

λj(ψ)hj(ϕ), where

M > N and functions λj(ψ), (j = 1, 2, ..,M) satisfy the following undeter-

mined system of equations:

Sdi(ψ) = αi1λ1(ψ) + ..+ αijλj(ψ) + ..+ αiMλM(ψ) (i = 1, 2, .., N) (2.11*)

The graph of the operator in Eq.(2.12) passes via all theN pairs (g◦i (ϕ), S◦di(ψ)),

(i = 1, 2, .., N) scattered around the supposed actual interfunctional DWCF-

BDF regularity.

Therefore, the operator must be too sensitive with respect to alternate exclu-

sion or replacement of a one or a few pairs, what implies its low predictive

reliability.

Based upon the linear operator in Eq.(2.12) acting from the span of DWCF

family to the span of BDF family, we can proceed to determining a direct

linear mapping between the HDF and BDF families. Suppose, we have to

predict BDF for some porous medium based on its DWCF, the latter derived

from the known BWF by Eqs.(2.1) and (2.3).

Denote this DWCF by g◦p(ψ)). Consider k (k ≤ N) functions of g◦i (ψ)) (i =

1, 2, ., k), that are the k nearest neighbors of g◦p(ψ)) taken from the N known

DWCF pertaining to the given dataset of the N measured media. The ’near-

ness’ is defined by the Euclidean norm. Let function g̃◦p(ψ) be the best nor-

malized approximation of g◦p(ψ), that can be attained by linear combination



Chapter 2. Linear Relationship Between Source and Image Functions 10

of g◦i (ψ), (i = 1, 2, .., k), i.e.

g̃◦p(ψ) = ω1g
◦
1(ψ) + ..+ ωkg

◦
k(ψ) (2.13)

with coefficients ωi(i = 1, 2, .., k) such that:

k∑
i=1

ωi = 1 (2.14)

The image of g◦p(ψ) by the linear operator in Eq.(2.12) is:

S̃dp(ψ) = ω1Sd1(ψ) + ..+ ωkSdk(ψ) (2.15)

On the other hand, integrating Eq.(2.13):

ψ∫
0

g̃◦p(ϕ)dϕ = ω1

ψ∫
0

g◦1(ϕ)dϕ+ ..+ ωk

ψ∫
0

g◦k(ϕ)dϕ (2.16)

yields:

S̃◦dp(ψ) = ω1S
◦
d1

(ψ) + ..+ ωkS
◦
dk

(ψ) (2.17)

where Eq.(2.14) is taken into account. The linear combinations (2.15) and

(2.17) have the same coefficients ωi(i = 1, 2, .., k), therefore instead of operator

(2.12) we can consider the direct linear mapping from the span of HDF family

to the span of BDF family. Accordingly, instead of seeking the best normal-

ized approximation of function g◦p(ψ) (Eq. 2.13) by its k nearest neighbors we

can seek the best normalized approximation of function S̃dp(ψ) by the k near-

est neighbors of the latter. The obtained coefficients ωi(i = 1, 2, .., k) appear-

ing in Eq.(2.17) should be used for determining function S̃dp(ψ) by Eq.(2.15),

as presented in Fig.[2.3]. Just as the operator in Eq.(2.12) cannot serve as a re-

liable predictive tool because of its oversensitivity, function S̃dp(ψ) cannot be
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FIGURE 2.3: Illustration of dataset conversion (denoted by the
transformation U ), from HDF family to BDF family.

considered as a reliable prediction of the sought BDF. Therefore, the follow-

ing stage of this study is an optimization procedure necessary for reducing

of influence of the statistical scattering of HDF-BDF pairs around the actual

regularity.

So far, after a brief introduction to our work, and demonstration of how

is it possible to convert functions families {g◦i (ψ)}ni=1 and {1 − Sdi(ψ)}ni=1

into functions families {S◦di(ψ)}ni=1 and {Sdi(ψ)}ni=1 (respectively), Chapter #3

would be dedicated for related work, whereas in Chapter #4 will present a

description of our soultion method, and Chapter #5 would show a set of ex-

periemental results, comparing different baseline methods to our approach.

Finally, we present a discussion in Chpater #6, then summary and conclu-

sions in Chpater #7.
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Chapter 3

Related Work

As mentioned earlier, the main idea behind our problem’s solution combines

supervised machine learning models, and common linear algebra principles.

Whereas our work concentrates on the prediction of drying curves based on

the wetting curves, Lamorski et al.(2014, 2016) have developed a machine

learning based model, namely Support Vector Machine (SVM), for the pre-

diction of the inverse problem, i.e. the prediction of the wetting curves based

on the drying curves. They have estimated the main wetting branch of the

Soil Water Retention Curve (SWRC) based on the knowledge of the main

drying branch and other, optional, basic soil characteristics such as Particle

Size Distribution (PSD), Bulk Density (BD), Organic Content (OC), and Soil

Specific Surface (SSS). The construction was consisted of different sets of in-

put parameters for each SVM model. All of the models used information re-

lated to the drying branches of SWRC’s, by fitting the Van Genuchten(2005)

model (a method of representation of water retention curves) to measured

retention data points. This process resulted in the extraction of 15 features.

Some of the models have used additional soil characteristics as input param-

eters (i.e., PSD, BD, OC, and SSS), as well as soil physical parameters, since

they were correlated with the wetting branch of the SWRC. Our suggested

approach of using k-NN for inter-functional prediction, is related to the ex-

traction of linear combination coefficients. As far as we know, no usage of
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k-NN has ever served for inter-functional regression using linear combina-

tion technique and data synthesizing. Though, there are some works that are

involved with extraction of linear combination coefficients in order to im-

prove the accuracy of predictive models. E.g is the one of Xu et al.(2012),

that have shown a method for determining the weights of linear combina-

tion coefficients in order to achieve better accuracy of different predictive

models, alike monthly mean rainfall, and aviation engine’s residual life; Fu

et al.(2016) have predicted the coefficients of a linear combination, by chang-

ing the distribution of an original FASTQ (a text-based format for storing

both a biological sequence and its corresponding quality scores) file, through

a linear combination prediction for an improved compression, using exist-

ing compression algorithms. The main output of this study is the predic-

tion of the Sd(ψ) curve (BDF), given the Sw(ψ) curve (BWF). This prediction

can be seen as a simple multi dimensional regression problem, yet, the re-

gression output is a multi-dimensional vector on which every coordinate is

inter-related with its neighbor coordinates, using the optimization algorithm

that has been developed in this work. An example for a multi-label classifi-

cation problem has seen light in Wan et al.(2017), on which they developed

an ensemble transductive learning method to tackle the multi-label classifi-

cation problem, in predicting the multi localization of chloroplast proteins

at the sub-subcellular level. More specificly, given a protein in a dataset, its

composition-based sequence information and profile-based evolutionary in-

formation, has been compared with those of other proteins in the dataset.

The comparison led to two similarity vectors which are weighted-combined

to constitute an ensemble feature vector. Then, a transductive learning model

based on the least squares and nearest neighbor algorithms have been pro-

posed in order to process the ensemble features. To the best of our knowl-

edge, our work is the first to combine multi-dimensional and inter-functional

regression with data synthesizing, based on a given small sampled dataset.
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Chapter 4

Our Approach

As main approach, the algorithm first transforms all of the wetting curves

{Swi
(ψ)}ni=1 into hypothetical drying curves {S◦di(ψ)}ni=1. The algorithm then

picks the k nearest hypothetical drying curves in order to re-represent each of

the hypothetical drying curves {S◦di(ψ)}ni=1. Following to that, the algorithm

computes a coefficients series that minimizes the L2 norm of the difference

between a given hypothetical drying curve, and its representation as a linear

combination resulted by the computed coefficients. This step results in the

extraction of a coefficeints series {ki}ki=1 for the presentation of the drying

curve’s prediction, with the same coefficient series, applied on the k near-

est drying curves. First, we will present two baseline methods for linear

combination’s computation that lays under the construction of the method

proposed in this study;

4.1 Baseline Methods

In the simplest usage of k-NN model that mentioned above, we are given

an S◦d(ψ) curve, then the algorithm looks for the k nearest hypothetical dry-

ing curves that serving as neighbors, and sets the prediction of Sd(ψ) by the

adequate drying curves being equally weighted, i.e. the weight of each dry-

ing curve in the representation of Sd(ψ) as a linear combination of drying

curves is exactly 1
k
. In the more sophisticated method, the algorithm finds
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a coefficient series that serve as a linear combination and minimize the L2

norm of the difference between a given S◦d(ψ) curve, and its representation

as a linear combination of its k nearest hypothetical drying curves. Then, the

algorithm applies the coefficient series on the drying curves, namely the algo-

rithm tries to minimize the L2 norm of the difference between the real drying

curve Sd(ψ), and its prediction which is represented as a linear combination

of its k nearest drying curves.

4.2 Drying Curves Optimization

The optimization is aimed to reduce the influence of statistical scattering of

the HDF-BDF pairs around the actual regularity. Accordingly, the objective of

the optimization procedure is to create N synthetic boundary drying curves,

such that when substituted into Eq. (2.17) instead of Sdi(ψ) (i = 1, 2, .., N),

they would yield a reliable prediction Sdp(ψ), for the desired BDF of a porous

medium with only measured HBDF, S◦dp(ψ), as follows:

Sdp(ψ) = ωp1Ŝd1(ψ) + ...+ ωpk Ŝdk(ψ) (4.1)

Here, Ŝdi(ψ) (i = 1, 2, .., N) denote the synthetic boundary drying curves, and

the coefficients ωp1 , ωp2 , .., ωpk are the same as obtained for approximation of

the HBDF by Eq.(2.17). To describe the synthetic boundary drying curve of

an ith medium we derived the following one-parametric expression:

Ŝdi(ψ) = Sdi(ψ) + β(
Sdi(ψ)

1− Sdi(ψ) + S2
di

(ψ)
− Sdi(ψ)) (4.2)

where parameter β can vary in the range [-1,1]. For initiating the optimiza-

tion procedure, we need:

i . To provide the N pairs of known HDF-BDF.
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ii . To compose for each ith medium (i = 1, 2, .., N) the list of its k near-

est neighboring media, altogether N lists. The number k of the nearest

neighbors, found as the optimal number, is assumed to be the same for

all N media.

iii . To find for each ith HDF the best approximation by linear combination

(Eq. 2.17) of its k nearest neighbors:

S◦di(ψ) ∼ ωi1S
◦
d1

(ψ) + ...+ ωikS
◦
dk

(ψ), (i = 1, 2, .., N) (4.3)

iv . To compose for each ith medium (i = 1, 2, .., N) a list of those media for

whom this ith medium is a neighbor, altogether N lists. The number of

such media, that have an ith medium as a neighbor, depends on i. This

number is denoted hereafter by Ji.

v . To define a routine returning for an ith medium (i = 1, 2, .., N) the cur-

rent form of the synthetic boundary drying curve:

S̆di(ψ) = Sdi(ψ) + β(
Sdi

(ψ)

1−Sdi
(ψ)+S2

di
(ψ)
− Sdi(ψ)), (−1 ≤ β ≤ 1) (4.2*)

Calls to this routine should be made in the course of greedy search of the

optimal values of parameter β needed for each ith (i = 1, 2, .., N) syn-

thetic boundary drying curve. The final optimized form of the synthetic

boundary drying curve is denoted by Ŝdi(ψ), i.e. S̆di(ψ) tends to Ŝdi(ψ)

during the optimization procedure.

vi . To define a routine, returning for each iterative current value of param-

eter β (Eq. 4.2*) pertaining to an ith medium, the current transient pre-

dictions of the BDF of all Ji media for whom this ith medium is a neigh-

bor. In particular, the current prediction of the BDF for an lth medium

(l = 1, 2, .., Ji), for which the ith medium as a neighbor, we have:

Spdl(ψ) = ωl1S̆d1(ψ) + ..+ ωlmS̆dm(ψ) + ..+ ωlk S̆dk(ψ) (4.1*)
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for (m = 1, .., k, l = 1, ..Ji), where Spdl(ψ) designates the current prediction

of the BDF for an lth medium, m = 1, 2, .., k indicate sequential numbers

of the k nearest neighbors of the lth medium. Accordingly, one of these

sequential numbers is related to the ith medium.

4.2.1 Training

The algorithm performs a greedy search of the values of parameter β (Eq.

4.2*) for each of the N media. The sequence of tasks, to be carried out with

respect to every ith medium, can be described by example of the 1st medium.

The tasks are performed with respect to each iterative current value of β, and

they are as follows:

1. The parameter β is assigned a new iterative value of β.

2. The algorithm calculates the current form of the synthetic boundary

drying curve S̆d1(ψ) (Eq. 4.2*) corresponding to the above current value

of β.

3. The current form of S̆d1(ψ), in its turn, invokes computation of transient

predicted BDF from (Eq. 4.1*), Spdl(ψ) (l = 1, .., J1), for the media that

have the 1st medium as a neighbor.

4. Each lth computed transient predicted BDF (l = 1, .., J1) is compared

with the corresponding actual BDF, and the algorithm calculates the

current prediction error:

ρl = ||Sdl(ψ)− Spdl(ψ)||, (l = 1, .., J1) (4.4)

where symbol || · || indicates the Euclidean norm.

5. Having the above J1 values of the current prediction error (Eq. 4.4)

the algorithm calculates the current cumulative prediction error for the
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current iterative value of β:

ρ =

J1∑
l=1

||Sdl(ψ)− Spdl(ψ)|| (4.5)

Quantity ρ serves as an objective function of the optimization procedure. The

tasks 1− 5 are carried out for each iteration of β until ρ is minimized. Once ρ

is minimized, the corresponding value of β is saved as a temporary optimal

value pertaining to the 1st medium, and the algorithm proceeds to the 2nd,

3rd and so forth up to the N th medium. After obtainment of the N temporary

optimal values of β, each with respect to its medium, the above tasks 1 − 5

have to be repeated (for all N media) several more times, because some of

these originally obtained values of β (especially a few first of them) turn out

to be no longer optimal due to subsequent changes in the synthetic boundary

drying curves. Eventually, after running the algorithm several times along

the tasks 1− 5, the process converges and the N obtained values of β as well

as the N corresponding synthetic boundary drying curves are saved as the

optimal values of β and the final synthetic boundary drying curves Ŝdi(ψ),

respectively.

4.2.2 Test

Suppose we need to predict the BDF, Sdp(ψ), from the known BWF, Swp(ψ),

of some medium, not belonging to the dataset. The prediction of the missing

curve is obtained by the following steps:

1. Obtainment of the HBDF S◦dp(ψ), from the known BWC using Eq. (2.1).

2. Finding the k nearest neighbors of function S◦dp(ψ), from among the N

known function S◦di(ψ) (i = 1, 2, .., N).
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3. Finding the best approximation of S◦dp(ψ) by a linear combination of the

above k nearest neighbors (Eq. 2.17):

S◦dp(ψ) ∼ ωp1S
◦
d1

(ψ) + ...+ ωpkS
◦
dk

(ψ) (4.6)

4. Obtainment of the desired prediction of the HBDF:

Sdp(ψ) = ωp1Ŝd1(ψ) + ...+ ωpk Ŝdk(ψ) (4.7)

Test phase can be described by Algorithm[1] which follows next;

Algorithm 1 Drying Curve Prediction
Input: Set of n ∈ N hystertic loops, k ∈ N nearest neighbors, test wetting
curve Swp(ψ)
Output: Drying curve Sdp(ψ) prediction

1: Sd◦p(ψ)← 2Swp(ψ)− S2
wp

(ψ)

2: Sd◦p(ψ)←
k∑
i=1

ki · Sd◦i (ψ)

3: for 1 ≤ i ≤ k do:
4: βi ← Load_Betha (Sdi(ψ))

5: Ŝdi(ψ)← S◦di(ψ) + β(
S◦
di
(ψ)

1−S◦
di
(ψ)+S◦

di
(ψ)2
− S◦di(ψ))

6: end for

7: Sdp(ψ)←
k∑
i=1

ki · Ŝdi(ψ)

8: return Sdp(ψ)
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Chapter 5

Experiements and Results

We developed an experimental platform to validate the hypothesis that us-

ing synthetic drying curves for predicting the correspondant drying curve of

a given weeting curve, outperforms the traditional methods. We have found

intresteting results that confirms the research hypothesis and the mathemat-

ical developments, after collecting a dataset of size N = 21 media sam-

pled. It is important to pay attention that the variance between the presented

hysteretic loops in each figure is reflected in the following properties: (i)

the thickness of the loop, i.e. the distance between the wetting and drying

curves, and (ii) the values of the capillary pressure ψ on which the wetting

and drying curves are saturated. The workflow of the experiements was as

follows;

5.1 Data Preparation

The measured hysteresis loops have been collected from the literature world-

wide. There are N = 21 porous media used in this study: Rubicon sandy

loam (Topp, 1969), Caribou silt loam (Topp, 1971), Norfolk sandy loam (Hop-

mans and Dane, 1986), Bloomfield sand (Bruce and Klute, 1963), Avondale

clay loam (Watson et al., 1975), Adelaide dune sand (Talsma, 1970), Del Monte

fine sand (Liakopoulos, 1966), Rideau clay loam (Topp, 1971), Fontaine bleau

sand (Bruce and Klute, 1956), Mason county fine sand (Bruce and Klute,
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1963), Sandy soil (Santini, 1981), Berea sandstone (Raeesi et al., 2014), Hop-

man (Mualem, 1976), Boise sandstone (Raeesi et al., 2014), Silica fine F-95

sand (Muraleetharan et al., 2009), Borden sand (Demond and Roberts, 1991),

Chiba sandy soil (Gallage et al., 2013), Fine sand F-100 (Hong et al., 2016),

Plainfield sandy loam (Nimmo and Miller, 1986), Sand 50-500 micron (Jack-

son et al., 1965), Glass beads 75 Micron (Bruce and Klute, 1963), Bentheimer

sandstone (Ruspini et. al., 2017), Uniform fine quartz sand (Ray and Morris,

1995), and Aggregated glass beads 5003 (Mualem, 1976).

The dataset was represented as a set of images alike the one seen in Fig.[1.2].

The only difference between Fig.[1.2] and the dataset is the range of ψ axis

on each image, that varied between different ranges. As a preprocess step for

the data preparation, we have sampled by using a digitizing program, each of

the drying and wetting curves in different locations in order to create a skele-

ton of each curve. Then, we have used spline curves in order to reconstruct

an approximation for the original shape of each curve, so that each curve was

represented as a discrete vector of size 451. The reason for this length, is that

we have found that whenever ψ ≤ 0, it holds that Sw(ψ) = Sd(ψ) = 1, since

when there is no capillary pressure - saturation is full, i.e. equals 1. On the

other hand, we have found for all of the 21 media, that whenever ψ > 451, it

holds that Sw(ψ) = Sd(ψ) = 0, means that saturation is empty. As a result, we

have created for each medium a couple of vectors of size 451 - Sw(ψ), Sd(ψ)

for 0 ≤ ψ ≤ 450 in spaces of 1. By Mualem addmissible assumption (Eq. 2.1),

which claims that S◦d(ψ) = 2Sw(ψ)− S2
w(ψ), we have created the adequate S◦d

vector for each medium, on the same range of ψ.

The data is available at the following link: Hysteretic Loops Data

 https://files.fm/u/pjjsf454
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5.2 Comparative Methods

When having in hand Sw(ψ), S◦d(ψ), Sd(ψ) curves for each medium, we have

constructed the following seven different models, such that the difference be-

tween them was expressed by (i) the source and image functions (i.e. from

wetting or hypothetical drying curves, to drying curves), and (ii) the compu-

tation of the linear combination’s coefficient series.

The first model represents our solution, and its name is Hypothetical To Dry-

ing With Beta (HTDWB) - in this main model, the source functions are the

hypothetical drying curves, and the image functions are the drying curves.

This main model is based on the construction from the Drying Curves Opti-

mization phase (presented in subsection 3.1.2), and outperformed all of the

models presented in this work. As can be seen in Fig.[5.1], HTDWB outper-

forms all the other six baselines models, in that the standard deviation is so

low (0.015), implying that our method is very robust to the number of neigh-

bors selected. The standard deviation σ for each model was calculated as:

σ =

√√√√ 1

N

k∑
i=1

(xi −X)2 (5.1)

Where N is the number of media, k is the neighbors amount considered in

the experiements, xi represents the sum of predictions error (defined later

in Eq. 5.2) for a given number of neighbors i, and X is the average sum of

predictions error.

The rest of the models have served as baseline and comparison models, as

follows:

1. Hypothetical To Drying Linear Combination (HTDLC) - Same as HT-

DWB, but differs in the optimization phase which is missing. In this
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model, the linear combination (LC) minimizes the L2 norm of the dif-

ference between a given S◦d(ψ) curve, and its representation as a linear

combination of its k nearest hypothetical drying curves.

2. Hypothetical To Drying Equal (HTDE) - This model differs from HT-

DWB and HTDLC models, in the coefficient series extraction, and has

no optimization process. After finding of k nearest hypothetical drying

curves for a given S◦d(ψ) one, the weight of each corresponding drying

curve in the representation of Sd(ψ) as a linear combination of drying

curves is exactly 1
k
.

3. Mualem - As mentioned in the introduction, an hypothetical drying

curve is a curve that satisfies the assumption that all of the hysterons

are parallely connected, i.e. independent of each other. Since such a sce-

nario is almost surreal in nature, the S◦d(ψ) curves can serve as a baseline

for prediction of a drying curve Sd(ψ). Thus, in this model there was no

construction at all, and the prediction of each drying curve Sd(ψ) was

defined as the computation of hypothetical drying curve S◦d(ψ), which

equals to 2Sw(ψ)− S2
w(ψ).

The last three models are Wetting To Drying With Beta (WTDWB), Wet-

ting To Drying Linear Combination (WTDLC), and Wetting To Drying Equal

(WTDE). This three models are equivalent to HTDWB, HTDLC and HTDE

(respectively), apart from the fact that they are using wetting curves Sw(ψ)

directly (instead of hypothetical drying curves S◦d(ψ)), for the prediction of

drying curves Sd(ψ). Although linear relationship is assumed to being hold

in this models between Sw(ψ) curves and Sd(ψ) curves, no such a relationship

has been proved yet.
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5.3 Expreiemntal Evaluation

The following steps are describing the approach for accomplishing the goal

of this study, i.e. how each of the seven models depicted earlier performs for

perdicting the drying curve of a given wetting curve.

• Cross Validation - In all of the models presented in section 4.2 apart

from the one of Mualem, the data has been splitted into training and

test sets using Leave-One-Out Cross Validation, so that any time that

the algorithm has tested a medium, the rest of the media have served

as training set. Important to note is that in the main model of this work,

which is HTDBW (as well as WTDWB), the cross validation process has

been done twice. This is due to that in the first performance, the cross

validation has served for data splitting, whereas in the second time it

served for the training phase of the optimization process, i.e. for β’s

value computation for a given medium. Clearly, in Mualem’s model

there was no need to split data into training and test sets. This is due

to that given an Sw(ψ) curve, the prediction of the drying curve Sd(ψ)

was defined as the hypothetical drying curve S◦d(ψ).

• Searching for Neighbors - For each tested medium, the algorithm com-

putes its S◦d(ψ) curve’s euclidian-distance from the rest of the S◦d(ψ)

curves of all media, then sorted in increasing order of the neighbors dis-

tance. For the experiemental evaluation we have used with any value

of k ∈ {1, 2, .., 12} nearest neighbors, which is approximately an half of

the dataset size. For each value of k, the algorithm extracted a coeffi-

cients series of size k, in order to represent the S◦d(ψ) curve of the tested

medium, as a linear combination of its k nearest S◦d(ψ) curves.

• Prediction Step - After extracting the coefficients series for a given test

medium, the algorithm picked the Sd(ψ) curves that belongs to the
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tested medium’s neighbors, then computed a dot product between the

Sd(ψ) curves and the coefficients vector. This computation resulted fi-

nally in a prediction for Sd(ψ) curve for tested medium.

FIGURE 5.1: Bar chart of average error of the main method in
this study - HTDWB, compared to the six baselines models de-
scribed earlier. The standard deviation of each model perfor-

mance, is attached above to its adequate bar.

• Performance of Models - Eventually, after repetition on prediction step

for each medium, we have statistically assessed the performance of our

approach, and compared it to the baseline methods, as presented in

Fig.[5.1]. The comparison has been done by computing difference be-

tween vectors norm, i.e. for every number of neighbors k considered

between 1 to 12, and for every porous media among the 21 exist, we

have accomulated absolute value of L2 norm of difference between the

predicted curve, and the true drying curve (known beforehead from

data) for each loop from the hysteretic loops dataset, divided by the norm

of the true drying curve. This accomulated result was divided by the

number of media N . More formally, each column in Fig.[5.1] was com-

puted as:

errorMk
=

N∑
i=1

||Sdi
(ψ)−Spi (ψ)||
||Sdi

(ψ)||

N
(5.2)
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Where errorMk
represnts the error of an arbitrary one of the seven mod-

els for a specific number of neighbors k ∈ {1, 2, .., 12}, i is an index for

each medium among the N = 21 exist in the dataset, Sdi(ψ) is the real

drying curve of medium i, and Spi(ψ) is the prediction of model M for

Sdi(ψ).

Figures [5.2]-[5.5] are demonstrating examples for drying curves predic-

tions using the main model of this work which is HTDWB, for several hys-

tertic loops of different four media. Each figure contains the title that rep-

resents the medium’s name including its nearest neighbros names, and four

curves: (i) wetting curve Sw(ψ), (ii) drying curve Sd(ψ), (iii) hypothetical dry-

ing curve S◦d(ψ), and (iv) drying curve’s prediction SdPred
(ψ).

FIGURE 5.2: Prediction for medium named Borden with its 3
nearest neighbors, ordered in ascending order by their distance:

Bloomfield, Silica Fine Sand and Santiny.

Whereas figures [5.2]-[5.4] are demonstrating cases on which the predic-

tion curve (green curve) has almost conjoined with the red line (the real dry-

ing curve), Fig.[5.5] shows a bad exmaple of the prediction process. This bad

prediction may be caused as a consequent of a lack in close enough neigh-

bors. Finally, the performance of each among the seven models described,
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FIGURE 5.3: Prediction for medium named Fontaine Bleau
with its 3 nearest neighbors, ordered in ascending order by their

distance: Micron 50-500, Uniform Fine and Micron 75.

FIGURE 5.4: Prediction for medium named Chiba with its 3
nearest neighbors, ordered in ascending order by their distance:

Rideau, Rubicon and Santiny.

for each k value is presented in Table [5.1]. Each row represents a different

k value (between 1 to 12), and each column represents one of the six mod-

els constructed in this work: HTDWB, HTDLC, HTDE, WTDWB, WTDLC,

WTDE. The only model that has no column on its own, is the seventh model

which refers to Mualem’s model, due to the fact that no k value affects its

prediction results.
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FIGURE 5.5: Prediction for medium named Aggregated Glass
Beads with its 3 nearest neighbors, ordered in ascending order

by their distance: Bloomfield, Borden and Santiny.

Results by neighbors list
Neighbors

/ Model
HTDWB HTDLC HTDE WTDWB WTDLC WTDE

12 0.147 0.174 0.209 0.165 0.209 0.219
11 0.147 0.170 0.201 0.167 0.203 0.212
10 0.148 0.161 0.191 0.168 0.197 0.204
9 0.147 0.162 0.190 0.168 0.191 0.198
8 0.147 0.163 0.188 0.168 0.186 0.192
7 0.148 0.162 0.184 0.169 0.179 0.184
6 0.148 0.161 0.178 0.169 0.180 0.186
5 0.147 0.156 0.168 0.170 0.183 0.184
4 0.147 0.148 0.160 0.169 0.175 0.177
3 0.145 0.158 0.170 0.171 0.181 0.185
2 0.147 0.161 0.165 0.165 0.159 0.166
1 0.146 0.146 0.146 0.171 0.171 0.171

TABLE 5.1: Results table of the seven models constructed, HT-
DWB, HTDLC, HTDE, WTDWB, WTDLC and WTDE. The
numerical value on each cell of the internal table represents ab-
solute value’s accomulation of L2 norm, of the difference be-
tween the predicted curve, and the true drying curve for each
loop from the hysteretic loops dataset. The error of Mualem’s
model was carried on 0.296 as can be seen in Fig. [5.1]. Clearly,
this error is independent on the number of neighbors consid-
ered, since the prediction process is directly from the wetting to

the drying curves.
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Chapter 6

Discussion

The predicted BDF have been produced for each medium of the available

collection of N measured porous media, and they are presented in Figures.

[5.2]-[5.5]. Each model-predicted BDF has been obtained when the rest N -1

media have served as the training dataset for model calibration, such that

all N predicted BDF have been obtained by leave-one-out cross-validation.

As we can see in Fig.[5.5] the displayed predicted BDF generally indicate a

partial success of the predictive model performance. Observed shortcomings

of the model performance can be attributed to the following reasons:

i . The restriction of ωpi ≥ 0 is imposed on the linear combinations that

approximating the given HDF, i.e. ωp1S◦d1(ψ) + ..+ ωpkS
◦
dk

(ψ).

ii . Shortage of data; wide scattering of HDF-BDF pairs around the actual

regularity.

iii . Statistical nature of Eq.(2.1) underlying the suggested theory.

In addition, there are three other possible reasons to be thoroughly consid-

ered in the subsequent study:

i . Use of the non-optimized functions S◦di(ψ) for approximative linear

combinations.
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ii . Use of the approximative linear combinations of the form ωp1S
◦
d1

(ψ) +

.. + ωpkS
◦
dk

(ψ) instead of the corresponding linear combinations of the

normalized form
ωp1S

◦
d1

(ψ)

||S◦
d1

(ψ)|| + ..+
ωpk

S◦
dk

(ψ)

||S◦
dk

(ψ)|| .

iii . Use of the Euclidean distance between functions S◦dp(ψ) and S◦di(ψ) while

the relative Euclidean distance
||S◦

dp
(ψ)−S◦

di
(ψ)||

||S◦
dp

(ψ)|| may be more suitable.

The restriction ωpi ≥ 0 adopted in the optimization algorithm, was imposed

in order to preserve monotonic behavior of the linear combinations ωi1S◦d1(ψ)

+.. + ωikS
◦
dk

(ψ) (i = 1, 2, .., N − 1) that should approximate the given HDF

S◦dp(ψ). This restriction reduces the quality of approximation, measured by

the Euclidean distance between ωi1S◦d1(ψ)+ ..+ωikS
◦
dk

(ψ) and S◦dp(ψ). Enhanc-

ing the available database should enable to remove this restriction, because

generally more neighbors would fall within a close vicinity of S◦dp(ψ), what

should weaken non-monotonic oscillations of ωi1S◦d1(ψ) + ..+ ωikS
◦
dk

(ψ).

The "statistical scattering" of pairs (S◦di(ψ), Sdi(ψ)) with respect to the actual

interfunctional regularity is thought to be a consequence of an actual varia-

tion of properties of the different porous media rather than of incorrections

of the measured data used. Nevertheless, for objective judgment regarding

the "statistical scattering" and the model performance one has to take into

account that:

i . Determination of functions S◦di(ψ) is based on Eq.(2.1), which itself is

not exact and reflects statistical properties inherent to the morphology of

porous spaces.

ii . The measurements of the wetting and drying curves have been carried

out using different measurement methods and devices. Both factors af-

fect the "statistical scattering".
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Chapter 7

Summary and Conclusions

After the publication of the Mualem (1984) dependent domain theory of cap-

illary hysteresis, i.e. more than three decades, the transition from the HDF

to the BDF remained a missing link in the hysteresis modelling based on

this theory. This is explained probably by significant difficulty of account-

ing for the spatial arrangement of the hysterons, that causes the blockage

phenomenon. The suggested model is aimed to fill up this missing link. Pre-

diction of the desired BDF from its associated known BWF is obtained as a

product of two mappings: (i) a nonlinear mapping of the known BWF to its

corresponding HDF (Eq. 2.1), and (ii) a linear mapping of this latter function

to the desired BDF, by the suggested algorithm HTDWB. We discern two ap-

proaches to predictive modeling of the interfunctional bijective relationships

between the porous media characteristic functions: (i); the integral operator

approach, as presented by Eq. (2.12), and (ii) the direct transformation imple-

mented in the machine learning algorithm HTDWB, suggested in this paper.

The developed framework enables formulating the inverse model intended

to prediction of the BW functions from the known BDF.

We appraise the predicted results, obtained with the available data as they

are, as encouraging, what justifies further efforts for improvement of the ma-

chine learning modeling methodology as well as for widening the database.



Chapter 7. Summary and Conclusions 32

The suggested modeling approach can be applied in other prediction prob-

lems, related to the realms of Geomechanics and Physics of flow through

porous media; among them are the relationship between the soil density as a

function of the water saturation, S, under certain effective stress and that un-

der another effective stress; the relationship between the water permeability

as a function of S and S as a function of the capillary pressure, ψ; the rela-

tionship between the specific area of the “air-water” interface (related to the

Helmholtz free energy) as a function of S and S as a function of ψ; the rela-

tionship between the grain size distribution (in granular media) and the pore

size distribution. An important advantage of the suggested machine learn-

ing modeling approach is a possibility of permanent improving its predictive

ability using newly incoming measured data.
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