
Agents for Automated Human
Persuasion

Amos Azaria
Computer Science Department

Bar Ilan University

Ph.D. Thesis

Submitted to the Senate of Bar-Ilan University

Ramat-Gan, Israel September 2014



This work was carried out under the supervision of:
Prof. Sarit Kraus and Prof. Yonatan Aumann

Department of Computer Science,
Bar-Ilan University



Acknowledgements

This thesis summarizes a wonderful journey of research. I would like to take this

opportunity to thank all of those who made this journey possible, successful and

fascinating. This work was in part supported by ERC #267523.



Contents

1 Automated Human Persuasion 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Persuasion by Advice Provision 9

2 Multi-dimensional. Influential Advice 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Volt Climate Control System . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 CARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 CARE Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Energy Consumption Model . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Human Comfort Level Model . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 CARE Method for Advice Provision . . . . . . . . . . . . . . . . . . . 15

2.4 Training Data Collection Methods . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Data Collection for Modeling Energy Consumption . . . . . . . . . . . 15

2.4.2 Data Collection for Modeling Human Users . . . . . . . . . . . . . . . 16

2.5 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



CONTENTS

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Recommending a set of actions. 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 PUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Algorithm for the Hidden Agenda Setting . . . . . . . . . . . . . . . . 27

3.2.2 Algorithm for Revenue Maximizing . . . . . . . . . . . . . . . . . . . 28

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Hidden Agenda Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Revenue Maximizing Settings . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Long-Term Influential Advice. 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 The UMPA Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Modeling Diversity in People’s Reactions . . . . . . . . . . . . . . . . 44

4.3.2 Predicting Advice Deviations . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Estimating the Cost of an Advised Path . . . . . . . . . . . . . . . . . 47

4.3.4 Searching for Good Advice . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.3 UMPA Advice Algorithm Performance . . . . . . . . . . . . . . . . . 52

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Providing Advice in Repeated Interactions 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Choice Selection Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Route Selection Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Human Receivers as Multi-Armed Bandits . . . . . . . . . . . . . . . 63



CONTENTS

5.3.2 Agent Design for Senders . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Empirical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Climate Control Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Setting Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Modeling Human Receivers . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Agent Design for Sender . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.7 Discussion: Partially Informed and Ordered Actions Domains . . . . . 84

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

II Persuasion by Information Disclosure and Presentation 89

6 Which Information to Disclose? 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 The Information Disclosure Game with Two-Sided Uncertainty . . . . . . . . . 93

6.3 Solving Information Disclosure Games with Two-Sided Uncertainty . . . . . . 94

6.3.1 Mathematical Program . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.2 Finding an Optimal Policy . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 People Modeling for Disclosure Games in Multi-attribute Selection Problems . 98

6.4.1 Multi-attribute Road Selection Problem with Two Sided Uncertainty . . 99

6.4.2 The Sandwich Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.4 Non-monetary Utility Estimation for the Road Selection Problem with

Two-Sided Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.5 Non-monetary Utility Estimation for the Sandwich Game with Two-

Sided Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.2 Human Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS

6.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.4 Results of the Multi-attribute Road Selection Game with Two-sided

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.5.5 Sandwich Game Results . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5.6 Deciding between LUQA and GTBA . . . . . . . . . . . . . . . . . . 111

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Proofs of Theorems Concerning Message Space . . . . . . . . . . . . . . . . . 113

6.7.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.8 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Persuasion Method Matters 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Human Decision Making Under Uncertainty Hypotheses . . . . . . . . . . . . 122

7.2.1 Expected Utility Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.2 Prospect Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.3 Bracketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Prospect Presentation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 An Agent for the Prospect Presentation Problem . . . . . . . . . . . . . . . . . 126

7.4.1 Solving the Prospect Presentation Problem . . . . . . . . . . . . . . . 126

7.4.2 Decision Policy Modeling in APPP . . . . . . . . . . . . . . . . . . . 127

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.7 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Final Remarks 139

Bibliography 141



List of Figures

2.1 A screen-shot with additional energy consumption information provided by

CAREless (the circle in the bottom left corner). . . . . . . . . . . . . . . . . . 18

2.2 A screen-shot of the GUI with CARE’s advice. In this example, the driver

set the temperature to 18◦C (rather than 21◦C as advised by CARE), the fan

to 4 (rather than 1 - as indicated by the purple line), the air delivery to face

and feet (rather than face-only) and the mode to “comfort” (rather than “eco”).

This resulted in an energy consumption level of 63% of the maximal energy

consumption level (right green circle), rather than only 25% if the driver would

have followed CARE’s advice (left purple circle). . . . . . . . . . . . . . . . . 18

2.3 The mean energy consumption level of the subjects who received advice from

CARE and CAREless, compared to the mean energy consumption levels of the

subjects when they did not receive any advice. . . . . . . . . . . . . . . . . . . 21

2.4 The energy consumption level of the climate control system of each subject

when receiving advice from CARE compared to the baseline of the same sub-

ject when not receiving any advice. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 A screen-shot of a subject selecting movies he liked . . . . . . . . . . . . . . . 31

3.2 Recommendation page screen-shot . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 An example of PUMA’s selection process . . . . . . . . . . . . . . . . . . . . 35

3.4 Average revenue per system (in dollars) . . . . . . . . . . . . . . . . . . . . . 37

4.1 Path selection problem visualized in a small maze . . . . . . . . . . . . . . . . 41

4.2 A second example of a path and a cut . . . . . . . . . . . . . . . . . . . . . . 43



LIST OF FIGURES

4.3 Average agent’s costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Average users’ costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Users’ satisfaction and trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Average fuel consumption for each of the treatment groups (the lower the better). 73

5.2 Average energy consumption level for each of the treatment groups (the lower

the better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 System utility in road game Γ1
ρ. The center gained a significantly higher utility

from the actual users than the utility it would have gained if all of the users

were rational (p < 0.001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 User utility in road game Γ1
ρ. The actual drivers gained a significantly lower

utility, on average, than they would have gained if they all would have acted

rationally (p < 0.001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 System utility in road game Γ2
ρ. The center performed significantly better when

using LUQA rather than GTBA (p < 0.05). . . . . . . . . . . . . . . . . . . . 107

6.4 System utility for LUQA in road game Γ2
ρ. LUQA performed significantly

better when it received full information (p < 0.05). . . . . . . . . . . . . . . . 107

6.5 User utility in sandwich games. The difference between a fully rational seller

and the actual human sellers is minor and not statistically significant. . . . . . . 110

6.6 System utility in sandwich game Γ2
σ. The difference between the organizer

utility when using LUQA and when using GTBA is minor and not statistically

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 System utility in the sandwich game. The difference in the organizer’s utility

between actual users and the utility it would have gained if all of the users were

rational is minor and not statistically significant. . . . . . . . . . . . . . . . . . 112

7.1 A subject facing a set of prospects presented separately. . . . . . . . . . . . . . 131

7.2 A subject facing a set of prospects presented in the combined mode. . . . . . . 132

7.3 Average score obtained with each of the methods. . . . . . . . . . . . . . . . . 134



List of Tables

2.1 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Function forms for the considered functions. α and β are non-negative param-

eters and r(m) is the movie rank. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Demographic statistics for the hidden agenda setting . . . . . . . . . . . . . . 33

3.3 Coefficient of determination for functions tested for the hidden agenda setting . 34

3.4 The percentage of subjects who wanted to watch each movie, average promo-

tion gain, overall satisfaction and the percentage of movies marked as good

recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Demographic statistics for the revenue maximizing setting . . . . . . . . . . . 36

3.6 Coefficient of determination for the functions tested for the revenue maximiz-

ing settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 The percentage of subjects who would pay for a movie, the average revenue

and the overall satisfaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Fit-to-data of different receiver models (the lower the better) . . . . . . . . . . 71

5.2 Settings used in the route selection domain. . . . . . . . . . . . . . . . . . . . 72

5.3 Simulation results comparing agent strategies . . . . . . . . . . . . . . . . . . 73

5.4 Performance results of agents interacting with people. The selfishness rate

equals w in Equation 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



LIST OF TABLES

5.5 Fit-to-data of different receiver models in the climate control domain (lower is

better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Performance results of the interactions with people . . . . . . . . . . . . . . . 85

5.7 Notation list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Seller types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Observation table in the sandwich game . . . . . . . . . . . . . . . . . . . . . 106

6.3 Mean square error of modeling human decision-making . . . . . . . . . . . . . 109

6.4 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Average performance of APPP compared to the other agents . . . . . . . . . . 134

7.2 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Abbreviations

• AMT: Amazon Mechanical Turk

• APPP: Agent for the Prospect Presentation Problem

• CARE: Climate control Adviser for Reducing Energy consumption

• CCS: Climate Control System

• CPT: Cumulative Prospect Theory

• CPU: Central Processing Unit

• ES: Exponential Smoothing

• EUH: Expected Utility Hypothesis

• GPS: Global Positioning System

• GTBA: Game Theory Based Agent

• GUI: Graphical User Interface

• HA: Hidden Agenda

• Hyper: Hyperbolic discounting

• LUQ: Linear combination for social Utility and Quantal response

• LUQA: LUQ based Agent

• LWU: Linear Weighted-Utility



List of Abbreviations

• MAB: Multi-Armed Bandit

• MCS: Monte Carlo Sampling

• MDP: Markov Decision Process

• PUMA: Profit and Utility Maximizer Algorithm

• QRE: Quantal Response Equilibrium

• RM: Revenue Maximizing

• SAP: Social agent for Advice Provision

• SP: Subgame Perfect

• TV: Television

• UMPA: User Modeling for Path Advice

• USA: United States of America



Abstract

With the rise in advanced technologies, computer systems that take an active role in human’s

decision-making tasks have become more popular. Frequently, a system and a human user do

not share the exact same goal. This thesis focuses on such interactions in which, on the one

hand, the systems and the humans do not share the exact same goal, but on the other hand,

their incentives do not contrast either (i.e. their goals do not compete with one another). The

objective of this thesis is to develop automated agents for human persuasion. Many real life

interactions may benefit from such agents. In the domain of health care, for example, a therapist

may seek to encourage a patient to exercise or take a certain medication which the patient may

try to avoid. An agent may help in encouraging the patient. In the automobile environment, an

agent may provide advice to drivers with respect to cruise speed or acceleration ratio in order

to reduce the human environmental footprint. In the domain of on-line learning and agent may

encourage students to complete a course and avoid dropping out in the middle.

Our approach for composing such automated agents relies heavily on modeling human be-

havior. Building such a human model may be very challenging, since humans are susceptible to

various psychological effects and their behavior may rely on unanticipated or unknown factors.

To overcome this challenge we based our human model on literature from social science, psy-

chology and human decision-making studies. We collected data on a specific domain and used

machine learning techniques in order to learn parameters which explain best human behavior.

This thesis deals with three different types of persuasion methods:

• Advice provision: The agent may advise the human to take a certain action. In this

case, the system may either be exposed to more information than the human, or it may

use its computational advantage. The agent’s advice may influence the human when

i



Abstract

considering which action to take and thus the agent should provide advice which will

encourage the human to take an action preferable to the agent. Note, that the agent does

not necessarily want the human to take the action which it advises, but rather influence

the human’s choice of action. This is the most common case in real life scenarios and

thus a considerable part of this thesis focuses on this case.

• Information disclosure: The agent has information unknown to the human, and can re-

veal full or partial information in order to encourage the human to take a certain action.

The agent will reveal information which will encourage the human to take an action

preferable to the agent.

• Presentation method: The agent has specific data to show to the human, but may still

choose between different forms of presenting this data. The agent must present the data

in a way that will encourage the human to take an action which is preferable to the agent.

The work presented in the thesis was based on experiments relying on results from hundreds

of people for every domain considered. This high number of subjects allowed us to build more

accurate human models and evaluate the methodology by means of an extensive study.

ii



Chapter 1
Automated Human Persuasion

1.1 Introduction

Computer systems are increasingly being deployed in platforms that involve interactions with

people as well as with other computer agents. Many of these scenarios require computer agents

to generate advice to their human users about what choices to make. Such settings arise in

application domains like coaching, rehabilitation and route-navigation.

Although in general these interactive systems are cooperative, users and machines may

have different interests. In this thesis, we assume that the automated agent and the human

user have different goals, however, we consider non-competitive environments (i.e. the gain

of one party is not necessarily at the expense of the other). In particular, we study automated

agents interested in persuading their users to perform actions that increase the agent’s utility.

Consider a route selection domain where an automatic system suggests commuting routes to a

human driver. Both participants in this setting share the goal of getting the driver from home

to work and back. However, each participant also has its own incentives. The driver wishes to

choose the route that minimizes the commuting time, while the system which may represent

the government may prefer the driver take a longer route that emits fewer pollutants, or does

not pass near schools and playgrounds.

Machines can try to persuade their users to perform certain actions by implementing dif-

ferent methods. In this thesis we focus on three different methods for persuasion. The first part

of this thesis focuses on agents providing advice, i.e. agents which may advise their users to

perform certain actions. We examine how to automatically generate advice that will encourage

users to choose actions preferred by the system (agent). The second part of this thesis considers

1
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agents who provide information about the state of the world (unknown to the user, but relevant

to his decision). This information is revealed in a manner which intends to persuade the human

to take certain actions beneficial to the agent. In the last chapter we consider an environment in

which an agent may consider different methods to present information to a user. We compose

an automated agent which chooses a method that is expected to encourage humans to take a

certain action.

Throughout this thesis we used the following methodology for composing automated agents:

First, we build a formal model which is phrased as an optimization problem for the agent.

Then, based on literature from social science, psychology and human decision-making studies,

we model human behavior and build a general human model. We then collect relevant data and

build an agent which uses this data along with machine learning techniques in order to learn

the parameters that best suit the models. Then, based on the human model and using various

optimization methods, the agent finds the action which is most likely to cause the human to

choose an action which is best for the agent.

Efficient interaction with humans requires understanding and modeling their behavior. For

example, while equilibrium strategy is theoretically considered the most rational one, agents

using such strategies often perform poorly in practice [1, 2, 3]. Since humans commonly do

not use equilibrium strategy themselves, replying with such a strategy can be suboptimal.

However, building this human model may be very challenging. First, it is known that, in

many cases, people follow suboptimal decision strategies. This bounded rational behavior [4]

is attributed to: sensitivity to the context of the decision-making; lack of knowledge of the

user’s own preferences; the effects of complexity; the interplay between emotion and cogni-

tion and the problem of self-control. Furthermore, people discount the advice they receive

from experts[5] and it was shown that if the adviser has a monetary stake in the advice being

followed, people will follow its advice even less [6]. Finally, the learned model should be gen-

eralized to new environments as well as different people. To face these challenges we integrate

machine learning and psychological models for predicting human response to advice.

This thesis is composed of two parts, the first, “Persuasion by Advice Provision”, and the

second part is “Persuasion by Information Disclosure and Presentation”. In the first part of

this thesis, we represent the interaction as a two player game, which includes a sender and

a receiver. Both players have their own utility (or cost) functions. The receiver has a set of

actions, which it will be required to choose from, A. The sender, after observing the state of

the world, may advise the receiver to take a certain action d ∈ A; this advice may influence the
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receiver’s choice. After receiving the sender’s advice, the receiver may either take the action

advised by the sender, take a different action unrelated to the advice, and in some domains,

the receiver may choose to take an action which is not identical to the advice, but is influenced

by it. The outcome to both the receiver and the sender is determined only by the receiver’s

action and the state of the world, i.e., the sender’s advice may have only an indirect impact on

both parties’ outcomes. In each of the chapters in this part we consider different models which

enhance this basic model and result in a more complex and realistic interaction.

In Chapter 2 we consider a setting in which the receiver is assumed to be a driver in an

automobile who needs to set the Climate Control System (CCS). The driver receives advice

from a system seeking to reduce energy consumption. The driver controls a set of parameters

such as the CCS’s temperature, fan strength and air delivery method. In this setting, after re-

ceiving advice from the system, the driver may follow the advice exactly, ignore it completely,

or perform some kind of compromise between the advice and his own initial preferences.

In Chapter 3 we consider a setting in which the receiver chooses a set of actions (a ⊂ A)

and the sender recommends a set of actions as well. In this setting, the receiver may only select

a set of actions from the recommendations provided by the sender. This model is in-fact similar

to models used in recommender systems. Specifically, we consider a movie recommender

system. We consider two different utility functions for the system. In the first, each movie is

associated with some value and the system needs to maximize the value of all movies selected

by the user. In the second setting, the system needs to maximize its expected revenue.

In Chapter 4 we consider a setting in which the sender provides a single yet long lasting

advice. The receiver, which is a player in a game, must find a path on a grid from a starting

point to a destination. There are many paths, but the player is told to find a short path. The

system advises the player to take a specific path. The player may follow the path part of the

way, perform some short-cuts and return to the path at a later stage. We calculate the probability

for each such short-cut and show how to calculate a path which will be most beneficial to the

system.

The last chapter in this part, considers repeated interactions between the sender and the

receiver, i.e. the basic interaction is continuously repeated with some (high) probability. In this

scenario, the sender must consider the long term impact of its advice, as providing bad advice

in the current round, may cause the receiver to ignore the advice in future rounds. We consider

two different domains. The first, is a route selection domain in which a driver must select,

day after day, from a set of routes. In the second domain, a driver sets the power of the air
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conditioning system in the car. We introduce a method for providing advice for such settings,

which is based on considering a social utility of both the driver and the system. We show that

this method outperforms other possible methods such as Monte Carlo sampling and a Markov

Decision Process (MDP).

The second part of this thesis entails persuasion by information disclosure and presentation.

In chapter 6 we consider a game consisting of a sender (system) and a receiver (human), in

which the sender may reveal partial (but truthful) information in order to persuade a receiver

into taking a certain action. We consider two different domains; the first is a road selection

domain, and the second consists of what we call the sandwich game. In the road selection

domain the receiver (driver) must choose a road from a set of roads. These roads have different

traffic states and some are associated with a toll. The sender (system) and the driver have

different utility functions which depend on the state of the traffic and the toll associated with

the road chosen by the driver. The exact traffic state on the roads is known only to the system.

The system may provide either partial or full information to the driver. The system’s goal is

to maximize its (expected) utility. In the second domain, the sandwich domain, the receiver

takes the role of a seller who needs to plan in advance how many sandwiches to prepare for

a conference. The sender plays the role of the conference organizer and has a different utility

function than the seller. Both utility functions depend on the size of the conference (known

a priory only to the organizer) and on the number of sandwiches prepared by the seller. The

organizer may disclose some information to the seller. In both domains, the sender himself

may have some error in his observation. We present two approaches for solving the problem

for the sender. The first assumes that the receiver is fully rational—we solve the problem for

the sender under this assumption. The second approach builds a human model using principles

from social science and uses this model to find the best information for the sender to disclose.

We show that the performance of the different approaches varies, depending on properties

associated with the different domains.

The last chapter focuses on presenting identical information using different presentation

modes. We consider a lottery domain, in which a user faces a set of lotteries (some with

negative payoff) and may choose to either accept them all together or reject them all. These

lotteries may be presented to the user using different presentation methods. We assume that a

system gains utility every time a user accepts the set of lotteries. We present an automated agent

that models human decision making in such settings and then calculates the expected utility for
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the system from each of the forms of representation. The agent then selects the presentation

method which yields the highest expected utility for the system.

Most of the work presented in this thesis was conducted using Amazon’s Mechanical Turk

platform, which is a crowd sourcing web service that coordinates the supply and demand of

tasks which require human intelligence to complete. Amazon Mechanical Turk enabled us

to recruit hundreds of people for every domain we considered1. It allowed us to build more

accurate human models and evaluate the methodology by means of an extensive study. Our

experience in running experiments on Mechanical Turk demonstrated that almost all subjects

considered our tasks seriously. Our experience confirms other studies [7] about the viability

of this medium for empirical research. One exception in this thesis, where we did not rely on

Amazon’s mechanical Turk but rather on real drivers appears in the second chapter. In this case

drivers were provided advice from an agent regarding the settings of a climate control system

in a real car.

1.2 Related Work

Persuasion of humans by computers or technology has raised great interest in the literature. In

his book [8], Fogg surveyed many technologies that try to persuade humans, and analyzed the

main properties required for such persuasion technologies to be successful. One example of

such a persuasion technology (pg. 50) is an exercise bicycle connected to a TV (“Telecycle”).

In this system, as one pedals at a higher rate the image on the TV becomes clearer. Con-

sequently the Telecycle encourages humans to exercise at higher rates. Fogg also described

different methods for persuasive systems such as a social actor - an example is the Banana-

Rama slot machine which has characters that celebrate every time the gambler wins. Fogg

stated that in order to be persuasive, a system must be credible, i.e. both in regards to trustwor-

thiness and expertise. Froehlich et al. [9] surveyed many persuasive technologies with the goal

of reducing environmental impact.

Previous work on advice provision and information disclosure spans the computational and

social sciences disciplines. Game theory researchers have studied persuasion games [10, 11],

in which a “sender” player needs to decide how much information to disclose to a “receiver”

player to influence the receiver’s strategy in a way that will benefit the sender [12, 13, 14].

1All of the study procedures were authorized by the ethics review board of Bar Ilan and Ben Gurion Universi-
ties.
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Renault et al. [15] considered repeated interactions that follow a Markov chain observed solely

by the sender. After observing the state, the sender sends a message to the receiver revealing

partial information, full information or no information on the state. Additionally, the receiver

cannot observe its utility until the end of the multi-period interactions. They studied the trigger

equilibrium that is built on some core strategy and allows deviations. In equilibrium, the sender

assumes some behavior on the receiver’s action and provides advice accordingly. The sender

records the receiver’s actions and if the receiver deviates from the behavior assumed by the

sender, the sender stops providing information to the receiver. The receiver on the other hand,

listens to the advice as long as it is proved to be sufficiently accurate, however, once the sender

deviates and sends inaccurate advice, the receiver ignores any pursuant advice and uses the best

response under his given knowledge.

Models for predicting users’ ratings have been proposed that are used by recommendation

systems to advise their users (See Ricci et al. [16] for a review). It has been shown that rec-

ommender systems, in general, are beneficial for the providing business [17], since they help

the user make a purchase. Most works in this realm do not explicitly try to maximize the sys-

tem’s revenue, but only consider the utility of the user (which, as stated, indirectly increases the

system’s revenue). Chen et al. [18] developed a recommender system that tries to maximize

product profitability. Chen et al. assumed the usage of a collaborative filtering recommender

system which, as part of its construction, provides a theoretically-based probability that a user

will purchase each item. Their system multiply this probability by the revenue from each item

and recommend the items that yield the highest expected revenue.

Pathak et al. [19] studied the cross effects between sales, pricing and recommendations

on Amazon books. They show that recommendation systems increase sales and cause price

changes. The recommendation systems that they considered are price independent, and the

effect on prices is only indirect—items which are recommended more are bought more, which

affects their price (the pricing procedure used in their data takes popularity into account).

Das et al. [20] provide a mathematical approach for maximizing business revenue using

recommender systems. However, they assumed that as long as the recommendations are similar

enough to the customer’s own ratings, the customer is likely to follow the recommendations.

Therefore, Das et al. did not model the actual drop in user acceptance rate as the item becomes

less relevant or as the item price increases, as in our work. Similarly, Hosanagar et al. [21]

used a mathematical approach to study the conflict which a business confronts when using

recommender systems. On one hand the business would like to recommend items with higher
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revenue (margins), but on the other hand it would like to recommend items which the users

are more likely to buy. Hosanagar et al. show that in order to increase its total revenue, the

business must balance between these two factors. Shani et al. [22] used a discrete-state MDP

model to maximize the system’s utility function, taking into account the future interactions

with their users. In their work, the system may, for example, decide to recommend a game

console, since, if purchased, the user is likely to purchase many games for it in the future.

Route or path selection, which is included in several chapters in this thesis, has become

one of the most prominent applications of computer assisted guidance (see a survey in [23]).

In fact, route guidance systems using GPS have become pervasive over the years, thanks to the

significant research effort in addressing both the cognitive limitations and the range of individ-

ual preferences of human users (e.g. [24, 25]). Many of the challenges in the development of

route guidance systems stem from the high variance among individuals regarding their evalu-

ation and acceptance of route advice. This variance makes it important to tailor route advice

and guidance to a specific user. To this end, a wide range of machine learning techniques have

been used to capture and utilize user routing preferences (e.g. [25]). Instead of tailoring routes

to users, we model user attitudes towards route advice such that the choices made by the users,

after being given advice, will be beneficial to the agent. In addition, we assume that the system

and the user have different goals.

There has been some work on driver acceptance of unreliable route guidance informa-

tion [26]. Antos and Pfeffer [27] designed a cooperative agent that uses graphical models to

generate arguments between human decision-makers and computer agents in incomplete in-

formation settings. They used a qualitative approach that does not model the extent to which

people deviate from computer-generated advice. Other works have demonstrated a human ten-

dency to accept advice given by an adversary in games [6]. Some theoretical analysis suggests

this behavior to be rational [28]. To some extent, these results were used in the framework of

large population traffic manipulation (either by explicitly changing the network topology or by

providing traffic information, e.g. [29, 30]).

It is well known that the way information is presented also may have an impact on the

human decision-making process. Rosenberg et al. [31] studied the effect that photographs of

political candidates have on voters’ perception and show indeed that these images significantly

affect their votes. Seuken et al. [32] studied how the UI design choices for markets, such as the

number of choices and the use of dynamic prices, affect users’ abilities to make good economic

decisions. Fenster et al. [33] designed an agent that influences human decision-making in a
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conversational setting. In their work they studied an environment where the human had to

select a location for a school. The agent interacted with the human and attempted to convince

her to choose a certain location. The agent tried to convince the human about a location by

providing examples for her to emulate, or by providing justifications for a certain choice.

1.3 Publications

Some of the results that appear in this thesis were published in:

1. A. Azaria, S. Kraus, C. V. Goldman, and O. Tsimhoni, Advice Provision for Energy

Saving in Automobile Climate Control Systems, In Proceedings of IAAI, 2014 [34] and

AI Magazine [35]. These papers are the basis for chapter 2.

2. A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and I. Netanely, Movie

Recommender System for Profit Maximization, In Proceedings of RecSys, 2013 [36].

This paper is the basis for chapter 3.

3. A. Azaria, Z. Rabinovich, S. Kraus, C. V. Goldman, and O. Tsimhoni, Giving Advice to

People in Path Selection Problems, In Proceedings of AAMAS, 2012 [37]. This paper is

the basis for chapter 4.

4. A. Azaria, Z. Rabinovich, S. Kraus, C. V. Goldman, and Y. Gal, Strategic Advice Pro-

vision in Repeated Human-Agent Interactions, In Proceedings of AAAI, 2012 [38] and

Journal of Autonomous Agents and Multiagent Systems [39]. These papers are the basis

for chapter 5.

5. A. Azaria, Z. Rabinovich, S. Kraus, and C. Goldman, Strategic Information Disclosure to

People with Multiple Alternatives, In Proceedings of AAAI, 2011 [40] and Transactions

on Intelligent Systems and Technology (TIST) ACM Journal, 2014 [41]. These papers

are the basis for chapter 6.

6. A. Azaria, A. Richardson, and S. Kraus, An Agent for the Prospect Presentation Problem,

In Proceedings of AAMAS, 2014, [42]. This paper is the basis for chapter 7.
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Persuasion by Advice Provision
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Chapter 2
Multi-dimensional. Influential Advice

2.1 Introduction

We begin by presenting the simplest scenario, in which an automated agent may provide advice.

In this chapter, we consider a one shot advice provision. The advice is multi-dimensional, i.e.,

includes several parameters, and is influential, i.e., the user may decide not to follow the exact

advice but will still take it into account when deciding which action to perform.

Since we had the opportunity to work with General Motors, we use the domain of advice

provided in automobile systems. We consider a Chevrolet GM Volt car in a summer environ-

ment, whereby the driver would like to turn on the climate control system to cool down the very

warm car in order to drive comfortably. An agent advises the driver how to set the car’s climate

control system. In this scenario the computer agent and human user do not share the exact same

goal. While the agent may care mainly about the car’s energy consumption, the driver, on the

other hand, is usually more interested in his own comfort level while less interested in the car’s

energy consumption. Thus, the agent faces the challenge of providing advice that will reduce

energy consumption while taking into consideration the driver’s comfort level, i.e., advice that

will persuade the driver to set the system settings such that he reduces the energy consumption

of the system.

To provide efficient advice, our agent builds two models. The first, is a model of the prefer-

ences of the driver, estimating his comfort level in a given climate control setting. The second

is an estimate of the energy consumption of a given setting. Both the drivers’ preferences

and the car’s energy consumption are very noisy and difficult to estimate. Both models were

built using data collected by running experiments in the Chevrolet Volt. The data for building
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the drivers’ model was collected from only 15 participants. Based on the constructed models

we formalized the optimization problem of the agent, which wishes to minimize the energy

consumption while maintaining a reasonable level of estimated comfort. We also designed a

Graphical User Interface (GUI) that allows the agent to provide the advice in a convenient and

attractive way for the driver. In order to evaluate our agent, we ran experiments with 49 human

users who were required to set the climate control parameters of the Chevrolet Volt when it

was very hot outside. We tested three different types of advice provision methods. The first no

advice method did not provide any advice and presented the subjects with an interface similar

to the original Volt climate control system. The second energy info method provided the sub-

jects with information regarding their current energy consumption level (based on the energy

consumption model we built). The third agent method provided the subjects with advice on

how to set the climate control system, along with the energy consumption information. We

show that, on average, the subjects consumed less energy when interacting with the energy info

or agent method vs. the no advice method. However, statistically significant differences were

found only when comparing the agent method with the no advice method. When using our

agent, the subjects saved approximately 17% of the energy consumption of the climate control

system.

2.2 The Volt Climate Control System

The study in this chapter was based on the Volt’s climate control system. In this system the

driver can control the settings s as described in this tuple (T, F,D,M) where: Temperature

(T ) is associated with a temperature in Celsius and can receive values between 16 and 35

degrees; Fan strength (F ) is associated with the fan blower and can receive values between

1 and 6; Air delivery (D) may either be set to face (in which D is set to 0) or face and feet

(in which D is set to 1); and Mode (M ) may either be set to “eco” (when M is set to 0) or to

“comfort” (when M is set to 1). According to the Volt’s user manual, the ’eco’ mode tries to

reduce energy consumption, while the “comfort” mode aims at maximizing the user’s comfort

level. Given a setting s we use subscript sT to refer to the temperature in that setting, sF to

refer to the fan strength, sD for the air delivery and sM for the mode of the setting.
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2.3 CARE

In this section we present our Climate control Adviser for Reducing Energy consumption

(CARE). CARE requires the composition of two models, one for modeling the climate con-

trol’s energy consumption as a function of its settings and the other for modeling human com-

fort level as a function of the climate control’s settings. CARE uses these models in order to

provide a driver with advice regarding the settings of the climate control system, while tak-

ing into account both the expected energy consumption and the expected comfort level. The

comfort level is captured by a number between 1 and 10 where:

• 1: ”I’m very uncomfortable; I would not be willing to drive under these conditions.”;

• 3: ”I’m uncomfortable, but I might be willing to compromise.”;

• 5: ”Reasonable, I would be willing to drive under these conditions.”;

• 7: ”I’m comfortable; I would like to drive under these conditions.”; and

• 10: ”I’m most comfortable, I would be happy to drive under these conditions.”

2.3.1 CARE Training Data

Constructing CARE requires two sets of training data: ψe and ψc. ψe is used to train the

parameters for the energy consumption model. It is composed of a tuple with the following

format for every instance i: ψie = (e, T, F,D,M,E, I) where e is the energy consumption

level, given the other parameters; T, F,D and M are the variables set on the climate control

system; E is the external temperature as displayed in the dashboard; and I is the internal

temperature as measured with a manual thermometer located between the 2 front seats.

ψc is used to train the parameters for the comfort model. It is composed of a tuple with

the following format for every instance i: ψic = (c, T, F,D,C,E, I) where c is the comfort

level reported by the subject, given the other parameters; C is the initial comfort level, i.e. the

comfort level reported when the driver enters the car; and all other parameters are as described

in ψe1.

1Notice that the mode, M , does not appear in the comfort level model; this attribute will be explained later.
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2.3.2 Energy Consumption Model

We modelled the energy consumption of the climate control system based on the following

equation:

e(T, F,D,M,E, I) = (w1 · (−T ) +w2 · F +w3 ·D+w4 ·E +w5 · I) · ((1 +w6) ·M)
(2.1)

where w1, w2, ..., w6 are parameters learned by the model. This form of function assumes that

all variables except the climate mode have a linear impact on the final energy consumption. The

climate mode is assumed to have a multiplicative impact on the total energy consumption, since

in the “comfort” climate mode, all of the climate control components seem to work harder and

thus consume more energy. This form of function was compared to other forms and yielded

the best fit to the data collected1. All parameters are assumed to be positive, except w3 which

models the impact of air delivery on energy consumption. w3 was allowed to obtain negative

values and in fact it did end up with a negative value. We used the training data, ψe, and

searched for the parameters w1, w2, ..., w6 which maximize the likelihood of the training data

(maximum likelihood estimation).

2.3.3 Human Comfort Level Model

CARE’s model for the human comfort level is based on the following equation:

c(T, F,D,C,E, I) = v0 − v1 · T + v2 · F − v3 · F 2 − v4 ·D + v5 · C − v6 · E − v7 · I
(2.2)

where v0, v1, ..., v7 are parameters learned by the model. F 2 tries to capture the effect of the

noise created by the fan, which is super-linear in the fan’s level. The human comfort level

model assumes that the human comfort level is a linear combination of all of the parameters

that the human faces (assuming that F 2 models the noise effect). This assumption is common

in the literature [40, 43]. According to the car’s user manual, the ’eco’ mode is supposed

to save energy, therefore, CARE never recommended to set the mode to “comfort”, and we

only gathered data on subjects’ comfort level when using the ’eco’ mode. For that reason, the

human model does not take the mode into account, and only tries to predict the comfort level for

1Some of the other functions that were tested included one or more of the following modifications to the above
function: the use of M as an additive variable; F as having a multiplicative impact or T as having an impact
depending on its offset from I or E.
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when the mode is set to “eco”. We used the training data, ψc, and searched for the parameters

v0, v1, ..., v7 which maximize the likelihood of the training data. Note that the initial comfort

level (C) may change from person to person. This will cause the expected comfort level to vary

among people, and thus also the advice provided by CARE may vary among different people.

This causes the advice to be personalized, i.e. different drivers may receive different advice.

2.3.4 CARE Method for Advice Provision

Given both the energy consumption model and the human comfort level model, CARE provides

the driver with advice regarding the settings of the climate control system. Given the external

temperature (E), the internal temperature (I) and the initial comfort level (C), CARE provides

the driver with advice, a(E, I, C) ∈ S, that yields an expected comfort level of at least 7

while minimizing the expected energy consumption of the climate control system. CARE only

considers advice in which the mode is set to “eco” (i.e. M is set to 0). Comfort level 7 was

chosen as the minimal target comfort level since a comfort level of 7 means that the driver is

comfortable. More formally, CARE provides advice such that:

a(E, I, C) = arg min
s∈S

e(sT , sF , sD,M,E, I) s.t.

sM = 0; c(sT , sF , sD, C,E, I) ≥ 7
(2.3)

where e(·) is obtained from Equation 2.1, and c(·) is obtained from Equation 2.2. Since the

search space was small (|S| was much smaller than 1000), we performed an exhaustive search

to find the optimal advice. However, in a climate control system with additional variables,

CARE may consider a more efficient method of search.

2.4 Training Data Collection Methods

We used the following methods to gather the necessary data in order to train CARE’s two

models.

2.4.1 Data Collection for Modeling Energy Consumption

We collected data on energy consumption directly from the car in order to train the energy

consumption model (ψe) while the climate control system was on. We conducted a total of 120

measurements. Each measurement was a 10-minute duration. We let the car warm up (and

the compressor cool down) for 10 minutes between consecutive measurements. We conducted
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these measurements for various temperatures, starting at T = 16 up to T = 26, and sampled

different values for all of the different variables. Many of our measurements (36) focused on

the range between T = 20 and T = 25, when M = 0 (“eco” mode), which is the natural range

for candidates for the advice, and the function must be the most accurate at those variables.

Evidently the fan strength, F , had a greater impact on the energy consumption level than

the temperature, T . That is, increasing the fan by one unit consumed more energy than reducing

the temperature by one degree Celsius. The raw data we collected strengthened this result, as

we observed that when the fan was set to a higher level, not only did the blower consume more

energy, but so did the compressor. Both the external and internal temperatures (E and I) had a

milder effect on the energy consumption level. Interestingly, the air delivery, D, had a negative

impact on the energy consumption level, i.e. when the air delivery was set to face and feet, the

climate control system consumed less energy than when set only to face. The final function

obtained was:

e(T, F,D,M,E, I) = (−0.0095T + 0.016F − 0.003D + 0.005E + 0.005I) · (1.17M).
(2.4)

2.4.2 Data Collection for Modeling Human Users

Data collection for the human model (ψc) requires human subjects, and thus is difficult to

gather. We therefore had to assure that as many instances as possible are in the range that is

most likely to be used by CARE. Merely randomly selecting different settings may not have

yielded adequate information for training the human model.

We recruited 15 subjects for training the Human Model, of which 4 subjects were females

and 11 were males. The subjects’ ages ranged from 21 to 73, with a mean of 30 and a median

of 27. All subjects live in Israel. The subjects were first asked to fill out a questionnaire on

demographic information. Then the comfort level scale was explained to them.

The subjects entered the car and sat in the driver’s seat with their hands on the steering

wheel and set the vents to point in their direction. While the climate control system was still

off, the subjects were asked to rate their comfort level. The subjects were told how to operate

the climate control and set it so that they would feel most comfortable. These settings were left

on for 4 minutes. The subjects were asked for their comfort level and were required to explain

why they had chosen that level. The subjects then exited the car and the car was left to warm

up for 4 minutes. The subjects then returned to the car and the experiment operator set the next
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setting for them and waited 4 minutes. The subjects had to report and explain their comfort

level and had to wait 4 minutes outside the car. These stages were repeated for a total of 8

different settings for every subject (resulting in 120 instances for all of the 15 subjects).

The subjects’ comfort levels seem to have been influenced mostly by the temperature that

was set on the climate control system, T . The fan, F , also had an impact on the comfort level,

though not as strong as the temperature. Recall that the opposite happened when modeling

the energy consumption level (this result motivated CARE to advise settings with the fan set

to low values). Most subjects reported a reduced comfort level when the fan was too strong

(some reported that the noise was what bothered them). The other parameters seemed to have

a milder impact on the subject’s comfort level. The final formula for the human model was:

c(T, F,D,C,E, I) = 16.6− 1.3T + 0.98F − 0.064F 2 − 1.22D + 0.32C − 0.17E − 0.48I .

2.5 Graphical User Interface

We implemented a panel based on the original climate control panel in the VOLT car, with

additional add-ons. We used three different methods of advice, each with a different Graphical

User Interface (GUI):

1. The first GUI is identical to the original climate control panel in the VOLT car. This

option was used for the control group and is associated with drivers who do not receive

any advice.

2. The second GUI has an additional information circle, which supplies the driver with an

estimate of the current energy consumption level. This information appears as the percent

of the current energy consumption from the maximum energy consumption obtained in

the training data (the lower the better). This GUI is referred to as CAREless. Note that

CAREless does not provide any active advice either. An example can be seen in Figure

2.1 (where the current consumption is 40% of the maximum.).

3. The third GUI is equipped with the full functionality of CARE. The driver is presented

with both the advice provided by CARE and an estimate of the current energy consump-

tion (similar to the information provided by CAREless). Figure 2.2 shows a screen-shot

of a case in which the driver set the climate control differently from CARE’s advice. The

current user’s selection is shown in green and the advice appears in purple.
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Figure 2.1: A screen-shot with additional energy consumption information provided by CAREless
(the circle in the bottom left corner).

Figure 2.2: A screen-shot of the GUI with CARE’s advice. In this example, the driver set the
temperature to 18◦C (rather than 21◦C as advised by CARE), the fan to 4 (rather than 1 - as
indicated by the purple line), the air delivery to face and feet (rather than face-only) and the mode
to “comfort” (rather than “eco”). This resulted in an energy consumption level of 63% of the
maximal energy consumption level (right green circle), rather than only 25% if the driver would
have followed CARE’s advice (left purple circle).
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2.6 Experimental Evaluation

In order to evaluate the performance of CARE and CAREless we recruited 49 subjects for the

evaluation phase, of which 33 were males and 16 were females1. The subjects’ ages ranged

from 21 to 73, with a mean of 35 and median of 31. All subjects live in Israel. The sub-

jects were paid 100 NIS each (27$, which is equivalent to the price of fancy lunch in Israel).

Each of the subjects was randomly assigned an advice provider, which was either CARE or

CAREless; 24 subjects were assigned to receive advice from CARE, while 25 subjects were

assigned to receive advice from CAREless. It is well known that people vary in their preferred

temperature, fan, etc. settings and the outside temperature changes from time to time. Had we

randomly assigned some subjects to a control group, those subjects may have had an average

consumption that may have differed from the average consumption of the subjects receiving ad-

vice merely because of these differences. Therefore, in order to control this variance, we chose

an experimental design that examined the effect of advice as a within-subject variable rather

than a between-subject variable. We had each subject run the experiment twice, once with no

advice (the control group) and once with advice given either from CARE or from CAREless.

We counterbalanced the order among the type of experiments, i.e. approximately half of the

subjects first ran the experiment with no advice, while the other half first ran the experiment

with advice. Within each of these groups, approximately half of the subjects received advice

from CARE while half received advice from CAREless.

Every subject adhered to the following procedure. First the subject was asked to fill out

forms and demographic data, was then led to the car and was asked by the operator for his

initial comfort level. Then, on a dedicated laptop (not on the car display) the subject was

shown the GUI which, according to the experiment type, either presented advice from CARE,

from CAREless or no advice. The subject then told the operator how to set the climate control

system. The operator set the climate control system and updated the GUI accordingly, and

showed it to the subject. The subject could then ask to modify the climate control system

again. The subject remained in the car for a total of 10 minutes. The subject could ask the

operator to modify the climate control system in these 10 minutes as many times as he wanted.

The subjects then had to wait outside the car for 10 minutes between the experiments. The

car doors and trunk were left open and the climate control system was turned off for those 10

minutes, in order to allow the temperature in the car to equalize to the outside temperature.

1All experiments with human subjects were approved by the corresponding IRB.
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After the 10 minutes the subject came back to the car and ran the second experiment (which

also lasted 10 minutes). The subject was then asked some final questions.

2.7 Results

The results were analyzed using repeated measures of ANOVA with total energy consump-

tion as a dependent variable, advice (yes/no) as a within-subject variable, type of advice

(CARE/CAREless), gender of the subject and order of presentation (baseline, first or second)

as between-subject variables. Thus, the statistical model had one within-subject factor and

three between-subject factors. The statistical analysis revealed no significant findings, except a

trend suggesting that the effect of the advice depended on the type (either CARE or CAREless).

We therefore ran separate analyses for each of the two advice types. When subjects were given

advice by the CARE algorithm, their total energy consumption significantly decreased from

0.24 KWH to 0.20 KWH, showing an improvement of 17% (F (1, 21) = 7.6, p < 0.05)1. This

improvement amounted to a mean energy savings described in the 95% confidence interval:

[−24%,−5%]. Neither the effect of the presentation order nor its interaction with the effect of

advice was found to be significant. A similar analysis for the CAREless advice did not show

any improvement in total energy consumption (F (1, 23) = 0.12). Figure 2.3 presents the mean

energy consumption level of the climate control system, which was obtained by the subjects

when receiving advice from CARE vs. CAREless, compared to the mean energy consumption

level of the same subjects when they did not receive any advice.

Figure 2.4 shows the energy consumption level of the climate control system of each subject

when receiving advice from CARE compared to the baseline of that same subject when not

receiving any advice. As illustrated in the figure, for 19 of the 24 subjects an improvement was

shown over their baseline when receiving advice from CARE (their associated points appear

under the 45◦ diagonal). The figure also indicates that for three subjects, CARE reduced energy

consumption by approximately 50% (from approximately 0.25 KWH to approximately 0.12

KWH).

1We made corrections for multiple comparisons, and after the Bonferroni correction, the type-I error remained
< 0.05.
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Figure 2.3: The mean energy consumption level of the subjects who received advice from CARE
and CAREless, compared to the mean energy consumption levels of the subjects when they did not
receive any advice.

Figure 2.4: The energy consumption level of the climate control system of each subject when
receiving advice from CARE compared to the baseline of the same subject when not receiving any
advice.
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2.8 Discussion

CARE significantly outperformed the control group. Perhaps this occurred not only because

some of the subjects actually accepted the advice and used it, but seemingly even those who did

not accept the advice were influenced by it. Some subjects also used the advice as a baseline

and edited it. For example, one of the subjects, when receiving no advice, set the climate

control system to a temperature of 23◦C and the fan to 4. However, when the same subject

received the advice to set the temperature to 24◦C and the fan to 1, she set the temperature

to 24◦C as suggested, but the fan to 2. Later, when she became a little too warm, she set

the fan to 3, and the temperature at 24◦C. Clearly, CARE caused her to reduce her energy

consumption. In total, of the 24 subjects who received CARE’s advice, only 4 followed the

exact advice. Nonetheless, CARE caused a decrease in the energy consumption of subjects

who did not follow its exact advice.

In order to ensure that the advice provided to the user was easy to understand, we asked

the subjects the following question: ”Was the information on the screen clear?” and we asked

them to specify a number between 1 and 10. The average answer was 9.15, indicating that the

GUI was very understandable. Another interesting observation is that females tend to consume

less energy than males, 0.201 vs 0.242 (when looking only at the no-advice condition). This

raises the possibility that demographic data may be used in addition to the information provided

explicitly by the driver when entering the car.

2.9 Conclusions

In this chapter, we presented a method to persuade a driver to reduce the energy consumption

of the climate control system of his electrical car. We showed via experiments that the pro-

posed methodology leads to a significant reduction of energy consumption. The methodology

requires the collection of data on the energy consumption of the climate control system and

on the drivers’ behavior. Nevertheless it is effective even with a small number of examples

(15 drivers in our experiment). We designed a GUI to present the advice that facilitates under-

standing the advice. The reported work is the first step in the process of the deployment of a

persuasive agent in a car.

2.10 List of Notations
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2.10 List of Notations

notation meaning

c comfort level.

C initial comfort level.

D air delivery (“face” or “face and feet”).

e energy consumption level.

F fan strength (between 1 and 6).

E external temperature.

I internal temperature.

M mode (“eco” or “comfort”).

s climate control system setting.

T temperature (between 16 and 35).

v parameters learned by the comfort level model.

w parameters learned by the energy consumption model.

sD air delivery in a specific setting.

sF fan strength in a specific setting.

sM mode in a specific setting.

sT temperature in a specific setting.

ψe energy training data.

ψc comfort training data.

Table 2.1: List of Notations
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Chapter 3
Recommending a set of actions.

3.1 Introduction

A prime example massively used to provide advice to users is recommender systems. Thus, in

this chapter we consider a recommender system that recommends a set of actions rather than

a single action to the user. Recommender systems usually take place in environments where

users face a very large number of possible actions (for example, renting a movie or buying

a book). The recommender system, in most cases, does not recommend a single item, but

rather recommends a set of items to a user, who may in turn decide to buy/rent any subset

of these items (or possibly other items). The main goal in designing recommender systems

is usually to predict the user’s most preferable items and to supply her with the best list of

recommendations. This trend is prevalent whether we consider a social network recommending

friends [44], consumer goods [45] or movies [46].

In this chapter, we provide evidence that a business may gain significantly by providing

users with recommendations that may not be best from the user’s point of view but rather serve

the business’ needs. We provide an algorithm which uses a general recommender system as

a black-box, but modifies the recommendations to increase the utility of the business. We

perform extensive experiments with it in various cases. In particular, we consider two settings:

1. The Hidden Agenda setting: In this setting, the business has items that it wants to pro-

mote, in a way which is opaque to the user. For example, a movie supplier who provides

movies on a monthly fee basis but has different costs for different movies, or a social

25



3. RECOMMENDING A SET OF ACTIONS.

network that wants to connect users who are less engaged to more engaged ones. Net-

flix, for instance, set a filter to avoid recommending new releases which incur high costs

for them [47].

2. The Revenue Maximizing setting: In this case the goal of the recommender system is to

maximize the expected revenue, e.g. by recommending expensive items. In this setting,

there is an inherent conflict between the user and the business.

To study these settings, we conducted experiments on Amazon Mechanical Turk (AMT) in

which subjects were asked to choose a set of favorite movies (from a given set), and then were

given recommendations for another set of movies. For each recommendation, the subjects were

asked if they would or would not watch the movie1. Finally, in order to test possible reduction

in satisfaction which may have been caused by tuning the recommendations to the business’

needs, we asked each subject how good she feels about the recommendations she received.

This form of experimentation makes two assumptions. First, we simulate long term effects

by asking users about their satisfaction from the list. Second, we assume that asking users if

they are willing to pay for a movie is the same as actually taking their money and screening the

movie. Both assumptions are common in the literature (for a comparison between hypothetical

and real scenarios see [48]). We hope to integrate the algorithm in a real world system to

circumvent the assumptions.

Manipulating the recommender system in order to increase revenue (or to satisfy some

other hidden agenda) raises some ethical concerns. If users believe that a particular algorithm

is being used (e.g. collaborative filtering), then they could be irritated if they find out that

recommendations are being edited in some way. However, most businesses do not provide the

specification of their recommender system (treating it as a “secret sauce”), which eliminates

this concern. Furthermore, several companies (including Netflix, Walmart and Amazon) admit-

ted human intervention in their recommender system [19], so it may well be that companies are

already tweaking their recommender systems for their own good. In this sense, an important

lesson to take away from this work is “users beware!”. We show that businesses garner a large

gain by manipulating the system, and many companies could be tempted by this increase in

revenue. In this chapter we propose a method which allows businesses to harness their existing

recommender system in order to increase their revenue.

1In the Revenue Maximization setting each recommended movie also came with a price tag. We describe the
experiments later in the experiments section.
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To summarize, this chapter considers a recommender system that recommends a set of

movies (actions) to a user. We provide algorithms for utility maximization of the movie supplier

service, in two different settings, one with prices and the other without. These algorithms are

provided along with an extensive experiment demonstrating their performance.

3.2 PUMA

In this section we present the Profit and Utility Maximizer Algorithm (PUMA). PUMA uses a

black-boxed recommender system which supplies a ranked list of movies. This recommender

system is assumed to be personalized to the users, even though this is not a requirement for

PUMA.

3.2.1 Algorithm for the Hidden Agenda Setting

In the hidden agenda setting, the movie system supplier wants to promote certain movies.

Movies are not assigned a price. We assume that each movie is assigned a promotion value,

v(m), which is in V = {0.1, 0.2, ..., 1}. The promotion value is hidden from the user. The

movie supplier wants to maximize the sum of movie promotions which are watched by the

users, i.e. if a user watches a movie, m, the movie supplier gains v(m); otherwise it gains

nothing. The movie supplier can recommend n movies to each user.

The first phase in PUMA’s construction is to collect data on the impact of the movie rank,

r(m), in the original recommender system on the likelihood, p(m), of the users to watch the

movie. To this end we provide recommendations, using the original recommender system.

However we provide only a fraction of the recommendations and not all of them. We provide

all movies which are ranked {1, k+1, 2k+1, 3k+1, ..., (n−1)·k+1} for the given subject in the

original recommender system. We then cluster the data according to the movie rank and, using

least squared regression, we find a function that best explains the acceptance rate as a function

of the movie rank. We consider the following possible functions: linear, exponent, log and

power (see Table 3.1 for function forms). We do not consider functions which allow maximum

points (global or local) that are not at the edges, since we assume that the acceptance rate of the

users should be the highest for the top rank and then gradually decrease. Since these functions

intend to predict the probability of the acceptance rate, they must return a value between 0 and

1. Consequently a negative value returned must be set to 0 (this may only happen with the

linear and log functions; though, in practice, we did not encounter this need).
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Table 3.1: Function forms for the considered functions. α and β are non-negative parameters and
r(m) is the movie rank.

function function form

linear (decay) α− β · r(m)

exponent (exponential decay) α · e−β·r(m)

log (logarithmic decay) α− β · ln(r(m))

power (decay) α · r(m)−β

Among the functions that we tested, the linear function turned out to provide the best fit

to the data in the hidden agenda setting (it resulted in the greatest coefficient of determination

(R2)). Therefore, the probability that a user will want to watch a movie as a function of its rank

(for the specific user) takes the form of:

p(m|r(m)) = α− β · r(m) (3.1)

where α and β are constants.

Given a new user, PUMA calculates for each movie its expected promotion value, based

on the output of the original recommender system. This value is given by:

p(m|r(m)) · v(m) (3.2)

Then, to maximize its expected promotion value, PUMA sorts all movies according to their

expected promotion value. PUMA selects the top most n movies as its recommendation to the

user.

3.2.2 Algorithm for Revenue Maximizing

In this setting, every movie is assigned a fixed price (different movies may have different

prices). Each movie is also assumed to incur a cost for the vendor. PUMA seeks to max-

imize the revenue obtained by the vendor, which is the sum of all movies purchased by the

users minus the sum of all costs incurred by the vendor.

PUMA’s variant for the Revenue Maximizing settings entails a much more complex prob-

lem than PUMA’s variant for the hidden agenda since it is unknown to PUMA how the movie
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price may influence the likelihood of the users to buy it. Therefore, PUMA must consider both

the movie rank and the movie price when building a user model.

Building a model by learning a function of both the movie rank and the movie price to-

gether requires too many data points. Furthermore, in such a learning phase the movie supplier

intentionally provides sub-optimal recommendations, which may result in a great loss. Instead,

we assume that the two variables are independent, i.e. if the movie rank drops, the likelihood

of the user to buy the movie similarly decreases for any price group.

In order to learn the impact of the price on the likelihood of the users to pay to watch a

movie, we use the recommender system as is, which provides recommendations from 1 to n.

We cluster the data into pricing sets where each price (fee f ) is associated with the fraction of

users who are willing to pay that price to watch a movie (m). Using least squares regression

we find a function that best explains the data as a function of the price. We tested the same

functions described above (see Table 3.1 - replacing the movie rank with the movie fee), and

the log function resulted in a nearly perfect fit to the data. Therefore, the probability that a user

will be willing to pay in order to watch a movie as a function of its price takes the form of:

p(m|f(m)) = α1 − β1 · ln(f(m)) (3.3)

where α and β are constants.

In order to learn the impact of the movie rank (r) in the recommender system on the like-

lihood of the users to pay to watch a movie, we removed all prices from the movies and asked

the subjects if they were willing to pay to watch the movie (without mentioning its price). As in

the hidden agenda settings, we provided recommendations in leaps of k′ (i.e. recommendations

were in the group {1, k′+1, ..., (n−1) ·k′+1}). We clustered the data according to the movie

rank and once again using least squared regression we found a function that best explains the

data as a function of the movie rank. Among the functions that we tested (see Table 3.1), the

log function turned out to provide the best fit to the data for the movie rank as well (resulting

in the greatest coefficient of determination (R2)). Using the log function (which is a convex

function) implies that the drop in the user acceptance rate between movies in the top rankings

is larger than the drop in the user acceptance rate within the bottom rankings. The difference in

the function which best fits the data between the hidden agenda setting and the revenue max-

imizing setting is reasonable, since, when people must pay for movies they are more keen to

pay for movies that better suit their exact taste. Consequently the acceptance rate drops more
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3. RECOMMENDING A SET OF ACTIONS.

drastically. Thus, the probability that a user will be willing to pay in order to watch a movie as

a function of its rank takes the form of:

p(m|r(m)) = α2 − β2 · ln(r(m)) (3.4)

A human model for predicting the human willingness to pay to watch a movie, p(m|r(m), f(m)),

requires combining Equations 3.3 and 3.4; however this task is non-trivial. Taking p(m|r(m)f(m)

as p(m|r(m)) · p(m|f(m)) does not make sense: for example if both signals say that the prob-

ability of watching is 0.5 then the output should be 0.5 and not 0.25. Using this intuition, we

assume that Equation 3.3 is exact for the average rank for which it was trained, which is n
2 + 1.

Therefore, by adding a correction term, γ(m), to Equation 3.4, we require that Equation 3.4

provides the same viewing probability as Equation 3.3 on n
2 + 1:

α2 + γ(f(m))− β2 · ln(
n

2
+ 1) = α1 − β1 · ln(f(m)) (3.5)

Isolating γ(m) we get:

γ(f(m)) = (α1 − α2) + β2 · ln(
n

2
+ 1)− β1 · ln(f(m)) (3.6)

Therefore, our human model for predicting the fraction of users who will pay to watch a movie,

m, given the movie price, f(m), and the movie rank, r(m) (obtained from the recommender

system) is:

p(m|r(m), f(m)) = α2 + ((α1 − α2)+

β2 · ln(
n

2
+ 1)− β1 · ln(f(m)))− β2 · ln(r(m)) (3.7)

and after simple mathematical manipulations:

p(m|r(m), f(m)) = α1 − β2 · ln(
r(m)
n
2 + 1

)− β1 · ln(f(m))

Once a human model is obtained, PUMA calculates the expected revenue from each movie

simply by multiplying the movie revenue with the probability that the user will be willing to

pay to watch it (obtained from the model) and returns the movies with the highest expected

revenues. The revenue is simply the movie price (f(m)) minus the movie cost incurred by

the vendor (c(m)). I.e. given a human model, PUMA recommends the top n movies which

maximize:

(f(m)− c(m)) · p(m|r(m), f(m)) (3.8)
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Figure 3.1: A screen-shot of a subject selecting movies he liked

3.3 Experiments

All of our experiments were performed using Amazon’s Mechanical Turk service (AMT). A

total of 245 subjects from the USA participated in all experiments of which 50.6% were fe-

males and 49.4% were males, with an average age of 31.5. The subjects were paid 25 cents for

participating in the study and a bonus of an additional 25 cents after completing it. We ensured

that every subject would participate only once (even when considering different experiments).

The movie corpus included 16, 327 movies. The original movie recommender system received

a list of 12 preferred movies for each user and returned a ranked list of movies that had a seman-

tically similar description to the input movies, had a similar genre and also considered the year

the movies were released and the popularity of the movies (a personalized non-collaborative

filtering-based recommender system). We set n = 10, i.e., 10 movies were recommended to

each subject.

After collecting demographic data, the subjects were asked to choose 12 movies which

they enjoyed most from a list of 120 popular movies (see Figure 3.1 for a screen-shot). Then,

depending on the experiment, the subjects were divided into different groups and received

different recommendations.
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Figure 3.2: Recommendation page screen-shot

The list of recommendations included a description of each of the movies (see Figure 3.2

for an example). The subjects were shown the price of each movie, when relevant, and then

according to their group were asked if they would like to pay in order to watch it, or simply if

they would like to watch the movie. In order to ensure meaningful responses, the subjects were

also required to explain their choice (”Please explain why (mandatory)”). After receiving the

list of recommendations and specifying for each movie if they would like to pay to watch it, the

subjects were shown another page including the exact same movies. This time they were asked

whether they had seen each of the movies (”Did you ever watch movie name?”), whether they

thought that a given movie was a good recommendation (”Is this a good recommendation?”)

and rated the full list (”How would you rate the full list of recommendations?”) on a scale from

1 to 5. These questions were intentionally asked on a different page in order to avoid framing

[49] and to ensure that the users provided their true preferences1.

1We conducted additional experiments where the subjects were first asked whether they watched each movie
and then according to their answer, were asked whether they would pay to watch it (again). We obtained similar
results, however, we do not present them since they may have been contaminated by the framing effect.
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Table 3.2: Demographic statistics for the hidden agenda setting

Group Number of Fraction of Average

subjects females age

Rec-HA 31 58.1% 32.3

PUMA-HA 30 50.0% 32.6%

Learn-HA 30 53.3% 29.4%

3.3.1 Hidden Agenda Setting

In the hidden agenda setting we assume that the subjects are subscribers and therefore they

were simply asked if they would like to watch each movie (”Would you watch it?”). The

hidden agenda setting experiment was composed of three different groups. Subjects in the

Rec-HA group were recommended the top 10 movies returned by the original recommender

system. Subjects in the PUMA-HA group were recommended the movies chosen by PUMA.

Subjects in the Learn-HA group were used for data collection in order to learn PUMA’s human

model. Table 3.2 presents some demographic statistics on the subjects in the three groups.

For the data collection in the movie rank phase (Learn-HA) we had to select a value for k

(which determines the movie ranks for which we collected data; see Section 3.2.1). The lower

the k is, the more accurate the human model is, resulting in better (lower) rankings. On the

other hand, the higher the k the more rankings the human model may cover. In the extreme

case where the ranking has a minor effect on the human acceptance rate, the vendor may want

to recommend only movies with a promotion value of 1. Even in this extreme case, the highest

movie rank, on average, should not exceed |V | · n, which is 100. Therefore, we set k = 10,

which allowed us to collect data on movies ranked: {1, 11, 21, 31, 41, 51, 61, 71, 81, 91}.
Unfortunately, the data collected in the Learn-HA group was very noisy, as the movies in

the 11th rank resulted in a much higher acceptance rate than those in the 1st rank. Furthermore,

the movies in the 71st rank resulted in a much lower acceptance rate than those in the 81st

rank. Therefore the coefficient of determination (R2) was only 0.31. Still, the tendency of the

data was clear (the correlation between the movie rank and the acceptance rate was negative,

0.56, which implies that the original recommender system performed well), and additional data

would have probably yielded a better coefficient of determination. Nevertheless, the fit-to-data
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Table 3.3: Coefficient of determination for functions tested for the hidden agenda setting

function R2

linear 0.31

exponent 0.29

log 0.21

power 0.21

that was reached was definitely adequate, as depicted in the performance results. Table 3.3 lists

the coefficient of determination for all functions tested.

The specific human model obtained, which was used by PUMA (in the hidden agenda

settings) is simply:

p(m|r(m)) = 0.6965− 0.0017 · r(m) (3.9)

PUMA significantly (p < 0.001 using the student t-test) outperformed the original recom-

mender system by increasing its promotion value by 57% with an average of 0.684 per movie

for PUMA-HA versus an average of only 0.436 per movie for the Rec-HA group. No statis-

tically significant differences were observed between the two groups concerning the average

satisfaction for each of the movies or the user’s satisfaction from the full list. However, it is

likely that the use of more data would result in a statistically significant drop in the user’s sat-

isfaction. Our best estimate is a 3% drop in the fraction of good recommendations (from 71%

rated as good recommendations in the Rec-HA group vs. 69% in the PUMA-HA group), and a

7% loss in the satisfaction from the entire list. See Table 3.4 for additional details.

3.3.2 Revenue Maximizing Settings

For the revenue maximizing settings, all movies were randomly assigned a price which was in

F = {$0.99, $2.99, $4.99, $6.99, $8.99}1. We assumed that the vendor’s cost does not depend

on the number of movies sold and therefore we set c(m) = 0 for all movies. The subjects were

asked if they would pay the price to watch the movie (”would you pay $movie price to watch

1We used random pricing since we did not find any correlation between Amazon’s movie price and features
such as popularity of the movie in IMDB, year of release, parental rating and country of production.
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Table 3.4: The percentage of subjects who wanted to watch each movie, average promotion gain,
overall satisfaction and the percentage of movies marked as good recommendations

Group Want to Average Overall

watch promotion satisfaction

Rec-HA 76.8% 0.436 4.13

PUMA-HA 69.8% 0.684 3.83

Learn-HA 62.0% - 3.77

Figure 3.3: An example of PUMA’s selection process

it?”). As in the hidden agenda setting, subjects were divided into three groups. Subjects in

the Rec-RM group received the top 10 movies returned by the original recommender system.

Subjects in the PUMA-RM group received the movies chosen by PUMA. Subjects in the Learn-

RM group were used in order to obtain data about the decay of interest in movies as a function

of the movie rank (as explained in Section 3.2.2). The subjects in this group were asked if they

were willing to pay for a movie, but were not told its price (”Would you pay to watch it?”).

Table 3.5 presents some demographic statistics on the subjects in the three groups.

In the movie rank learning phase, we set k′ = 5, i.e., recommendations were in the group

{1, 6, 11, 16, 21, 26, 31, 36, 41, 46}. Once again, this is due to the fact that k′ ·n = |F | ·n (even
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Table 3.5: Demographic statistics for the revenue maximizing setting

Group Number of Percentage of Average

subjects females age

Rec-RM 31 41.9% 32.1

PUMA-RM 28 67.8% 29.7

Learn-RM 30 40.0% 33.9

Table 3.6: Coefficient of determination for the functions tested for the revenue maximizing set-
tings.

function R2

linear 0.43

exponent 0.39

log 0.60

power 0.54

if the movie ranking has a minor impact on the probability that the user will watch the movie,

and therefore PUMA would maintain a certain price; nonetheless, on average, it is not likely

that PUMA would provide movies which will exceed rank |F | · n, and therefore no data is

needed for those high rankings). The coefficient of determination value using the log function

on the learning data was 0.60, as presented in Table 3.6.

The specific human model obtained, which was used by PUMA (in the revenue maximizing

settings), is:

p(m|r(m), f(m)) = 0.82− 0.05 · ln(
r(m)

6
)− 0.31 · ln(f(m))

As illustrated in Figure 3.4, PUMA significantly (p < 0.05 using student t-test) outper-

formed Rec-RM, yielding an average revenue of $1.71, opposed to only $1.33 obtained by

Rec-RM. No significant difference was revealed when testing the overall satisfaction level from

the list: 4.13 vs. 4.04 in favor of the Rec-RM group. However, more data would probably re-

sult in a statistically significant difference. Our best estimate for this loss would be about 2.2%.
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Figure 3.4: Average revenue per system (in dollars)

Table 3.7: The percentage of subjects who would pay for a movie, the average revenue and the
overall satisfaction.

Group want to average overall

buy revenue satisfaction

Rec-RM 39.1% $1.33 4.13

PUMA-RM 37.1% $1.71 4.04

Learn-RM 56% – 4.03

While the average movie price was also similar in both groups, with an average movie price of

$5.18 for Rec-RM and an average movie price of $5.27 for PUMA-RM, the standard deviation

was quite different: 2.84 for the Rec-RM group, and only 1.95 for PUMA-RM, in which 64.6%

of the movies were either priced at $2.99 or $4.99.

Figure 3.3 demonstrates the selection process performed by PUMA for a specific user.

After calculating the expected revenue using the human model, PUMA selected movies #1,

#3, #4, #5, #7, #9, #12, #13, #15 and #21, which yielded the highest expected profit. In

this example, when comparing PUMA’s recommendation’s expected revenue to the expected

revenue from the first 10 movies (which would have been selected by the original recommender

system), the expected revenue increased from $1.34 to $1.52 (13%).
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3.4 Discussion

There might be concern about PUMA’s performance in the long run, when it is required to

interact with the same person many times. Although this has not been explicitly tested, we

believe that PUMA’s advantage over the recommendation system will not degrade; this is due

to the fact that the overall satisfaction from PUMA’s recommendations and the average movie

fee for PUMA’s recommendations (in the revenue maximization setting) are both very close to

that of the original recommender system. An interesting property of PUMA is that it allows

online learning, as it may collect additional statistics on-the-fly and use it to refine its human

model. In the revenue maximization setting, there is a clear conflict between the business and

the user: recommending movies the advertiser prefers (expensive ones) is bound to reduce the

probability that the suggestions will be accepted. In the hidden agenda setting, all movies are

a-priori the same for the user, and hence the only loss in showing a recommendation that the

business would like to promote is that it is lower on the user’s list. As a result, there is an even

greater gain in changing the list of recommendations, and a larger gap can be seen between

PUMA and the recommendation engine in the hidden agenda setting.

3.5 List of Notations

notation meaning

f(m) price (fee) of a movie for the user.

r(m) movie rank.

k natural number parameter determining which movies to present.

m a movie.

n number of movies presented to each user.

p(m) prediction on the likelihood of a user to watch movie m.

v(m) promotion value.

V promotion value range.

α non-negative parameter.

β non-negative parameter.

Table 3.8: List of Notations
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Chapter 4
Long-Term Influential Advice.

4.1 Introduction

In this chapter we consider a setting in which a system (sender) provides long-lasting advice to

a human (receiver). We consider a path selection problem, in which a navigation application

system provides a path to a user (a human driver). The human views the system’s advice and

may decide occasionally to follow it or divert from it and possibly return to the advice later.

This differs from the work presented in previous chapters in which we considered advice which

may only have a one-time impact on the user.

To enable formal discussion of the path selection problem, we employ a grid model. The

human’s task in this setting is to find a path from an origin to a destination on a large colored

grid (see Figure 4.1 for an example). We assume that the human’s sole objective is to choose

the shortest path. The human receives advice from an agent whose objectives also include the

number of color changes in the path. Choosing a path on the grid corresponds, for example,

to selecting a route for commuting between home and work. The colors on the grid represent

constraints, such as environmental and social considerations. Switching between colors on the

path represents the violation of one of these constraints. The person’s preferences consider the

length of the route only, while the agent’s preferences take into account both the length of the

route as well as the number of constraint violations.

We developed the User Modeling for Path Advice (UMPA) approach to generate advice,

which comprises a training stage and three additional steps required to learn from the data and

to generate the agent’s advice. We first ran experiments with human subjects to collect data

on how users react when provided with advice. The system proposes three types of advice in
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4. LONG-TERM INFLUENTIAL ADVICE.

different testing scenarios: advice that is optimal to the user, advice that is optimal to the system

and advice that considers both the user’s and the system’s preferences. We found three types

of user behaviors: those that follow the system’s advice, no matter how bad it is subjectively

perceived to be; those that ignore the advice and follow their chosen path; and those that

modify the advised path. The latter phenomenon is very interesting since it illustrates that

simply the fact that advice is provided may affect the user’s choices. The users’ modifications

may completely change the advice or their own choice, but this change occurs only as a result

of having seen such a system proposal. In particular, we noticed that users of the third type,

in some cases along the path, took shortcuts, sometimes they took the long way around and

sometimes along the path they modified the advised path, but this modification was exactly the

same length as the original path. We term all these modifications to the original path as cuts.

That is, cuts are deviations from a suggested path and are alternative segments for connecting

two local points from the original path. A cut may improve the path from the user’s point of

view by shortening it, but may decrease the benefit to the agent.

Once we collected this data, the UMPA approach proceeded to 1) learn the percentage of

types of users who will follow, ignore or modify the given advice, 2) learn the probability each

cut will be chosen for a given advised path and 3) compute the advice with the lowest expected

cost for the agent given the users’ predicted types and behaviors.

We evaluated the UMPA approach in an extensive empirical study comprising close to 700

human subjects solving the path selection problem in four different mazes. The results showed

that our UMPA agent outperformed alternative approaches for suggesting paths, based on either

the user’s or the system’s preferences. In addition, the people were satisfied with the advice

provided by the UMPA agent.

4.2 The Model

We employ the following maze model. We assumed that a user has to solve the shortest path

problem within a rectangular maze either by constructing a path or by considering a path sug-

gestion. More formally, we define a maze M as a grid of size n ×m with one vertex marked

as the source S and another vertex as the target T (see Section 4.6 for a notation list for this

chapter). Each vertex v is associated with a label c(v) that we will refer to as the color of v. We

use the color white to denote an obstacle. x(v) and y(v) denote the horizontal and the vertical

grid coordinates of the vertex v, respectively. We assume that the user can move along the grid
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Figure 4.1: Path selection problem visualized in a small maze

edges in the four standard directions: up, down, left or right. A sequence of vertexes that does

not include an obstacle and can be traversed by moving in the four standard directions is a valid

path. In the remainder of this chapter, to distinguish between vertexes of different paths, we

denote them by the path’s name with a superscript: e.g. vertexes of a path π are denoted by

π1, ..., πlen. A valid path will be called a full path if π1 = S and πlen = T , i.e. it begins at the

source node and ends at the target node, thus solving the maze.

The path selection problem is modeled as the user’s task to find the shortest full path

through the maze. Formally, we assume that the user’s cost of a path π is equal to its length, i.e.

Costu(π) = l(π). In contrast, the agent’s cost depends on the length of the path and also on the

number of color switches performed along the path. Formally, given a color switching cost W ,

the agent’s cost Costa of a full path π is given by: Costa(π) = l(π) +W ·
∑

1≤i<l 1{c(πi) 6=
c(πi+1)}. We use the term greedy path to refer to a full path that minimizes Costa, and the

term shortest path to refer to a full path that minimizes Costu. Notice, that there are multiple

valid paths through a maze and it is possible that there are many full paths as well.

In addition to the maze grid, its color labeling and the source and target nodes, we also

allow a secondary labeling of a particular full path through the maze. This labeling represents

the path advised by the agent to the user. We assume that the user is aware of this labeling prior

to solving the path selection problem. In fact, the advised path is part of the input to the path

selection problem. When a user is given a maze (with or without an advised path), his goal is

to solve the maze by finding the shortest full path from source S to target T . However, due to

the complexity of the maze, finding the shortest path may not be trivial or clear from looking
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at the maze during the limited amount of time given to the user. Therefore, the user may find it

beneficial to take some advice provided to him regarding which route to choose.

The best-advised path problem is modeled as the agent’s task to compute a full path that,

once presented to a user, will yield the agent the lowest expected cost.

Figure 4.1 visualizes the formal setting in a small maze. In the figure, obstacles are rep-

resented by the color white, while the start and the target nodes are black. In turn, the dotted

nodes represent the advised path, while the crossed nodes represent a valid (partial) path se-

lected by the user.

4.3 The UMPA Approach

We assume the availability of training data for the prediction stages (see experiments in Sec-

tion 4.4). UMPA is given a training set, Ψ, of tuples (M ′, π, µ, α) collected from experiments

where people were provided with advice and where: M ′ is a maze; π is an advised path through

the maze; α is a binary variable indicating whether the user considers π to be a good solution

or not (α equals 1 or 0, respectively); and µ is the solution selected by a human user, who was

presented with M ′ and π. In addition, we assume that Ψ includes examples (M ′, µ) collected

from games where the agent was silent. Given a maze M (not in the maze set from the training

examples), we employ a three-stage process to solve the best-advised path problem: (i) We

cluster users into one of three types, depending on the extent to which their path selection be-

havior adheres to suggested paths that may be more beneficial to the agent than to themselves.

Then we predict the likelihood that a user will belong to one of these three clusters;(ii) We

predict the likelihood that people will deviate from a suggested path; and (iii) We generate the

advised path using a decision theoretic approach which utilizes the prediction from the first

two stages in order to compute the expected cost of the agent from a given path. In the next

subsections we provide details of our implementation of each one of these steps.

Predicting human response to an advised path is difficult due to the diversity in people’s

behavior. We propose to integrate psychological models into the machine learning process. In

particular, we defined a Seemliness-value attribute that measures the path’s direction towards

the target node’s horizontal and vertical coordinates. This attribute tries to measure how good

the path may seem in the eyes of a human user. This attribute is based on the following princi-

ples known from behavioral science:
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Figure 4.2: A second example of a path and a cut

• Loss aversion (Prospect theory): people dislike losing more than they like wining. Tver-

sky and Kahneman [50] found that losses are weighted roughly twice as much as gains.

Therefore, while each step in the path toward the target contributes a single unit to the

Seemliness-value, each step away from the target reduces two units from the value.

• Future discount [51]: people care more about the present than the future and therefore

discount losses or gains in the future. The farther the loss or the gain is in the future, the

more it is discounted. Future discounting is commonly assumed to be exponential, with

some discount factor [52]. Therefore, while each step in the path toward the target at the

beginning of the path adds one unit (and a step away from the target in the beginning of

the path reduces two units), the contribution of any consecutive steps’ is multiplied by a

discount factor (which is exponential in the number of steps from the beginning of the

path).

The total path Seemliness-value is calculated as a discounted sum of steps contribution along

the path and is denoted s(φ). For an intuitive example, the dotted path shown in Figure 4.1 has

a relatively high Seemliness-value since its earlier steps are in the target direction and steps in

the opposite direction appear only later; however, in Figure 4.2 the dotted path has a relatively

low Seemliness-value since the steps at the beginning of the path are in the opposite direction

of the target.
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4.3.1 Modeling Diversity in People’s Reactions

Based on what was observed in the behavioral data collection experiments (as explained in

Section 4.4), UMPA clusters users into three types: Advice followers, Advice ignorers and

Advice modifiers. Given a new maze, when considering a path to be given as advice, UMPA

would like to estimate the probability of a user belonging to one of these clusters.

For this task, it first labels the examples of Ψ with one of the three types. The labels are

determined as follows. Advice followers are users who follow the advised path blindly without

modifying it, even when believing that it is not of good quality. That is, the user of an example

(M ′, π, µ, α) ∈ Ψ is labeled as an Advice follower if µ = π and α = 0. Users that took

the system’s advice as provided and also believed that the advised path really did have good

quality were included in the Advice modifiers type set (these users may have chosen the advice

because it was of good quality and not because they were told to choose it).

However, most users would at least attempt to improve the advised path, or simply ignore

it entirely. In order to characterize these users, we will introduce the concept of a cut and a

modified solution.

Given two vertexes ,πi and πi
′
, of an advised path π, any path τ between these two vertexes

(that does not otherwise intersect with π) is termed a cut. Although there may be an exponential

number of cuts, certain human cognitive tendencies (see e.g. [24, 53]) allow us to bound the

maximal cut length. All users who deviated from the advised path solely by taking cuts are

termed Advice modifiers.

More formally, given a valid path π, we define a cut τ of length l to be a valid path such that

∃i, τ1 = πi and ∃i′ > i, τ l = πi
′

and ∀1 < i′′ < l, @j, πi′′ = πj . We will refer to the sequence

of πi, ..., πl as the original segment of cut τ and denote it by o(τ). Figure 4.1 and Figure 4.2

show examples of cuts marked by crossed nodes. We only consider cuts whose lengths are

smaller than some threshold and also not much longer than their original segment. Formally,

l(τ) ≤ min{L1, L2 · l(o(τ))}, for some L1 ∈ N and L2 ∈ R+.

Finally, we define the Advice ignorers as all users who are neither Advice modifiers nor

Advice followers. The relevant examples of Ψ were labeled accordingly. It is important to

understand that being an advice follower does not depend on the specific maze and advice.

However, deciding whether to ignore advice or use it as a baseline and modify it, depends on

the specific maze and advice.
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Next we compute the likelihood of users being associated with the different types as re-

quired in the first step of the UMPA approach. Based on the literature on route selection

(see e.g. [54]), we presume that the proportion of Advice modifiers for the given advice π is

strongly characterized by the overall Seemliness-value of π, denoted s(π). In order to use the

Seemliness-value of a path as an indicator for the proportion of Advice modifiers in that path,

we first normalize the Seemliness-value by subtracting the average of all Seemliness-values of

all paths that appear in the data-set and divide by their standard deviation. Once we have a

standardized (scaleless) value, we assume that it predicts a standardized proportion of Advice

modifiers in that path, therefore, this value must be unstandardized using the appropriate units

found in the data-set. Formally, given Ψ, UMPA generates a set of tuples π′, s(π′), prop(π′)

where prop(π′) is the proportion of users in Ψ that received the advice π′ and are labeled as

Advice modifiers. Denote the average (standard deviation) of the s(π′)s by AvgSV (StdSV )

and the average (standard deviation) of prop(π′)s by AvgBU (StdBU ). Finally, we estimate

the proportion of Advice modifiers to be: pb(π) = s(π)−AvgSV
StdSV · StdBU +AvgBU .

The Advice followers follow the advised path even if they did not evaluate it as a good path.

This allows us to assume that the proportion of Advice followers is constant across all advised

paths. We extract this proportion from Ψ, and denote it by pf . The remaining proportion of

users, 1 − pf − pb(π), is assumed to be the Advice ignorers. This latter set of users deviates

from the advised path so much that we may assume that they would have selected the same

path even if there were no advice present.

4.3.2 Predicting Advice Deviations

Given the possible advice π, UMPA estimates the probability of a user to take a specific cut

τ at a given vertex πi. We denote this probability as p(M,π, πi, τ) and use p(τ ) when the

other parameters are clear from the context. UMPA assumes that the function p(τ ) is a linear

combination of three cut features: cut benefit, cut orientation and cut seemliness (see e.g. [54]).

The Cut Benefit measures the relative reduction in steps between the cut and the original

path segment. Formally, l(o(τ))−l(τ)
l(τ) . For example, the cut shown in Figure 4.1 (marked with

crossed nodes) has a positive benefit value since the length of the original path segment (be-

tween the first and last nodes of the cut) is greater than the length of the cut. The cut shown in

Figure 4.2 has a benefit of 0 since the cut has the same length as the original path segment.
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The Cut Orientation captures the tendency of human users to continue with a straight line

motion. Its value depends on whether the cut or the original segment conformed to this ten-

dency. The reference motion is the edge between the cut divergence node πi and its predecessor

in the advised path πi−1. If the cut deviates from the advice by remaining in the same direc-

tion as the edge (πi−1, πi), we say that the cut has a positive, +1, orientation. If the original

path segment (πi, πi+1) is similarly directed as (πi−1, πi), we say that the cut has a negative,

−1, orientation. Otherwise, the cut’s orientation is 0 (neutral). For example, in Figure 4.1 the

value of the orientation of the cut marked by crossed nodes is 1, since the cut continues straight

while the advised path turns left. The cut shown in Figure 4.2, however, has an orientation of

−1 since the original path continues straight and the cut turns left.

The Cut Seemliness measures how seemly the cut is in the user’s eyes. This value is

calculated by subtracting the Seemliness-value of the original segment from the Seemliness-

value of the cut. The seemliness of the cut shown in Figure 4.2 is positive since the first steps

of the cut are in the same direction of the target, while the first steps in the original segment are

in the opposite direction of the target.

Given that there is a very large number of cuts, it is almost impossible to collect enough

examples in Ψ to learn the weights of p(τ)’s features directly. Therefore, this estimation pro-

cess was divided into two steps. First, UMPA estimates the probability, r(M,π, πi, τ), that a

cut τ will be taken by a user at vertex πi, assuming that τ is the only possible cut at πi. It

was assumed that r is a linear combination of the three cut features described above, similar

to p(τ). To compute the weights of r(τ)’s features, UMPA created a training set of the form

(M ′, π, πi, τ, prop(πi)), where τ is a cut of π that starts at πi and is the cut that was taken at πi

by the highest number of users according to Ψ. prop(πi) is the proportion of users that visited

πi and deviated by taking any cut. Using these examples, the weights were estimated using

linear regression.

Next, r(τ) is used to compute p(τ) after normalization. For any πi, it was assumed (based

on the way that r(τ) was learned) that the probability of the deviation at πi across all cuts is

equal to the highest r(τ) value of a cut starting at πi. This probability is then distributed across

all possible cuts, starting at πi, proportional to their r(τ) value.
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4.3.3 Estimating the Cost of an Advised Path

Given - a maze M and the possible advice π, UMPA estimates the expected cost that an agent

may incur when presenting users with π. We denote this estimation by ECost(π). This esti-

mation is based on Ψ (the set of examples labeled with user types).

Notice that the contribution of the Advice followers is relatively easy to calculate. These

are users that, independent of the maze or the particulates of the advised path π, always comply

fully with π. Therefore, their contribution to ECost(π) will always be Costa(π) multiplied

by the ratio of Advice followers.

The contribution of the Advice ignorers is calculated based on the data of users who re-

ceived no advice. Let Ω∅ = {τ |(M,φ) ∈ Ψ}, i.e. the set of paths in Ψ selected by users who

did not receive any advice. We assume that the contribution of Advice ignorers to ECost is the

average agent cost on the paths in Ω∅. We use ECosti to denote this value.

Calculating the contribution of the Advice modifiers to the agent’s expected cost is more

complex and is described hereunder. Having the estimated probability for each cut p(τ), an

estimation of the agent’s cost associated with Advice modifiers from advice π starting at πi is

denoted as b(π, πi). It can be calculated using the following recursive formulas:

b(π, πl(π)) = 1 (4.1)

b(π, πi) =
∑

τ,τ1=πi

p(τ) ·
(
(Costa(τ)− 1) + b(π, τ l(τ))

)
+ (4.2)

+ (1−
∑

τ,τ1=πi

p(τ)) · (b(π, πi+1) + Costa(π
iπi+1)− 1) (4.3)

Note that the expression Costa(πiπi+1) − 1 is the agent’s cost of traveling from πi to πi+1,

which can either be 1 if no color switching occurs, or W + 1 if color switching occurs. Now,

using b, UMPA can estimate the contribution of the Advice modifiers to the agent’s expected

cost of an entire path π setting ECostb(π) = b(π, S).

Simply calculating the expected cost form the using Equations 4.1 may not be efficient,

since the recursive call is performed more than once. We therefore suggest the following algo-

rithm which provides an efficient method for computing ECostb:
Input: A maze, with an advised path π.
Output: ECostb(π) – estimated cost contributed by Advice modifiers

1: ECostb ← Costa(π).
2: vec ∈ Rl(π) ← ~0. vec(0) = 1.
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3: for each i < l(π) do
4: for each cut τ s.t. τ1 = πi do
5: {Predict the fraction of Advice modifiers who take the cut}

a(τ)← (1 +
∑
j<i vec[j]) · p(τ)

6: ECostb ← ECostb + (Costa(τ)− Costa(o(τ))) · a(τ).
7: {Update mass at cut entry point.}

vec[i]← vec[i]− a(τ)

8: {Update the cut exit point}
vec[j|πj = τ l(τ)]← vec[j] + a(τ)

9: return ECostb.

Intuitively, the algorithm’s basic assumption is that the set of users forms a continuous unit

mass. The algorithm then traces the flow of this unit of mass along different cuts that diverge

(or converge) at vertexes along the advised path.

In more detail, the algorithm begins by stating that, even if all users are Advice followers,

their contribution will be at least Costa(π) and initializes the utility estimate of this value.

Then the vector vec, which lists for each vertex along the path π the proportion of people who

have reached it, is initialized by placing proportion 1 (all people) at the start node and zero

(no people) at all other nodes along the path. The algorithm then systematically propagates the

mass of people along the path and the path’s cuts. At every node along the path, the mass of

people split – some continue along the path to the next node along π, while others take one of

the available cuts. Specifically, they split proportionately to the probability of users to adopt

a particular path segment. Those who choose a cut τ are advanced and added to the mass of

people who reach the end point of that cut.

This algorithm can be implemented with a complexity of O(#cuts+ l(π)).

Given the users’ proportions as estimated in Section 4.3.1 and the utility contributions esti-

mated above, we can compose the final heuristic estimate of the advised path cost ECost(π),

which is the expected agent’s cost across all human generated path solutions in response to π:

ECost(π) = pf · Costa(π) + (1− pf − pb(π)) · ECosti+

pb(π) · ECostb(π)

4.3.4 Searching for Good Advice

Searching for advice is done by transforming the maze(grid) into a tree such that the start node,

S, is associated with the root of the tree. Each node in the tree is associated with a vertex in the
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maze. A node nv in the tree that is associated with the vertex v will have an offspring which is

associated with v′ if no ancestor of nv is associated with v′ and v′ is connected to v in the grid.

Note that a vertex in the grid might be associated with many nodes in the tree. When given a

node nv in the tree that is associated with the vertex v, there is a unique path in the tree from

the root node of the tree to nv that is associated with a path on the grid from S to v. We denote

such a path as θ(S, v).

A∗ [55], which is a best-first search algorithm in graphs, uses the sum of a cost function

and a heuristic function in order to determine which node to view next. We use the A∗ search

algorithm on the tree, to find a path π from the root node S to any target T . The cost function

for a given node nv is ECost(θ(S, v)) and the agent uses the minimal agent cost of traveling

between v and T as the heuristic function of nv in the tree. We use Dijkstra’s algorithm, which

is an efficient algorithm for calculating the shortest path from a given node to all other nodes

in a graph, starting at T , in order to calculate the minimal agent cost to travel from each vertex

to T .

The search only considers paths with cuts where the agent does not gain by the user taking

them. That is, the agent only provides advice for which it will benefit from the user following

the advice. UMPA does so since providing advice which the system will gain from the user

deviating from the advice may be perceived as deception. Formally, UMPA only considers

paths such that, for any suffix σ = πi · · ·πl(π), i ≥ 1, ECost(σ) ≥ Costa(σ) holds. If A∗

stops at a path that does not satisfy the condition above, it will be rejected, and A∗ will be

forced to continue the search.

4.4 Experimental Evaluation

We developed an online system that allows people to solve path selection problems in a maze. It

can be accessed via http://azariaa.com/selfmazeplayer.swf. The maze design

was chosen to remove all effects of familiarity with the navigation network from the experi-

ments. Furthermore, every human subject was presented with a single instance of the problem

in order to exclude effects of learning or trust. We ran two kinds of experiments. First, the

experiments were aimed at collecting data on users’ behaviors when facing advice that either

benefited the users or the system utilities regarding route selection. Second, after the UMPA

approach was applied using the collected data, we ran experiments to validate our hypothesis

regarding users’ behavior change as a result of providing them with advice adapted to the user’s
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behavior which was learned in the first experiments. Furthermore, the main goal was to test

the hypothesis that UMPA would outperform all of the other advice generator methods that we

considered.

Participation in our study consisted of 681 subjects from the USA: 383 females and 298

males. The subjects’ ages ranged from 18 to 72, with a mean of 37.

4.4.1 Methodology

Experimental Setup

Each experiment consisted of a colored-maze panel similar to the one depicted in Figure 4.1.

A single panel was shown to each participant. The user’s task was to select the shortest path

through the maze that connected the source and target nodes. When subjects were presented

with advice from the system, they were informed that this advice was calculated to reduce

the number of color switches in addition to minimizing the path length. We implicitly asked

the subjects a question regarding the system’s intention to make sure that they understood this

crucial point. We used four distinct mazes, all of size 80 × 40. These mazes were complex

enough so that users would find it difficult to compute the shortest path in the limited time

allotted for the task. We set the weight W for color switching to 15.

We ran data collection for four training sessions to learn users’ behaviors in three mazes.

Then we ran our UMPA algorithm on the fourth maze to compute the advice, using information

about this maze and the parameters learned from the other three mazes (we did this for each

one of the four mazes). That is, UMPA’s results were averaged over four different mazes and

training and testing data were strictly separated.

Finally, we presented the subjects with post-task questions that were designed to assess

the general attitude towards computer advice and the subjective evaluation of the advised path

quality.

Basic Algorithms

We compared the performance of our UMPA algorithm to the following three cases:

• No advice (silent) – no advice is presented on the maze panel,

• Shortest path – the advice presented corresponds to the shortest path from source to

target,
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• Greedy – the advice that the user gets is the path computed to minimize the agent’s cost

of traversing it, Costa.

The Shortest solution is the one that minimizes the cost of the user and, therefore, we expect

that its acceptance by the users will be high. Moreover, the number of advice ignorers will be

small and the probability of deviation will be low as well. However, since the agent’s cost for

this path is usually high, we expect that presenting Shortest will yield the agent a relatively

high average cost. When providing Greedy advice, we run the risk that most of the users will

ignore it, while the ones that will accept it will yield the highest benefits for the agent. We

first compared the agent’s average cost when providing any one of these three types of advice.

(This comparison was performed using ANOVA). Then we chose the one that was best for the

agent and compared the UMPA solution to this baseline algorithm. Then we considered UMPA

estimation methods, its performance vs. the baseline algorithm and whether it decreased the

user’s benefit and satisfaction or if it was mutually beneficial for both the agent and the user.

4.4.2 Basic Results

We calculated the effects that Silent, Shortest and Greedy types of advice have on the average

agent cost across paths selected by users in our experiments. The corresponding three bar charts

on the left of Figure 4.3 summarize the results (the lower the better). The average costs over

four mazes of types Silent, Shortest and Greedy were 559.73, 559.55 and 501.68, respectively.

That is, the paths chosen by users after receiving Greedy advice resulted in a significantly

(p < 0.001) lower cost for the agent than the cost attained when the other two types of advice

were given (Shortest and Silent).

We also studied the statistics of the effect of the advice on the user’s cost (see the three

left-most bar charts in Figure 4.4). As expected, the cost of the paths chosen by users was

significantly lower (130.85) when Shortest advice was provided, than when the other two types

of advice were given (Greedy (144.6) and Silent (142.75)). Moreover, we wanted to check

whether giving advice that results in the lowest costs for the agent can also decrease the costs

for the users, when compared to the case where no advice is provided. The results were mixed

and no significant difference was found between Greedy and Silent. That is, while Greedy

advice significantly decreased the agent’s cost, it did not significantly increase the user’s costs.

We concluded that the UMPA advice generation algorithm should be compared to the case

where Greedy advice is provided.
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Figure 4.3: Average agent’s costs

4.4.3 UMPA Advice Algorithm Performance

We set the UMPA parameters as follows: the length of a cut L1 was bound to 40; a cut’s

potential increase in length L2 to 20% of the corresponding original segment and the discount

factor δ in the cut-seemliness feature calculation was set to 0.95.

The first step in the evaluation of our UMPA algorithm was to verify the effectiveness in

computing p(M,π, πi, τ) (i.e., the predicted number of users that will take cut τ when facing

divergence node i, when advice π was provided in maze M ). We found a high correlation

(0.77) between this prediction and the actual fraction of users who took it when reaching the

cut’s divergence node. A high correlation (0.7) was also found between the actual fraction of

users that took advice π or manipulated it, the Advice modifiers and our predicted number of

such users, pb(π). Finally, we obtained a high correlation (0.76) between the estimated value of

advice π, ECosta(π) and the empirical average value of the actual paths selected in response

to advice π. This is significant since the correlation between the agent’s cost of π itself and the

empirical average of the selected path was only 0.06.

We then compared the average cost attained by the agents when users chose paths after

receiving either the UMPA-based advice or Greedy advice. Consider the two corresponding

bar charts on the right side of Figure 4.3 (the lower the better). UMPA’s average of costs

over the four mazes was 484.95 compared with the Greedy advice that was 501.68. That is,

on average, the UMPA approach outperformed Greedy advice, resulting in significantly lower

costs (p < 0.05) for the agent.

We also compared the average cost incurred by the paths chosen by users to the users

themselves when receiving the advice provided by the UMPA algorithm and Greedy advice (see
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Figure 4.4: Average users’ costs

the two right-most bar charts in Figure 4.4). The average results attained by the users that were

given UMPA advice (142.33) were significantly better (lower cost) than those attained by users

who were presented Greedy advice (142.33) (p < 0.05). In summary, when comparing the

results obtained by running two advice generation techniques (one that provides UMPA advice

and the other provides Greedy advice), we can conclude that UMPA-based advice outperforms

Greedy advice. That is, both the average cost incurred by the agent and the average cost

incurred by the human users decreased significantly when the users were provided with UMPA

advice. So UMPA manipulative advice is indeed mutually beneficial when compared with

Greedy advice.

Finally, we considered the subjective view of the users on the paths that were advised.

Users were presented with the following questions after they finished the route selection task:

(i) ”How good was the advice given to you by the system?” and (ii) ”How much did you trust

the advice given to you by the system?” The possible answers were on a scale of 1-5, where

5 indicated the highest satisfaction and 1 the lowest satisfaction. The results are presented in

Figure 4.5. Regarding the first question, UMPA advice was considered to be significantly better

than Greedy advice, with p < 0.05. The average rating for UMPA was 3.29 and the average

rating for Greedy was only 3.05. Similarly, with respect to trust, the average rating of UMPA

was 3.23 whereas the average rating of Greedy was only 2.92, i.e., users trusted UMPA advice

more than Greedy advice (p < 0.05).
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Figure 4.5: Users’ satisfaction and trust

4.5 Conclusions

In this chapter we presented a computational model for advice generation in human-computer

settings where the advice provided by the system, although being a one shot advice, may have

long term impact on human behavior. To assess the potential effectiveness of our approach,

we performed an extensive set of path selection experiments in mazes. Results showed that the

agent was able to outperform alternative methods that either solely considered the agent’s or

the person’s benefit, or did not provide any advice.

The approach that was described in this chapter can be technically summarized as follows:

first, users’ responses to basic advice patterns were sampled. Then a model of the response was

created using machine learning and relevant psychological models. Finally, inverse kinematics

of the model was solved in order to find the most profitable advice. This technical structure

can be repeated in any domain or task where a self-interested agent can provide advice to a

human user and the basic response data can be obtained. Specifically, whenever the task can be

converted into a path-in-graph formulation (e.g. supply-chain plans), our solution can become

an out-of-the box, yet tunable, method for providing advice.

Given these encouraging results, we deem that the proposed technology can be applied to

other applications where the agent’s goal is to provide people with advice that will lead them

to take beneficial actions over a period of time. Recent applications, such as coaching humans

in weight-loss programs, programs to help quit smoking or online service providers such as

automated travel agents are promising domains.
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4.6 List of Notations

Notation Meaning

c(v) vertex color (label).

Costu(π) cost of a path π for the user.

Costa(π) cost of a path π for the agent.

ECost(π) heuristic estimate of the advised path, π, cost for the agent.

ECosta(π) heuristic estimate of the advised path, π, cost for the agent from advice
followers.

ECosti(π) heuristic estimate of the advised path, π, cost for agent from advice ignor-
ers.

ECostb(π) heuristic estimate of the advised path, π, cost for the agent from advice
modifiers.

l(π) length of path π.

L1, L2 scalar parameters.

m maze height.

M a maze.

n maze width.

p(M,π, πi, τ) an estimation of the probability of a user to take a specific cut τ at a given
vertex πi, given the possible advice π.

pb(π) proportion of advice modifiers given an advised path π.

pf proportion of advice followers.

s(π) Seemliness-value of path π.

S source / starting point.

T target.

v vertex.

x(v) horizontal
coordinate of v.

y(v) vertical coor-
dinate of v.

π path.
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τ cut.

Ψ training set.

Table 4.1: List of Notations
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Chapter 5
Providing Advice in Repeated
Interactions

5.1 Introduction

In this chapter we focus on the design of advice provision strategies for computer agents that

repeatedly interact with people. We model these interactions as a family of repeated games with

incomplete information called choice selection processes comprising a human and a computer

player. As we assume in previous chapters, boths of the participants in the choice selection

process are self-interested. The computer possesses private information regarding the states of

the world which influences both participants’ rewards; this information is not fully known to

the person. In our example, this corresponds to a person not knowing the traffic conditions on

all of the roads. At each round, the computer suggests one of several choices to the person, and

the person then makes his or her choice, which may or may not correspond to the computer’s

suggestion. The choice of the person affects the reward for both the person and the computer

agent. The performance of both participants is measured by their aggregate reward which

accumulates over time.

For an agent to be successful in such interactions, it needs to generate advice that is likely

to be accepted by people, while still fulfilling the agent’s individual goals. We designed several

models of human behavior in choice selection processes that incorporate quantal response,

exponential smoothing, and hyperbolic discounting theories taken from behavioral economics.

Their predictive power was measured on a sampled set of hundreds of instances of human

play. We estimated the parameters of these models using maximum likelihood techniques. The
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best model found for the human decision making process was a combination of hyperbolic

discounting and quantal response. We implemented an intelligent agent named Social agent

for Advice Provision (SAP) that provides advice that maximizes a social utility function which

is a weighted sum of the agent and human’s utilities. The SAP agent uses the human model and

runs simulations of repeated human-agent interaction to identify the weights that maximize the

agent’s utility over time.

The agents’ behavior was evaluated in extensive empirical studies using hundreds of hu-

man subjects in two types of selection processes that varied in complexity and the type of

interactions between the computer and the person. The first domain was analogous to a route

selection task in which users needed to choose one of several possible commuting routes for

each day. The travel time and the fuel consumption of each road varied due to traffic, and was

known to a computer agent (but not to the person). Each round the computer suggested one of

the routes to the person. The person’s individual goal was to minimize travel time while the

agent’s individual goal was to minimize fuel consumption.

The second domain was analogous to a climate control task in which users needed to set the

level of the climate control system deployed in a fictional car. The comfort level of the person

depended on the level of the climate control system as well as environmental conditions such as

the heat load each day. While the person’s individual goal depended both on its comfort level

as well as the power consumption of the climate control system, the agent’s goal was solely to

minimize the energy consumption. This domain was more challenging, as the computer needed

to reason about the option that a person may only partially follow the computer’s advice, by

selecting comfort levels that are close to, but not equal to the computer’s suggestion.

In both domains, we compared several alternative agent designs for providing advice to

people. We used several candidate agent models. We tested the performance of an agent that

approximated the optimal strategy based on a Markov Decision Process (MDP). We also tested

the performance of three different baseline strategies. The first of which provided no advice,

the second provided the advice which was best for the user and the third totally ignored the user

and provided advice which was optimal for the agent’s individual goal. Finally, we compared

all the agents to the SAP approach, which considered the costs for both the agent and the person

when making suggestions. The agents were evaluated using hundreds of people that interacted

with the system we developed on Amazon’s Mechanical Turk [56]. The results show that SAP

was consistently able to outperform all other agent strategies and produce advice in polynomial

running time.
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This work is the first to design a computer agent for generating advice to people in repeated

settings, and demonstrates the efficacy of using behavioral economic models when generating

advice. It provides a model of selection processes for two domains and shows the efficacy of

the model in empirical experiments.

5.2 Choice Selection Processes

A choice selection process is a repeated interaction with incomplete information between a

receiver and a sender. Each round, the sender observes the state of the world v ∈ V, drawn

from some distribution P (V), and can suggest to the receiver to take one of the actions in a

predefined set A. After observing the suggestion of the sender the receiver chooses one of the

actions a ∈ A. The costs to the receiver and to the sender depend on the action chosen by the

receiver and the state of the world, which are denoted cR(v, a) and cS(v, a), respectively. Both

players, receiver and sender, can observe the outcome at the end of each round. However the

sender has full information about the distribution over V and the costs of both participants. In

contrast to the sender, the receiver does not know the state of the world nor the costs for the

sender. This interaction is repeated indefinitely and players’ costs each round are discounted

by a constant factor γ.

A round t in a selection process is represented by a tuple ht = (at, ct, dt) where at is the

receiver’s action at round t, ct = (ctR, c
t
S) is the cost for the receiver and sender at t, and dt is

the advice provided by the sender at t (prior to the receiver choosing at) given the state v. Here,

ctR denotes cR(v, at) and ctS denotes cS(v, at). We define the history from round 1 through t

as h1,t = h1,t−1 ◦ ht. For t = 0 the cost functions ctR and ctS are initialized to 0 and h1,0 is

initialized to an arbitrary a and d. H1,t defines the set of all possible history sequences (the set

of all h1,t). See Section 5.6 for a complete list of notations.

We are interested in developing an agent that can provide useful advice to users while

both interact repeatedly. The novelty of this agent design is that the agent not only tries to

maximize its utility function when interacting with its users but also considers a model of the

user behavior in order to compute the advice strategically given the possible reaction of the

user to any advice suggested. In the following sections, we present the algorithm developed for

providing advice that outperformed a series of agent behavior candidates including the optimal

solution found for an MDP-based agent. The winning strategy comprised a social utility based

agent that chooses such advice that minimizes the weighted cost of the agent and the user.
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The critical point in this strategy is to compute the weight of this social utility function that

balances between the user’s preferences and the probability of following the advice and the

system’s (agent’s) preferences. In order to compute this weight a model of human behavior

needed to be built. Using this model the agent simulates the human receiver and searches for

a single weight that performs best and minimizes the agent’s overall cost. This weight is then

used in practice to provide advice. We proposed, formalized and implemented various models

of human behavior taking into account behavioral economics models studied and also different

characteristics of possible domains.

In particular, we refer to two types of domains. In the first one, the Multi-armed Bandit,

users can choose one action from a set of discrete options. The advice is one of the options. The

users do not have information about the state of the world and therefore each interaction can be

considered a new interaction. Therefore, a user cannot learn over time. One example of such

a domain, is a route-selection domain, where a driver needs to choose which route to navigate

each day from his home to his workplace. Assuming the driver has no information about the

traffic on each road, an agent can provide advice of one road per interaction. The driver can

either accept the advice by choosing to navigate to the proposed road or choose another road.

For the Multi-armed Bandit domain, we tested four different models of human behavior:

• SoftMax

• ES (based on Exponential Smoothing)

• Hyper (based on hyperbolic-discounting)

• Short memory.

SoftMax is a known method to solve multi-armed bandit problems [57]. It simulates a user

that takes averages of each possible arm and reacts to the averages. Since the user in such a

domain does not have information about the states of the game, he cannot actually learn from

past experience. Therefore we tested a short memory model where we averaged the user’s re-

sults from the interactions over the last seven interactions. The exponential smoothing method

is a well-known method for modeling the way humans remember past incidents [58]. Hyper-

bolic discounting is a known method described in the behavioral economics literature ([59, 60])

which refers to the way humans anticipate future events (see a more detailed description be-

low). All human models in both domains rely also on logit quantal response [61] and thus

assume that although the user is more likely to choose actions which result in a lower modeled
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cost, they might also choose actions which have a higher modeled cost (though with lower

probabilities).

In the second domain, Partially Informed Users and Ordered Actions, users have some ob-

servation of the state prior to making a decision regarding their actions. In the former domain,

a user can either follow the advice or not by choosing a different action. In this domain, a user

can follow an advice or choose some other action that can be close to or far away from the

advice. An agent can take advantage of this feature when computing the advice. An example

of such a domain, is a climate control system deployed in a car. A driver observes the heat

load currently in the cabin and needs to choose an action to set the power level of the climate

control system. In the simulation system we implemented in the experiments (see Section 5.4),

the user chooses a value that can be close to or far away from the advice given. The user would

like to increase his comfort level and decrease his energy consumption level. In this domain

not only must the agent model how humans remember previous actions but also how humans

are influenced by the advice and how they interpret their observation. Due to the differences

between the types of domains, we tested different models of human behavior:

• True-Cost (models the user using the true cost).

• LUQ (models the user using a linear combination of the user’s expected comfort level

and the energy consumption level).

• Hyper w/o learning (based on hyperbolic discounting).

• ES w/o learning (based on exponential smoothing).

• Hyper with learning (based on hyperbolic discounting and also models the receiver’s

learning).

• ES with learning (based on exponential smoothing and also models the receiver’s learn-

ing).

• MAB (assumes that the receiver treats the problem as a multi armed bandit problem).

The MAB model disregards all the differences between the two domains and treats the problem

as a Multi-Armed Bandit problem (using hyperbolic discounting - the method which performed

best in the first domain). We will show that the MAB model does not perform well in this

domain. Hyper w/o learning, ES w/o learning, Hyper with learning and ES with learning, all
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differ by the way the user is modeled to remember past events and whether or not he learns

what his expected comfort level is from past actions. The True-Cost and LUQ models simplify

the user model and disregard the sender’s advice and are therefore less accurate.

As we show in the following sections, we empirically tested these models and found those

that best fit the data collected. We also implemented two models for the advice-provider agent

in both domains: the social utility based agent (SAP) and the MDP-Based agent (or Markov-

Chain Monte-Carlo). We also implemented 3 additional baseline agents: Silent (which pro-

vides no advice), Receiver (which provides the best advice for the receiver) and Sender (which

provides the best advice for the sender in the current round and ignores the receiver’s utility

function).

5.3 Route Selection Domain

In this domain the driver (the player playing the receiver) can choose one of A roads for his or

her commute. The state of the world v = (v1, . . . , v|A|) is a continuous multivariate random

variable that represents the traffic condition (travel time and fuel consumption from source to

destination) for each of the roads. At each round, the system (the sender) observes the state of

the world and suggests one of the roads in A to the driver. The outcome for both participants

depends on the road a ∈ A chosen by the driver as well as the road conditions va. Since the

person does not know the actual state of the world, and in particular the costs of all actions in

each round, we need to express his subjective costs when reasoning about which action to take.

We define the subjective cost the receiver incurs for taking action a at time t, denoted

SCa(t, ht) to equal the cost ctR when a = at (i.e., the receiver chose action at at time t); if

a 6= at then the person did not choose action at, and its subjective cost equals some default

value K. This is because the person does not know what cost would have been incurred by

taking action at for rounds that it was not chosen. For example, suppose that the receiver chose

to use route 66 on day 1 and incurred a 45 minute commute. The subjective cost of the receiver

for using route 66 on day 1 equals 45 minutes, while the subjective cost for using any other

route equals the default value.

The probability distribution that the receiver will take action at at round t given advice d,

and behavior h1,t−1 in past rounds is denoted P (a, t | h1,t−1, d). For a given world state v and

history h1,t−1, the sender’s expected cost ECS(v, h1,t−1, d) for advice d is an expectation over
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its future costs given it gives the best advice d′ at each time step. The best advice is the one

computed by the optimal policy π∗ as follows:

ECtS(v, h1,t−1, d) =
∑
a∈A

P (a | h1,t−1, d, t)·

(
cS(a, v) + γ

∫
v′
P (v′)argmind′EC

t+1
S (v, h1,t, d′)dv′

)
(5.1)

For a given world state v and history ht−1, the advice d that minimizes the sender’s cost is a

policy π∗(v, h1,t−1, t) defined as follows:

π∗(v, h1,t−1, t) = argmindEC
t
S(v, h1,t−1, d) (5.2)

As we later show, there is a natural mapping from this formalization to a Markov decision

making problem for the sender agent.

The next section describes different models for human behaviors studied to implement

P (a | h1,t−1, d, t) when computing the advice.

5.3.1 Human Receivers as Multi-Armed Bandits

In this section we provide a model of a human receiver player in choice selection processes for

the case in which the state of the world is not observed by the receiver. We present four can-

didate models for describing human receiver behavior that integrate theories from behavioral

economics.

• SoftMax

• ES (based on Exponential Smoothing)

• Hyper (based on hyperbolic-discounting)

• Short memory.

Because a receiver cannot observe the state of the world nor its distribution, his decision

problem can be analogously described as a Multi Armed Bandit Problem (MAB) [62], in which

there are |A|+1 arms (one for each action, and one for following the advice of the sender). We

therefore assume that the receiver records the utility obtained from each of the actions (or arms)

and is more likely to choose an action (or arm) that performed better in the past. If following
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the advice yielded a high performance for the user, he will be more likely to follow the advice

in future actions.

Before presenting the model, we need to make the following extensions to our existing

formalization. First, we generalize the definition of subjective cost of the receiver for following

the advice of the sender. We define the subjective cost incurred by the receiver for taking advice

d at time t, denoted SCF (t, ht), to equal the cost ctR when at = d (i.e., the receiver followed

the sender’s advice), or a default value. Note that F (which stands for following the advice) is

simply part of the function name and may not take any value (unlike SCa, in which a may be

any action). SC(η) will denote a general subjective cost function in which (η) may either be an

action a (implying that SC(η) will compute SCa for any action a) or F (implying that SC(η)

will compute SCF ).

Next, we generalize the notion of the receiver’s subjective cost to include behavior over

multiple rounds. Let ACa(t, h1,t−1) denote the aggregate subjective cost incurred by the re-

ceiver at rounds 1 through t−1 for taking action a, andACF (t, h1,t−1) the aggregate subjective

cost incurred by the receiver at rounds 1 through t− 1 for following the advice.

We can now describe several models which differ in how they aggregate the receiver’s

subjective costs over time. We begin with two models in which receivers discount their past

costs higher than their present costs. In the hyperbolic discounting model [59, 60], the discount

factor δ falls very rapidly for short delay periods, but falls slowly for longer delay periods. For

example, consider a driver who took a new route to work on Monday which happened to take

an hour longer than the route on Friday. According to hyperbolic theory, the relative difference

between the commute times will be perceived to be largest during the first few days following

Monday. However, as time goes by, the perceived difference between the commute times will

diminish. Equation 5.3 models the accumulative cost in the hyper model:

AC(η)(t, h1,t−1) =
∑
t′<t

SC(η)(t, ht
′
)

δ · (t− t′)
(5.3)

Where (η) may either be an action a, or F for following the advice.

In the Exponential Smoothing model [58], the discount factor δ is constant over time, mean-

ing the perceived difference between the commute times will stay the same over time. The

subjective cost for the receiver is defined as follows. If at−1 = a (the receiver took action a at

time t − 1) or at−1 = d (the receiver followed the advice specified in ht−1 of h1,t−1) then we
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have

AC(η)(t, h1,t−1) = δ · SC(η)(t, ht−1) + (1− δ) ·AC(η)(t− 1, h1,t−2) (5.4)

If at−1 6= a or at−1 6= d the receiver does not update his aggregate subjective cost for action a

or the advice respectively, and we have

AC(η)(t, h1,t−1) = AC(η)(t− 1, h1,t−2) (5.5)

If t = 1 then AC(η)(t, h1,t−1) equals a default value L for any (η).

In the Short Term Memory model, the receiver’s valuation is limited to the past 7 rounds,

(the number of items commonly associated with human short term memory capacity [63, 64]).

The aggregated subjective cost for the receiver is defined as follows:

AC(η)(t, h1,t−1) =
∑

t−7≤t′<t
SC(η)(t′, h1,t′−1) · 1

7
(5.6)

If t < 7, then the summation only spans rounds 1 through t, and the denominator is replaced

by t (the receiver is assumed to remember all utilities obtained if there were less than 7 rounds

in total).

Lastly, as a baseline, we consider the Soft Max model [57] in which the aggregate subjective

cost of the receiver for any action is simply the average true cost (as opposed to the subjective

cost) of taking this action in past rounds, with no discount factor:

AC(η)(t, h1,t−1) =

∑
1≤t′<tC

t′
R · 1{(η) = at′ ∨

(
(η) = F ∧ dt′ = at′

)
}∑

1≤t′<t 1{(η) = at′ ∨
(
(η) = F ∧ dt′ = at′

)
}

(5.7)

where 1{·} is the indicator function. In order to avoid division by 0, some default value is

assigned to actions which were never performed.

The probability of the action a should reason about the past experience of the receiver

from taking this action (ACa(t, ht−1)) and the experience of the receiver from following the

advice of the sender (ACF (t, ht−1)). The probability of choosing a certain action should

increase if that action was advised by the sender. Therefore, for all the four suggested models

for the aggregated subjective cost we adopted the quantal response theory from behavioral

economics [61] for choice of actions. This theory assigns a probability of choosing an action a

that is inversely proportional to the aggregate subjective cost of that action given the history (i.e.

AC(η)(t, ht−1)). The receiver is modeled to prefer actions associated with lower subjective
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costs. However, with some probability, the receiver may still choose actions that are more

costly.

Formally, the probability that the receiver will take action at at round t given behavior in

past rounds h1,t−1 depends on the benefit ACF (t, h1,t−1) from the advice d that was given at

this round.

P (a, t |h1,t−1, d) =
e−λ·AC

a(t,h1,t−1) + Z

e−λ·ACF (t,h1,t−1) +
∑

a∈A e
−λ·ACa(t,h1,t−1)

(5.8)

Where Z is set to equal e−λ·AC
F (t,h1,t−1) when a = d, and otherwise zero; λ is a smoothing

parameter. Note that all methods have parameters which must be learned from data. These

parameters are assessed in section 5.3.3.

5.3.2 Agent Design for Senders

In this section we formally define the problem of finding the optimal strategy for the sender

player in a selection process, and present several approximate solutions to the problem given

a model of the receiver’s decision making process. To this end we present two possible agent

designs, one that uses a Markov Decision Process and one that uses a social preference model.

Markov Decision Process

In this approach the sender’s decision making process is represented as a continuous MDP. To

represent the selection process from the sender’s point of view as an MDP, we define the set

of world states for the MDP as follows.1 Every time t, state vt ∈ V and history sequence

h1,t ∈ H1,t define a world state st = (vt, h1,t−1). The set of all such world states at time t is:

St = {(vt, h1,t−1, t) | vt ∈ V, h1,t ∈ H1,t} (5.9)

and the set of possible world states is defined as S = ∪∞t=1S
t. The set of actions for the sender

is the set |A| of actions in the selection process. The reward function for the MDP, denoted

r(st), is defined as −ct−1
S (which is a part of the history at time t− 1 - see Section 5.2.)

The discount factor for the MDP is γ. The transition function of the MDP is set to

P (st+1 | st, dt) = P (at | h1,t−1, dt, t) · P (vt+1) (5.10)

1We use the term “world state” to disambiguate the states of an MDP from those of a selection process.
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where st+1 as above and P (vt+1) is the probability that the selection process state vt+1 will

occur. Finally, the initial state of the MDP is sampled from the world states subset {(v, ∅, 1) |
v ∈ V} according to P (v), and the optimality criterion is set to be the minimization of the

expected accumulated cost.

Proposition 1. Solving the MDP described above will yield a policy that satisfies equation 5.2.

Proof. Given a world state st = (vt, h1,t−1), we define the Q(st, d) and value function V (st)

for the MDP as follows:

Q(st, d) = r(st) + γ

∫
s′
P (s′ | st, d) · V (s′)ds′ (5.11)

V (st) = max
d
Q(st, d) (5.12)

and the optimal policy π∗(st) is defined as

π∗(st) = arg max
d
Q(st, d) (5.13)

Recall that st = (vt, h1,t−1) and r(st) = −ct−1
S = −cS(at−1, vt−1). Therefore Equation 5.11

may be replaced by:

Q((vt, h1,t−1), d) = −cS(at−1, vt−1) + γ ·
∑
a∈A

P (a | h1,t−1, d, t)·∫
vt+1

P (vt+1) · arg max
d
Q((vt+1, h1,t), d)dvt+1 (5.14)

According to Equation 5.1 we obtain that ECtS(vt, h1,t−1, d) is proportionate to −Q(st, d).
Therefore, the optimal policy π∗(st) in Equation 5.13 satisfies Equation 5.2.

Therefore, solving the continuous MDP described above yields an optimal policy for the

sender given a model of the receiver, P (at | h1,t−1, dt, t). However, the world states of the

MDP incorporate the continuous state of the selection process and discrete histories of arbitrary

length, which makes the MDP structure too complex to be accurately solved. In addition, we

cannot use existing approximation algorithms, which assume a finite state space [65], partition

of the state space [66], or use kernel-based methods [67], due to the mixture of the continuous

component (selection process state) and an arbitrarily large discrete component (action and

advice history) of the world state.

Given these constraints, we suggest an agent design that does not solve the MPD explicitly,

but uses the models for human receivers described above to reason about the consequence of
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their actions over time. The agent, called MCS, chooses the optimal advice for the current time

step while using Monte-Carlo Simulation [68, 69] for selecting future states according to the

transition function of Equation 5.10, and selecting future actions of the sender according to a

uniform probability distribution.

Social Preference Approach

According to the social preference theory, people consider others’ outcomes as well as their

own when making strategic decisions [70]. The agent design we propose here is called SAP,

a Social agent for Advice Provision, that generates advice according to the following social

model. Our approach explicitly reasons about the trade-offs between the costs to both partici-

pants in the selection process based on a social weight. For a state v and a weight w, a policy

for advice provision is a decision d with minimal social cost.

d = π(v, w) = arg min
d∈A

(1−w) · (cR(d, v))+

w · (cS(d, v))
(5.15)

where w is a constant weight. In practice we scale cR (and cS) by dividing it by the average

cost of the receiver (or sender respectively), so that w = 0.5 will imply an equal weight for

both cR and cS .

To compute the most beneficial weight w∗, we need to assume some behavior on the part

of the user (P (a | h1,t−1, π(v, w), t)) when he interacts with an agent that provides pieces

of advice to him (π(v, w) based on Equation 5.15). See examples of such models for human

behaviors in Section 5.3.1. Then, the weight most beneficial to the agent, w∗, is searched in

the space of all weights. The result is the weight with minimal total expected cost for the

agent. Note that in each iteration of the search process, w remains fixed for that iteration in the

rightmost term of equation 5.16.

For a given world state v and history ht, we can define the sender’s expected costEW t
S(v, h1,t−1, w)

for weight w and fixed policy π(v, w). Note that this is not the optimal expected cost for the

sender described in Equation 5.1 as it does not require to solve the intractable arg min expres-

sion in Equation 5.1 to obtain the future advice but instead uses π(v, w) as a fixed policy.
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EW t
S(v, h1,t−1, w) =

∑
a∈A

P (a | h1,t−1, π(v, w), t)·

(
cS(a, v) + γ

∫
v′
p(v′)EW t+1

S (v′, h1,t, w)dv′
) (5.16)

The weight w is chosen to minimize the sender’s aggregate costs for the fixed policy π(v, w)

w∗ = arg min
w
EW t

S(v, h1,t−1, w) (5.17)

5.3.3 Empirical Methodology

We evaluated the different agent models (SAP and MDP) using an empirical study in a route-

selection domain. In the route-selection domain a driver needs to choose one of 4 possible

routes to get to work. The system can advise the driver to take one of the routes before the

driver makes a choice. The road conditions (i.e., travel time and fuel consumption) constitute

the state of the world, and vary due to traffic and maintenance. This information is unknown to

the driver when he makes his decision. The driver’s goal is to minimize the travel time over all

rounds, and the system’s goal is to reduce fuel consumption over all rounds. This is obviously

one example and it shows an extreme case where user’s and agent’s goals do not conflict but do

not necessarily overlap. Real world scenarios will naturally be more cooperative. For example,

a user might prefer to arrive the fastest possible route but he would also like to save fuel. That

is, while arriving fast is the most preferred criteria he does not oppose to saving fuel as long

as it does not significantly affect his time of arrival. Our results show that even in the less

cooperative situation, the agent succeeds in changing the user’s choices such that both will

benefit. As stated, the purpose of our advice provider agent is not to impose the action that is

most beneficial to the agent, but to lead the user to change his choices in the direction of the

most beneficial action as long as his other preferences can be preserved.

After the driver chooses a route, both participants incur a cost which depends on the road

conditions of the chosen route. At this point the interaction continues to the next round with a

probability of 0.96. (This probability was chosen to align with the expected number of com-

muting days of 25 which is the average commuting days in one month). The conditions of the

roads in each round are sampled from a joint distribution that is known to the agent, but not to

the driver. We modeled the fuel consumption and travel time using a multivariate log-normal

distribution.
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We enlisted 123 subjects, 57.6% females and 42.4% males, from the USA (recruited via

Mechanical Turk). The subjects’ ages ranged from 19 to 69, with a mean age of 37.6 and

median of 35. Subjects were paid 12 cents for participating in the study, and additionally

received between 5 to 50 cents depending on their performance. The subjects were told that

the probability of a new round was 0.96. The actual number of rounds was not revealed to

the subjects (nor to the computer agents). The subjects were paid a bonus proportional to the

average travel time (the lower the travel time the higher the bonus). All subjects were provided

an explanation of the game and its details, as described in the beginning of this section and they

had to pass a quiz. The subjects were told that the agent providing advice had a goal different

from theirs. In each round, after receiving the advice from the agent, the subjects had to select

a road. Then the subjects were told how much time it took them to travel via that road. The

history, including previous advice, previous actions and previous travel time was available to

the subjects at all times.

Model Selection for the Receiver

To compare the various models of the receiver, we collected 2250 rounds of 90 subjects to train

and evaluate the Short-term memory, hyperbolic discounting (Hyper), SoftMax , and Exponen-

tial Smoothing (ES) models that were described earlier. In this training phase, the users chose

roads, while receiving recommendations from one of the baseline agents: Sender, that advised

to take the road with the least fuel consumption , Receiver that advised to take the road with the

lowest travel time or Silent that did not provide any advice. For each of these models, we es-

timated the maximum-likelihood (ML) value of the parameters using sampling, and computed

the fit-to-data of the test set using the ML values. All results reported throughout the section

were confirmed to be statistically significant using the Mann-Whitney U test with α = 0.05.

Table 5.1 presents the fitness of the models employing a tenfold-cross-validation on all the

training data (lower values indicate a better fit of the model). As shown in the table, the Hy-

per model, which modeled the receiver using the hyperbolic discounting theory (Equations 5.3

and 5.8) exhibited a higher fit-to-data than all the other models of human receivers.1

We hypothesized that the use of the social utility approach would lead to the best perfor-

mance of the agent sender, measured in terms of fuel consumption. To evaluate this hypothesis,

1For all the models, we set the default value K to equal the mean travel time of the road associated with the
highest commuting time, representing an upper bound for the receiver’s cost.
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Table 5.1: Fit-to-data of different receiver models (the lower the better)

model d.f. N-Log-Like.

SoftMax 1 178.5

ES 2 172.2

hyper 2 169.4

short memory 1 186.9

we used different agent designs to generate offers to people which incorporated the decision-

making strategies that were described in the previous section. Specifically, we used an agent

that incorporated the social utility approach to make offers, termed the Social agent for Advice

Provision (SAP). Building upon a human model, SAP, using a simulation of the environment,

searched for w∗ (the optimal weight in Equation 5.17). Since the hyper model had the best

fit-to-data, SAP used it as the human model. Iterating on different possible w, SAP simulated

10000 users for each w, where each user was simulated for a full process (until it terminated).

SAP chose thew with the lowest overall average cost asw∗. Then, in each round, SAP provided

advice according to Equation 5.15, using the optimal weight. The second agent used the MDP

model to make offers, by solving Equation 5.11. We estimated V (st) using Markov Chain

Monte Carlo sampling [68, 69] in a manner similar to that of the MCTS method mentioned in

Silver et al. [71].1 We term this agent MCS.

We also employed two baseline agents, Random that offered roads with uniform probability

and Silent that did not provide any advice.

We evaluated these agent designs in simulation as well as in experiments involving new

human subjects. The simulation studies consisted of sampling 10,000 road instances according

to the distribution over the fuel consumption and travel time in Table 5.2. As an alternative to

the hyperbolic discounting model, we also considered an approach using an ε−greedy strategy

to describe possible behavior of a receiver. This strategy is commonly used to solve Multi

Armed Bandit problems [57], which describes the choice selection problem from the point of

view of the receiver. This strategy provides a rational baseline that seeks to minimize travel

1This method is more common in POMDPs, however, since our state space is very large, we use this method
as well.
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Table 5.2: Settings used in the route selection domain.

parameter road #1 road #2 road #3 road #4

average travel time 72 84 52 64

travel time stdev 14 24 16 4

average fuel consumption 4 4.4 8 6

fuel consumption stdev 1.2 1.2 2 1.6

time for receivers over time. Table 5.3 presents results of the simulation. We compared the

fuel consumption costs incurred by the different sender agents for each model used to describe

human behavior. As shown in Table 5.3, the cost accumulated by the SAP agent using the

hyperbolic discounting model was 5.52 liters (shown in bold), which was significantly lower

than the costs incurred by all other agents using the hyper models to describe human behavior.

Similarly, the cost accumulated by the SAP agent using the ε−greedy model were significantly

lower than the costs incurred by all other agents using the ε−greedy model.

Evaluation with People and Generalization

Given the demonstrated efficacy of the SAP agent in the simulation described above, we aimed

to evaluate the ability of the SAP agent to generalize to new types of settings and new people.

We hypothesized that a SAP agent using the hyperbolic discounting model to describe receiver

behavior when selectingw∗ would be able to improve its performance compared to a SAP agent

using the ε−greedy model. We randomly divided the subjects into one of several treatment

groups. The subjects in the Silent group received no advice at all. The subjects in the SAP-

hyper group received advice from the SAP agent that used a hyperbolic model to describe the

receiver’s behavior. The subjects in the SAP-ε group received advice from the SAP agent that

used an ε−greedy strategy to describe the receiver’s behavior when selecting w∗. The subjects

in the Receiver group were consistently advised to choose the road that was most beneficial

to them, (i.e., associated with the lowest travel time). Lastly, the subjects in the Sender group

were consistently advised to choose the road which was best for the sender (i.e., associated

with the lowest fuel consumption).

Figure 5.1 presents the fuel consumption of each one of the treatment groups. As can be

seen in the figure, the SAP-hyper agent significantly (p < 0.05 using the Mann-Whitney test)
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Table 5.3: Simulation results comparing agent strategies

human model agent strategy fuel time

(liters) (minutes)

Random 6.120 64.40

hyper Silent 6.297 63.04

MCS 5.792 65.92

SAP 5.520 64.54

Random 7.046 58.08

ε−greedy Silent 7.104 57.68

MCS 6.812 59.26

SAP 6.432 55.84

Figure 5.1: Average fuel consumption for each of the treatment groups (the lower the better).
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Table 5.4: Performance results of agents interacting with people. The selfishness rate equals w in
Equation 5.15

method selfishness fuel time acceptance

Silent – 6.20 64 –

receiver 0 6.44 56.6 63.6%

sender 1 5.88 64.32 31.0%

SAP-ε 0.29 5.76 56.6 70.8%

MCS – 5.35 67.1 52.2%

SAP-hyper 0.58 5.08 64.8 52.6%

outperformed all other agent-designs, accumulating a cost of 5.08 liters. The MCS method

(which uses Monte Carlo sampling) came in second, accumulating an average cost of 5.35

liters. Table 5.4 shows additional information on each one of the treatment groups. The per-

formance for agents and for people is measured in terms of overall fuel consumption and com-

muting time, respectively. The “selfishness” column in the table measures the degree to which

the agent was self-interested (the weight w in Equation 5.15).

5.3.4 Discussion

As we have shown, the SAP-hyper model was able to outperform all other alternative agent

designs when interacting with people in the route-selection domain.The MCS (the pure deci-

sion theoretic model) came in second. In addition to SAP-hyper’s higher performance in terms

of energy consumption in comparison to MCS, the SAP-hyper method enjoys two additional

advantages:

1. Online calculations are minor, and are limited to finding a minimum among several lin-

ear combinations (as opposed to MCS which simulates many future branches and thus

requires high CPU processing that is calculated online, before it can provide advice).

2. The performance for the users was very similar to the performance of the Silent and

sender methods (and much better than the MCS method).
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The advice acceptance rates for the SAP-hyper were lower than those for SAP-ε, which

we attribute to the higher degree of selfishness of the SAP-hyper agent. Unsurprisingly, the

best performance for people (travel time of 56.6 minutes) was achieved when using an agent

that only considered people’s costs (receiver). However, a similar result in terms of travel time

was also obtained by the ε−greedy agent. Another surprising result is that the acceptance rate

for SAP-ε was higher than that of the receiver agent, whose degree of selfishness was 0, and

consistently recommended the route that was best for people. We hypothesize that this may

have been caused by an unintended “too-good-to-be-true” signaling effect that is perceived by

people.

One may be concerned with the relatively low user acceptance rate or by the relatively poor

user performance for SAP-hyper. This may raise the concern that SAP might not perform as

well when longer interactions are expected. Recall that the agent’s goal was only to minimize

its own cost. Although the agent did consider the user’s cost and thus its satisfaction, it was

considered a means to an end in order to minimize the agent’s overall cost. If the system

expects a longer period of interaction with the user (i.e. greater γ), the user’s satisfaction will

be more important to the agent, and therefore the social weight will be balanced towards the

user’s benefit (causing an increase in user acceptance rate and performance). Furthermore, if

user satisfaction is important to the agent itself, it can be explicitly added to the agent’s utility.

However, we chose a more confrontational setting to demonstrate the efficacy of the method.

We conclude this section with two illustrative examples of the reasoning used by the SAP-

hyper agent. In the first example, one of the roads incurs a very low cost for the agent (3 liters),

but constitutes an extremely high cost for the person (43 minutes). In this example, the SAP-

hyper agent recommended the road that was associated with the highest cost for the agent (4.19

liters), but a very low cost for the person (18 minutes). The person accepted this advice and

chose the recommended route. In the next round, the agent advised the person to take a road

that incurred a relatively high cost for the person (31 minutes) and a very low cost for the agent

(1.6 liters). This offer was again accepted.

5.4 Climate Control Domain

In this section, we present a different type of choice selection process which includes a simula-

tion system where a car driver needs to set how much power he would like his Climate Control

System (CCS) to consume. We denote this the ”power level” of the CCS. Higher values of
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the power level are associated with increased energy consumption by the system. The sender

player represents a system which suggests a power level setting to the receiver (the driver). As

in the road selection setting, in each round the sender can suggest to the receiver to perform a

certain action before the receiver makes his selection.

This domain differs from the route selection domain in the following ways:

• Ordered actions: The action set is an ordinal scale which represents the energy consump-

tion level of the CCS in the car. The roads in the previous domain that we examined were

not sorted in any scale. The actions were a set of non-ordered options.

• Partial acceptance: The receiver may partially accept the advice (e.g. set the power

level of the AC to a lower level than initially intended, but not as low as suggested by

the sender). This makes the task of modeling the receiver significantly more difficult.

In the roads domain, a user could either accept or not accept the advice; in the climate

control case a user can partially accept advice and in a sense make a choice is closer to

the advice.

• Cost for receiver: The cost for the receiver depends on two attributes: the energy con-

sumption of the CCS, and the user’s comfort level which depends on the energy con-

sumption and the state of the world. Therefore, modeling the human behavior becomes

a more complex task in this case than in the roads domain.

• Partial observability: The receiver is given an observation (the heat load) that is associ-

ated with the state of the world. Therefore he is able to update his belief regarding the

state of the world. In the roads domain, the user was assumed not to have any information

about the traffic distribution in the different roads.

• Finite state space: In this configuration the state space is constrained which allows us to

solve the MDP. In the roads domain, the state space was larger and it was not practical

to find the optimal solution to the corresponding MDP.

5.4.1 Setting Description

In this setting, A is an ordered set of actions (1, . . . , |A|). Each action represents the setting

of the power level of the climate control system. The state of the world v = (v1, . . . , v|A|)

represents the “comfort level” for the receiver (i.e., the driver of the car) when operating the

AC system according to each of the possible system settings.
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In the choice selection process in each round t, the receiver is given a discrete observation

o(v) that represents the current heat load in the car (a function of the temperature, humidity

and other environmental conditions). Note that because the receiver does not directly observe

the state v, he does not know the comfort level. The assumption is that a user who is new

to such an interaction does not yet know how he would feel at the end of the drive for any

particular setting. The cost function for the receiver, cR(a, v) is a linear combination of the

energy consumption (a) and the comfort level (va).

cR(a, v) = α · va + β · a (5.18)

where α ≤ 0 and β ≥ 0 are constants in the problem definition. The cost for the sender,

cS(a, v), is determined by the action taken by the receiver (the energy consumption), i.e.

cS(a, v) = a. The next round of the choice selection process occurs with a constant prob-

ability γ.

Because the receiver is given an observation about the state v, we predict the probability

that the receiver will choose action a, which depends on the history, the advice of the sender in

the current round, and the state of the world:

P (a | h1,t−1, d, t, v) (5.19)

Similar to the road selection domain, for a given world state v and history h1,t−1, we can

define the sender’s expected cost ECs(v, h1,t−1) for action (i.e., advice) d as

ECtS(v, h1,t−1, d) =
∑
a∈A

P (a | h1,t−1, d, t, v)
(
cs(a, v)+

γ
∑
v′∈V

p(v′)(min
d′

ECt+1
s (v′, h1,t, d′))

)
(5.20)

The advice that minimizes the sender’s cost is

π∗(v, h1,t−1, d) = argmindEC
t
S(v, h1,t−1, d) (5.21)

It is important to observe that in our world all variables in the optimization problem for the

sender are known to the sender except P (a | h1,t−1, d(v, h1,t−1), v), which requires a human

model of the receiver. Therefore, the next subsection is dedicated to methods for modeling a

human receiver.
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5.4.2 Modeling Human Receivers

We provide 7 ways to model a human receiver:

• True-Cost (models the user using the true cost).

• LUQ (using a linear combination of the comfort level and energy consumption).

• Hyper w/o learning (based on hyperbolic discounting).

• ES w/o learning (based on exponential smoothing).

• Hyper with learning (based on hyperbolic discounting and also models the receiver’s

learning).

• ES with learning (based on exponential smoothing and also models the receiver’s learn-

ing).

• MAB (assumes that the receiver treats the problem as a multi armed bandit problem).

An important factor in predicting the receiver’s action is the sender’s model of the cost

incurred by the receiver. This modeled cost is a function of the action taken by the receiver,

the history, the advice and the state of the world and is denoted C(a, v, d, ht−1). We present

several possibilities for such a model. In the simplest case, this modeled cost is assumed to be

the receiver’s true cost.

C(a, v, d, ht−1) = cR(a, v) (5.22)

We term this candidate True-Cost.

Another candidate for the receiver’s cost is a weighted sum over the comfort level av and

the receiver’s action a

C(a, v, d, t, h1,t−1) = w1 · va + w2 · a (5.23)

We assume that w1 ≤ 0 and w2 ≥ 0. A similar approach (based on building a subjective

utility function using a linear combination of the parameters and using a quantal response) for

modeling humans was performed successfully in previous work ([43], [40]). This candidate is

termed LUQ (Linear combination for subjective Utility and Quantal response). Recall that the

true cost for the receiver is a linear combination of the comfort level and the action performed
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by the receiver as well. Although, LUQ assumes that, the modeled cost C(a, v, d, t, h1,t−1), is

also a linear combination of both attributes of the problem, i.e. the comfort level and the energy

consumption, the coefficients (w1 and w2) may differ from the coefficients used in cr(a, v) (α

and β)1.

An alternative to the models shown above is to specifically represent the sender’s advice

in the cost function of the receiver. First, we provide the following definitions. We define

the subjective cost of the receiver from following the advice as SCF (t | ht) as in the road

selection domain. Additionally, we define SCN (t, ht), to equal the cost ctR when at 6= dt (i.e.,

the receiver did not follow the sender’s advice); otherwise it equals some default value (K).

We define two types of aggregated costs (for human receivers), one which employs hyperbolic

discounting:

AC(η)(h1,t−1) =
∑
t′<t

SC(η)(t | ht′)
δ · (t− t′)

(5.24)

where η is either F or N and δ is the discount factor parameter. For t = 0 we have some

default parameter w3.

The second type of aggregated cost employs exponential smoothing:

AC(η)(h1,t−1) =
∑
t′<t

SC(η)(t | ht′)δ(t−t′) (5.25)

We can now define the receiver’s trust in the advice as a value between 0 (receiver does not

trust the advice) and 1 (receiver fully trusts the advice):

tr(h1,t−1) =
1

1 + e−
(
ACN (t,h1,t−1)−ACF (t,h1,t−1)

) (5.26)

As an example assume that the receiver incurred very low costs when following the advice and

very high costs when not following it. This will imply that
(
ACN (t, h1,t−1)−ACF (t, h1,t−1)

)
is a high positive number which in turn implies that tr(h1,t−1) is close to 1.

Finally, we can define a candidate model for the receiver’s cost that is a weighted average of

the comfort level, the energy consumption (the receiver’s action) and the trust of the receiver as

a function of the distance between the action and the advice. Notice that since in this domain

1This model does not require an additional parameter for the actual cost for the receiver (cr(a, v)), since
cr(a, v) is already a linear combination of the comfort level and the energy consumption.

79



5. PROVIDING ADVICE IN REPEATED INTERACTIONS

partial acceptance of advice is possible, we can consider the distance of an action from the

advice:

C(a, v, d, t, h1,t−1) = w1 · va + w2 · a+ w4 · tr(h1,t−1) · w−|d−a|7 (5.27)

where w1 ≤ 0, w2 ≥ 0, w4 ≤ 0, w7 ≥ 0. Here, the term tr(h1,t−1) · w−|d−a|7 increases

proportionally to the receiver’s trust in the advice, and the distance between the receiver’s action

and the advice. In particular, when the trust of the receiver is high, the difference between the

advice and the receiver’s action has a greater impact on its cost than when the trust of the

receiver is low.

The following candidate model for the receiver’s cost explicitly models how the receiver

learns about the true comfort level over time. We define the receiver’s estimate of the comfort

level given round t, state v and action a as follows:

mb(a, v, t) =
1

NZ

∑
a′∈A

ew8·|a′−a|+w6·(t+1)·1{a′ 6=a} · va′ (5.28)

where w8 ≤ 0, w6 ≤ 0, 1{·} is the indicator function and NZ is a normalizing factor, such

that:

NZ =
∑
ā∈A

∑
a′∈A

ew8·|a′−ā|+w6·(t+1)·1{a′ 6=ā} · va′ (5.29)

We note that (1) large differences between a and a′ imply more error, and thus the contri-

bution of va′ to mb decreases (2), as t increases, the receiver learns more about the true va and

thus the contribution of va′ to mb decreases.

The following is the receiver’s cost which is identical to Equation 5.27 where the only

difference is that the first parameter is multiplied by the receiver’s belief over his comfort level

(mb(a, v, t)), rather than using the true comfort level (va):

C(a, v, d, t, h1,t−1) = w1 ·mb(a, v, t) + w2 · a+ w4 · tr(h1,t−1) · w−|d−a|7 (5.30)

Finally, in all the above methods, we recall the function of the logit quantal response and

adopt it to the climate control domain, and thus, the probability that the receiver shall choose

an action a in any round t, given the state v and the receiver’s aggregated subjective cost is:

P (a | h1,t−1, d(v, h1,t−1), v) =
e−λ·C(a,v,d,t,h1,t−1)∑

a′∈A e
−λ·C(a′,v,d,t,h1,t−1)

(5.31)
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Although λ is another parameter, it is used only for the True-Cost, and all other methods set it

at 1 without losing any degree of freedom.

The last model we consider does not use the modeled cost function (C). This is a baseline

model which uses the model which was found best in the road selection domain (hyper) and

implies it on the CCS domain without accounting for the CCS domain different properties.

This method, termed MAB, assumes that the receiver treats the problem as a multi armed-bandit

problem where the advice is considered as an extra arm (for a total of 11 arms). This method

is identical to the one used in the road selection domain and uses hyperbolic discounting, and

therefore it ignores the receiver’s observation, the fact that the actions are ordered and the

differences between the two domains.

5.4.3 Agent Design for Sender

In the previous subsections we proposed different methods for modeling human behavior,

which provide an estimation on P (a | h1,t−1, d(v, h1,t−1), v). Based on these models we

constructed two agents, SAP and MDP, for solving the optimization problem given in Equa-

tion 5.21. In the SAP agent the Hyper with learning human model (which resulted in the best

fit-to-data see Section 5.4.6) is used for simulating the receiver’s decision making process in

order to search for the weights of the social utility function, which result in the lowest overall

expected cost for the sender. In the MDP-based agent we simplified the receiver’s model by

using the ES w/o learning model which uses exponential smoothing rather than Hyperbolic

discounting and does not assume any learning of the comfort level that occurs on the receiver’s

side. These simplifications only slightly decrease the suitability of the model to the collected

data (see Table 5.5) but make the MDP feasible to solve. Due to the nature of ES w/o learning

model the MDP world states do not require the whole history (h1,t−1), but instead, allow the

calculation of the sender’s model of the receiver’s cost, based solely on the current state (v),

and the aggregated cost functions (ACF and ACN ). This allows us to redefine the state space

as s = (v,ACF , ACN ) and solve Equation 5.13. In order to solve the MDP, the state space

must be discretized.

5.4.4 Experimental Settings

In our experiments we simulate a climate control system of an electrical car that interacts

with a human driver. The sender in the climate control game represents the vehicle advisor
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system and the receiver represents the human driver. We set A = {1, 2, ..., 10} as the set of

possible energy consumption levels. The state of the world, v, was drawn uniformly from

V = {v1, v2, v3, v4, v5, v6}. The receiver’s observation o(v), was attributed to the heat load

where 1 corresponds to a very light heat load, 2 to light, 3 to a moderate heat load, 4 to heavy,

5 very heavy and 6 to an extreme heat load. In our experiments we used the following function

to determine the comfort level:

voa = 10 · 1

1 + e−(a−o) (5.32)

This function was chosen since it encapsulates the following favorable properties: 1. The

higher the CCS energy consumption the higher the comfort level. 2. The higher the heat load

the lower the comfort level for a fixed CCS energy consumption level. 3. The comfort level is

always between 0 and 10.

We set cs(a, v) = a, i.e. the system cost is simply the energy consumption level. cR(a, v),

the user’s cost function, was captured as a utility function and was set as twice the comfort

level (va) minus the energy consumption level a. More Formally:

cR(a, v) = −2 · va + a (5.33)

5.4.5 Experiments

A total of 272 subjects from the USA (recruited via Mechanical Turk), of whom 44.4% were

females and 55.6%weremales, participated in the experiments in the climate control domain.

The subjects’ ages ranged from 19 to 67, with a mean age of 32.3 and median of 30. All

subjects had to pass a short quiz to assure that they understood the game.

Every round the subjects were told the heat load for the current round and the advice given

by the system. They had to select an energy consumption level for the climate control system

(a number from 1 to 10). Then, they were told their comfort level and their final score for

that round. Every round the subjects were shown their history, containing previous actions,

previous observations, previous advice and the utility they gained. Similarly to the road selec-

tion domain, the subjects were paid 12 cents for participating in the study, and they received

between 5 to 50 cents depending on their performance. The subjects were told that the prob-

ability of a new round was 0.96. They actually played 25 rounds, resulting in data obtained

from 272 · 25 = 6800 rounds.
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For the MDP agent, we discretized the state space to hold 40 different ranges for each

subjective cost value, the states also held each of the 6 possible states of the world yielding a

total of 40 · 40 · 6 = 9600 states. Each state had 60 transitions; the number of the action (10)

multiplied by the number of states of the world for the next round (6). We used value-iteration

to solve the MDP - which took approximately 12 hours to solve on an Intel i5 2.4Ghz CPU.

Along with all the above strategies, we also considered the behavior of a fully rational

sender interacting with a fully rational receiver. A fully rational sender would never advise an

energy consumption level which is strictly higher than the energy consumption level that is best

for the receiver. (Assume by contradiction that the sender advises d where cs(d, v) > cs(a
′, v)

and cr(d, v) < cr(a
′, v), whereby the sender may improve its advice to a′ resulting in a lower

cost in the current round along with reducing the receiver’s cost which may increase future

performance.) Therefore, a fully rational receiver, given the state, will search for its best action

but never set its energy consumption level below the sender’s advice. However, since the

sender is trying to minimize the energy consumption level, it will always advise the lowest

energy consumption level available (1). We will refer to a sender that always advises the lowest

energy consumption level simply as sender.

As base-line we tested two additional strategies: Silent that did not provide any advice and

receiver, that consistently advised the CCS energy consumption level that was most beneficial

to the receiver.

We randomly divided subjects into one of five different groups, each of which received

advice provided by a different strategy method of those listed in Section 5.4.3 (Silent, Receiver,

Sender, SAP, MDP). The data obtained from the first three groups (Silent, Receiver and Sender)

served to train the human models used by SAP and MDP.

5.4.6 Results

We begin by describing the fit-to-data of the various models we described in Section 5.4.2 using

the data gathered in the Silent, Receiver and Sender groups.

Table 5.5 presents the fit-to-data of all the models which we tested using a tenfold cross val-

idation on learning the parameters while minimizing the negative log-likelihood. As depicted

in the table, Hyper with learning resulted in the best fit-to-data and was therefore our preferred

method for modeling human behavior. The results presented in Table 5.5 cannot be directly

compared to those in Table 5.1 since the domains are drastically different. Still, intuitively

the latter are much lower due to the fact that in the road selection problem the subjects had to
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Table 5.5: Fit-to-data of different receiver models in the climate control domain (lower is better)

model d.f. N-Log-Like.

True-Cost 1 830.6

LUQ 2 757.0

Hyper w/o learning 7 706.2

ES w/o learning 7 713.0

Hyper with learning 9 677.3

ES with learning 9 684.2

MAB 4 863.8

choose between four options while in the climate control domain the subjects had to choose

between 10 different climate control energy consumption levels and the training data set was

larger in the CCS domain.

Figure 5.2 presents the average performance for each of the groups, i.e. the average con-

sumption level of the subjects (the lower the better). SAP significantly (p < 0.001 using the

Mann-Whitney test) outperformed each of the other methods (including the MDP method).

Table 5.6 presents some additional data on each of the groups, including the number of

subjects, the average comfort level, the average user score and the average acceptance rate (the

percentage of times that the subject followed the exact advice). Unsurprisingly, the subjects

in the receiver group yielded the best score, however, the acceptance rate of both the MDP

method and SAP were very close to that of the subjects following the advice in the receiver

group.

5.4.7 Discussion: Partially Informed and Ordered Actions Domains

In this section we introduced the climate control game and described a method for modeling

the human decision making process in such a complex domain. We assimilated this model into

SAP in order to provide advice to the user. The climate control game was designed in a manner

that allowed construction of a complete MDP. Though the MDP method outperformed other

baseline methods, SAP outperformed all methods including the MDP. It may seem surprising
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Figure 5.2: Average energy consumption level for each of the treatment groups (the lower the
better).

Table 5.6: Performance results of the interactions with people

method no. of energy comfort user acceptance

subjects consumption level score

Silent 57 5.202 8.744 12.289 –

Receiver 58 5.197 8.933 12.67 36.7%

Sender 47 4.437 7.843 11.264 19.5%

SAP 55 3.952 7.466 11.02 34.5%

MDP 55 4.361 7.996 11.652 33.8%
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that SAP, which uses a relatively simple method outperformed the MDP approach. We explain

this by the fact that the user model had to be simplified and discretized in order to suit the MDP.

Furthermore, a human model may never be exact, therefore, over-relying on a noisy model as

the MDP does, may cause the SAP, which only uses the human model as a guideline, to perform

better.

5.5 Conclusions

In this chapter we considered a two player game, in which an agent repeatedly supplies advice

to a human user followed by an action taken by the user which influences both the agent’s

and the user’s costs. We presented the Social agent for Advice Provision (SAP) which models

human behavior combining principles known from behavioral science with machine learning

techniques. We tested the performance of the SAP agent when interacting with human users

in different types of domains. These domains differ in three main aspects. First, the amount

of information a user has about the state of the world may be different whereby it may exist at

some level or may not exist at all. Second, advice can affect the choice of a user at the global

level by having a possible effect on all possible choices or it may have only a local effect on one

action only. Third, the domains were different in the complexity of their state space making

it possible to implement and solve the problem with an optimal solution or enabled only an

approximate solution.

The results from all the experiments that were run in these different domains with differ-

ent mechanisms for modeling the agent and human behaviors show the following consistent

insights:

(1) SAP is successful - it outperforms all other agent implementations tested.

(2) SAP is simple to implement since its strategy for advice provision does not depend on

the history of the interaction with its current user (modeled as hyper). Therefore, it is possible

to deploy it in many common situations, where there is no knowledge about the number of

times that users have used the system in the past.

(3) SAP is practical for real world scenarios since online advice may be provided, which

demands very low CPU usage, i.e., SAP can be computed online with a time complexity of

O(|A|).
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5.6 List of Notations

Notation Meaning

a action.

A action space.

cR(a, v) receiver’s cost as a function of the action a and state v.

cS(a, v) sender’s cost.

d advice given by the sender.

ECtS(v, h1,t−1, d) optimal expected cost for sender at time t

as a function of current state v, the history h1,t−1 and advice d.

ht history at time t composed of (at, ct, dt).

K default value (used for computing subjective cost).

mb(a, v, t) receiver’s belief about its comfort level for action a

state v and time t (CCS domain).

o(v) observation obtained by receiver, depending on the state v (CCS domain).

p(v) density function of the state space.

P (a) probability that the receiver will take action a.

SCa(t) subjective cost for receiver for taking action a at time t.

SCF (t) subjective cost for receiver for following the advice at time t.

SCN (t) subjective cost for receiver for not following the advice at time t.

t round number (time).

tr(h1,t−1) trust rate given the history h1,t−1(CCS domain).

v state of the world.

V state space.

w weight or parameter.

ACa(t, h1,t−1) aggregated subjective cost for receiver for action a

from round 1 to round t− 1 (route selection domain).

ACF (t, h1,t−1) aggregated subjective cost for receiver for following the advice

from round 1 to round t− 1.

87



5. PROVIDING ADVICE IN REPEATED INTERACTIONS

ACN (t, h1,t−1) aggregated subjective cost for receiver for not following the advice

from round 1 to round t− 1 (CCS domain).

α, β parameters used in cost function for receiver (CCS domain).

γ discount factor in choice selection process.

δ discount factor for aggregated subjective cost.

λ parameter for logit quantal response.

C(a, v, d, t, h1,t−1) sender’s model of receiver’s cost as a function of the action a,

the state v, the advice d, the time t and the history h1,t−1 (CCS domain).

π(v, w) sender’s advice (for SAP) assuming world state v and the use of the weight
w.

Table 5.7: Notation list
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Chapter 6
Which Information to Disclose?

6.1 Introduction

Computer systems have a major role in providing information to humans. This information

may either be via the web (search engine, news, etc.), navigation systems or decision support

systems. This information is not always ingenuous; at times, this information may be intended

to influence a user into performing certain actions rather than others. In this chapter we focus on

scenarios in which an automated agent interacting with humans possesses greater information

than them. The automated agent needs to reveal information to humans, thereby leading them

to perform actions that are preferable to the agent.

Game theory, in particular persuasion games, are the most popular disciplines that study

strategic reasoning as required by the mixed intelligent systems on which we are concentrat-

ing. In such games (e.g. [11, 13, 72]) two rational entities interact: a Sender and a Receiver.

The Sender provides information and is assumed to be more knowledgeable and the Receiver

performs an action based on the information received. In contrast to previous chapters in which

the Sender could only send advice, in this chapter the Sender sends actual information.

Some examples may be Google Maps [73] or Waze [74] applications that know possible

settings that influence traffic congestion in the relevant countries and their times (e.g., morning

rush hours) and have a distribution over the time it takes to drive on most of the roads. Similarly,

automated travel agents have extensive prior information on flights and the distribution over

their delays.

In this chapter, we extend these game-theoretical models as follows: While the agent holds

private information (i.e., unknown to the user), it is also uncertain about the exact current
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state of the world. For example, the system may have an estimation of the congestion of

traffic on different roads which may be unknown to the user. Still, the system may have only

an estimation and not the exact value of traffic density at a particular time. We consider the

setting of a one-shot interaction where the agent presents the user with information and the user

chooses an action based on this information. The agent can present partial information about

the state, however any information revealed by the agent must be true (unlike other works

which consider manipulating the information presented to the user such as [75]). Similar to

previous chapters, the utility functions of the agent and the user are different, but both depend

on the state of the world and the action performed by the user. We model this setting as an

optimization problem for the Sender and present an algorithm to solve it.

As in previous chapters, we intend to use our methodology for the agent. Namely, we will

model human behavior in information disclosure environments and use it to find the optimal

behavior for the agent. In order to model human behavior in this environment, we suggest the

Linear weighted-Utility Quantal response (LUQ) human model, which relies on the following

two assumptions: Linear Weighted-Utility, i.e. people’s subjective utility is a linear combina-

tion of attributes, and Logit quantal response whereby the probability that people will chose a

certain action is proportional to the action’s subjective utility.

We ran extensive evaluations involving the participation of over 700 human subjects in two

different domains. One domain considers a road selection problem (described in Section 6.4.1)

and the second considers a supply-demand interaction detailed in Section 6.4.2. We discov-

ered that, in the road selection problem domain, people deviated from rational behavior and

therefore an agent based on the LUQ method significantly outperformed a game theory-based

agent. However, in the supply-demand domain, people behaved nearly rationally and thus the

LUQ based agent and the game theory-based agent’s performance did not differ significantly.

To summarize, our key contributions in this chapter are:

• An extension of the persuasion game model for human-agent interaction with asymmet-

ric information and two-sided uncertainty;

• A formal solution algorithm for the model, parameterized by the Receiver (human) be-

havior model;

• The LUQ method for building a human behavioral model pertinent to the Sender-Receiver

type interaction;
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• A methodology determining when one can assume rational behavior and thus use the

game theory approach and when one should use the LUQ method.

6.2 The Information Disclosure Game with Two-Sided Uncertainty

In this section we formally describe the protocol of the interaction between the human user

and the advising agent. To this end we use the terminology and general format of (Bayesian)

persuasion games [72] (hence, naming the human user a Receiver, and the agent a Sender) and

a guided route selection example as intuition.

The game describes an asymmetric interaction between two players: a Sender and a Re-

ceiver. The Receiver has a privately observed type associated with it (θ ∈ Θ) that is sampled

from a commonly known distribution (θ ∼ pΘ). The Sender can send messages to the Receiver

and the Receiver can perform actions from a set A. The utilities of the interaction between

the players depend on the state of the world v ∈ V that is sampled independently from the

commonly known distribution v ∼ pV . The Sender can obtain an observation of the state of

the world ω ∈ Ω that is sampled from the commonly known distribution ω ∼ pΩ(·|v). The

utilities of the interaction between the players are given by two functions us : V ×A→ R for

the Sender, and ur : V ×Θ×A→ R for the Receiver.

In our example, θ can correspond to the tolerance or patience exhibited by a driver and

influence his utility (see below). The messages sent by the Sender naturally correspond to

the traffic management center sending route information. The action chosen by the Receiver

corresponds to the driver choosing a specific route. The state of the world corresponds to

different traffic conditions across the road network with an appropriate statistic. The traffic

management center can monitor the traffic conditions with some degree of uncertainty. The

utility functions in our example scenario describe how content the user would be (ur) if he

took a specific route (a ∈ A) given his patience (θ ∈ Θ) and current traffic conditions (v ∈ V ),

and respectively (us) how profitable it would be for the traffic management center if the driver

adopted a particular route (a ∈ A) given the current traffic conditions (v ∈ V ).

The game unfolds as follows:

• The Sender selects a finite set of messages, M , and a disclosure rule π : Ω → ∆(M),

where ∆(·) denotes the space of all distributions over a set. In other words, the disclo-

sure rule specifies the probability π(m|ω) of sending a message m given any possible

Sender’s observation ω. Note that v is unknown (even through observation) to the Sender
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at the time of computing this disclosure rule. We will refer to the disclosure rule as the

Sender’s policy.

• The Sender computes the effective disclosure rule πΩ(m|v) =
∑
ω∈Ω

π(m|ω)pΩ(ω|v).

• The Sender declares and commits to (πΩ,M).1

• The Receiver’s private types θ and the state of the world v are independently sampled

from pΘ and pV , respectively.

• The Sender is supplied with the observation ω ∼ pΩ(·|v).

• The Sender samples a message m ∼ π(·|ω) and sends it to the Receiver.

• Given the message m, the Receiver performs a Bayesian update to calculate pmV ∝
πΩ(m|·)T ◦ pV , where “◦” denotes the entry-wise product [76].

• Based on pmV and θ the Receiver selects an action a ∈ A.

• Players obtain their respective utilities us(v, a) and ur(v, θ, a).

6.3 Solving Information Disclosure Games with Two-Sided Uncer-
tainty

To solve the information disclosure game we represent it as a mathematical program (which

can be non-linear). Solving such a problem consists of maximizing the expected utility of the

Sender by using a particular protocol that chooses what messages to send given its observa-

tion of the state of the world. At the same time, the action selection policy of the Receiver

contributes the bounding conditions of this mathematical program. In this Section, we analyze

such games formally and provide a solution, assuming that the Receiver is fully rational.

6.3.1 Mathematical Program

Since the Sender must commit in advance to its randomized policy, we use a subgame perfect

(SP) Bayesian Nash equilibrium where the only choice made by the Sender is the selection

1In our route selection scenario the above stages correspond to the traffic management center describing and
advertising its services.
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of the disclosure rule (we analyze the game as if a third party sends the message to the Re-

ceiver based on the disclosure rule given to him by the Sender). In the SP equilibrium the

Receiver’s strategy is the best response to the Sender’s policy, simplifying the equilibrium cal-

culations [77].

We limit the possible states of the world V , the Receiver types Θ, the set of observations Ω

and the Receiver actions A to finite sets (which we refer to as the finite sets assumption). Let

pbV denote the beliefs of the Receiver about the state of the world. The Receiver will choose an

optimal action:

a∗ = arg max
a∈A

Ev∼pbV
[ur(v, θ, a)] (6.1)

The set of feasible responses can be limited even further if the disclosure rule π is given.

By strategically constructing the rule π, the Sender can influence the actions chosen by the

Receiver. Since the Sender has only partial knowledge of the private value θ of the Receiver,

the Sender can only compute a prediction of a∗. Denote pA : ∆(V ) → ∆(A), the Receiver

response function and pmA = pA(·|pmV ). Having precomputed the response function pA of the

Receiver, the Sender can calculate the expected utility of a specific disclosure rule π.

Us[π] = E[us] =
∑
v∈V

∑
a∈A

us(v, a)p(v, a)

=
∑
v∈V

∑
a∈A

∑
m∈M

∑
ω∈Ω

us(v, a)pV (v)pA(a|pmV )pΩ(ω|v)π(m|ω)

Since we assume that V , Ω andM are finite, we can formulate the disclosure rule construc-

tion as an optimization problem over the space of stochastic policies π(m|ω) and the message

space M :

π∗ = arg maxM,π:V→∆(M) Us[π] (6.2)

The following theorem shows that if an optimal solution exists, then the set of messages

selected by the Sender can be limited to the size of |Ω|.

Theorem 1. Given an information disclosure game, 〈V, pV ,Θ, pθ,Ω, pΩ, A, ur, us〉, with the
finite sets assumption (i.e. V , Ω and A are finite), if there is an optimal solution (π,M) where
|M | <∞, then there exists an optimal solution (π̃, M̃), where |M̃ | ≤ |Ω|.
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Theorem 1 shows that an optimal solution with a finite message space can be transformed

so that the set of messages does not exceed |Ω|. However, it is possible to question whether an

optimal solution with a finite message set in fact exists. The following theorem deals with that

question, demonstrating that a countable set of messages of an optimal solution can always be

replaced by a finite set.

Theorem 2. Given an information disclosure game, 〈V, pV ,Θ, pθ,Ω, pΩ, A, ur, us〉, with the
finite sets assumption (i.e. V , Ω and A are finite), if the optimal expected utility for Sender Us
is attainable by some protocol (π,M), then there is an optimal solution with a finite message
space.

We give the complete proofs of Theorems 1 and 2 in Section 6.7 rather than here due

to their technicality. Their intuition, however, is easily outlined. For Theorem 1, we show

that the effects induced by the extra messages can be achieved by distributing the information

that they transfer to other messages without effecting the Sender’s utility. The re-distribution

process relies on the linear properties of the disclosure rule as a matrix. In turn, for Theorem 2,

we show that the utility gains obtained from almost all, but a finite number, of messages is

negligible and so is the information which they provide to the Receiver. In fact, they can be

aggregated into a single message (thus reducing the total number of used messages to finite)

without impacting the Sender’s utility.

6.3.2 Finding an Optimal Policy

Unfortunately, directly finding an optimal policy by solving the disclosure rule maximization

problem presented in Equation 6.2 is intractable, since it includes a strong non-linear com-

ponent. More specifically, it assumes availability of the Receiver’s best response (defined by

Equation 6.1) in a (closed) functional form. However, it is possible to circumvent this hin-

drance. Instead of assuming a functional best response form, we expand Equation 6.2 by a

set of constraints that compare the Receiver’s utility from its chosen action to that of all other

actions available to him/her. In other words, we transform an explicit (functional) non-linear

representation of the Receiver’s response into an implicit (constraints-based) linear form.

We begin by generating messages for each possible response from the Receiver. Note

that the response will depend on the Receiver’s type. Formally, we define a set of functions:

F = {f : Θ → A}. f specifies an action for each Receiver’s type. For each function f we

create a set of messages. From Theorem 1 we know that for an optimal policy there is need
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for |Ω| messages at most. Therefore, there is no need for more than |Ω| messages to lead to a

specific behavior that is described by a function f . Thus, we create a set M of messages such

that, for every f ∈ F , we generate Ω messages denoted by mj
f , 1 ≤ j ≤ |Ω|.

Using this set of messages with a size of |Ω||F |, we would like to consider possible policies

and choose the one that maximizes the Sender’s expected utility. However, we need to focus

only on policies π where, given a messagemj
f , a Receiver of type θ will really choose an action

f(θ). We achieve this formally by designing a set of inequalities that express this condition as

follows.

First, given a message m ∈ M , a Receiver of type θ ∈ Θ and a policy πΩ, the Receiver

will choose an action a ∈ A only if he believes that his expected utility from this action will

be higher than his expected utility from any other action. Note that after receiving a message

m, the Receiver’s belief that the state of the world is v ∈ V is proportionate to pV (v)πΩ(m|v).

Thus, the set of constraints is

∀a′ ∈ A
∑
v∈V

ur(v, θ, a)pV (v)πΩ(m|v) ≥∑
v∈V

ur(v, θ, a
′)pV (v)πΩ(m|v) (6.3)

Focusing on a specific messagemj
f , we want to satisfy these constraints for any type θ ∈ Θ

and require that the chosen action will be f(θ). Putting these together after some mathematical

manipulations, we obtain the following constraints for ∀θ ∈ Θ and ∀a′ ∈ A:∑
v∈V

(ur(v, f(θ))− ur(v, θ, a′))pV (v)πΩ(m|v) ≥ 0 (6.4)

Note that there may be many functions for which we will not be able to find an effective

policy πΩ that will satisfy the required constraints. However, given such a πΩ and a function

f we can calculate the probability πA(a|mj
f ) that an action a ∈ A will be chosen when the

Receiver receives the message mj
f , regardless of his type. Formally, given a set Θ′ ⊆ Θ, let

πΘ(Θ′) =
∑

θ∈Θ′ pΘ(θi). Then, πA(a|mj
f ) = πΘ(f−1(a)).

Combining all this, we obtain the following optimization problem:

π̃∗ = arg max
π

∑
mjf∈M

∑
a∈A
v∈V

us(v, a)pV (v)πΘ(f−1(a))πΩ(mj
f |v)

s.t.

πΩ = πpΩ
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∀mj
f ∈M,∀ θ ∈ Θ ∀a′ ∈ A∑

v∈V
(ur(v,Θ, f(Θ))− ur(v, θ, a′))pV (v)πΩ(mj

f |v) ≥ 0

∀ω ∈ Ω
∑

mjf∈M
π(mj

f |ω) = 1

∀mj
f ∈M π(mj

f |ω) ≥ 0

The complexity of solving the optimization problem within the above algorithm is polyno-

mial in |A|, |V | and |Ω|, but exponential in |Θ| since |F | ∝ |A||Θ|.
We refer to an agent, on behalf of the Sender, which solves the above optimization problem

as the Game Theory Based Agent (GTBA).

6.4 People Modeling for Disclosure Games in Multi-attribute Se-
lection Problems

Trying to influence people’s action selection presents novel problems for the design of per-

suasion agents. People often do not adhere to the optimal, monolithic strategies that can be

derived analytically. Their decision-making process is affected by a multitude of social and

psychological factors [4]. For this reason, in addition to the theoretical analysis, we propose to

model people participating in information disclosure games and integrate that model into the

formal one. We assume that the agent interacts with each person only once, thus we propose a

general opponent modeling approach, i.e., when facing a specific person, the persuasion agent

will use models learned from data collected from other people.

The opponent modeling is based on two assumptions on human decision-making:

• Linear Weighted-Utility: People’s decision-making deviates from the rational choice

theory; they use a subjective utility function which is a linear combination of a set of

attributes. This utility function may divert from the expected monetary utility function.

• Logit quantal response (stochastic decision-making): People do not choose actions

that maximize their subjective utility, but rather choose actions proportional to this utility.

A formal model of such decision-making was shown in [78, 79] to be of the form:

a∗r(a|θ, pbV ) ∝ exp
(
Ev∼pbV

[ur(v, θ, a)]
)

We name this method for human modeling: Linear weighted-Utility Quantal response

(LUQ). (This method was also proved to be successful in modeling human behavior in security

games [80].) The study of the general opponent approach and its comparison with the formal
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model was done in the context of two games. The Multi-attribute Road Selection Problem with

two-sided uncertainty about road traffic and the Sandwich Game with two-sided uncertainty

regarding the number of attendees of a particular event. Next we will describe the two games

and explain their differences.

6.4.1 Multi-attribute Road Selection Problem with Two Sided Uncertainty

The multi-attribute road selection problem with two-sided uncertainty about the state of the

world is an extension of the game that was studied in [40]. It is defined as an information

disclosure game Γρ with two players: a driver and a center. The center, playing the role of

the Sender, can provide the driver, playing the role of the Receiver, with traffic information

about road conditions. In particular, the driver needs to arrive at a meeting place in θ minutes.

There is a set H of n highways and roads leading to his meeting location. Each road h ∈ H is

associated with a toll cost c(h). There are several levels of traffic loads L on the roads and a set

of highway network states V . A highway network state is a vector ~v ∈ V specifying the load

of each road, i.e., ~v =< l1, ..., ln >, li ∈ L. The traffic load yields a different time duration for

the trip denoted d(~vh, h) (where ~vh denotes the traffic load on road h in state ~v). If the driver

arrives at the meeting on time he gains g dollars, however he is penalized e dollars for each

minute he is late. The chosen road is denoted a. Thus, the driver’s monetary utility is given by:

ur(~v, a, θ) = g −max{d(a,~v)− θ, 0} · e (6.5)

The driver does not know the exact state of the highway network, but merely has a prior dis-

tribution belief pV over V . The center also does not know what the exact state of the highway

network will be when the driver drives along the chosen road (e.g., even though the traffic

flows on a given road, an accident can occur causing the road to be blocked). However, given

its observations, the center has a better estimation of the state of the roads. The center has only

prior beliefs, pΘ, regarding the possible meeting times, Θ. Once given the observations on the

state, the center sends a messagem to the driver which may reveal data about the traffic load of

the various roads. The center’s utility depends on the actual traffic load and the driver’s chosen

road us(~va, a). It increases with the toll road c(a) and decreases with a’s load as specified

in ~v (two examples of such utility functions are given below). The center must decide on a

disclosure rule and provide it to the driver in advance (before the center is given some informa-

tion on the road loads). For the center, the road selection problem is therefore: given a game

Γ = 〈H,L, V,Ω,M, c, d, pV , pΩ, us, ur〉, choose a disclosure rule which will maximizeE[us].
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6.4.2 The Sandwich Game

The Sandwich Game is defined as an information disclosure game Γσ with two players: a seller

and an organizer. The organizer, playing the role of the Sender, can provide the seller, play-

ing the role of the Receiver, with information regarding the anticipated conference attendees.

The organizer himself receives noisy information regarding the exact number of attendees (can

be interpreted as the number of people who registered to a conference during pre-conference

registration). The seller must decide in advance how many sandwiches to prepare for the con-

ference (a). The sandwiches are sold for a fixed price c̄, and it is assumed that each conference

attendee will buy a single sandwich. Each seller is associated with a private type θ which in-

dicates the cost of preparing each possible number of sandwiches. Thus the seller’s monetary

utility given the number of attendees (v), the number of sandwiches prepared (a) and θ is given

by ur(v, θ, a) = min{a, v} · c̄− θ(a). Depending on the actual conference size, the organizer

is assumed to have some preferences as to the number of sandwiches that should be prepared

by the seller (us(v, a)).

6.4.3 Hypothesis

In the original Road Selection problem presented in [40], which considered only one-sided

uncertainty, the agent using the general opponent modeling approach achieved a significantly

higher utility than the GTBA agent. The major cause for this effect is that people preferred not

to choose jammed roads in the game even when they could arrive on time to their meetings and

consequently they did not attempt to maximize their monetary values. Thus, we hypothesized

that a similar agent (relying on the LUQ method for human modeling) for the two-sided uncer-

tainty Road Selection problem would also outperform the GTBA agent in the extended game.

In addition we designed the Sandwich Game, a new game in which the goal of the players is to

maximize their monetary values. We expected that, in such situations, people would be more

motivated to maximize their expected monetary values and GTBA may perform similar to an

agent which relies on the LUQ method for human modeling.

6.4.4 Non-monetary Utility Estimation for the Road Selection Problem with Two-
Sided Uncertainty

Given a game Γρ =< H,L, V,Θ,M, c, d, pV , pΘ, us, ur >, based on the LUQ method for hu-

man modeling, we assume that the driver chooses the road based on a non-monetary subjective
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utility function, denoted ūΓρ (here and in the functions defined below, we omit Γρ when it is

clear from the context). We further assume that ū is a linear combination of three parameters

given the chosen road: travel time, road load and road toll. We associate different weights (αs)

with each of these parameters: αd for the trip duration time, αc for the toll cost, and for all

li ∈ L we have αli . That is, given a game Γρ, assuming that the driver knew the highway

network load ~v and chose road a:

ūρ(~v, a) = αd · d(~v, a) + αc · c(a) + α~va (6.6)

Note that the utility associated with a given road depends only on the given road and its load

and not on the load of other roads according to the state.

We assume that the user uses logit quantal response and therefore, given Γρ, we assume

that the driver will choose road h with a probability of

p(a = h|Γρ, ~v) =
eλūρ(~v,h)∑

h′∈H
eλūρ(~v,h′)

(6.7)

where λ is a parameter. However, since ūρ(~v, h) has an extra degree of freedom, we set λ = 1.

When choosing an action, the driver does not know ~v but only m. Thus, the probability the

driver will choose a road h is:

p(a = h|Γρ,m) =
eE[ūρ(·,h|m)]∑

h′∈H
eE[ūρ(·,h′|m)]

Consider a set of games Gρ such that they all have the same set of levels of traffic load.

In order to learn the weights of the subjective utility function associated with Gρ, we assume

that a set of training data Ψ is given. The examples in Ψ consist of tuples (Γiρ,m, a) specifying

that a subject playing the driver’s role in the game Γiρ ∈ Gρ chose road a ∈ H after receiving

the message m ∈ M . We further assume that there is a predefined threshold τ > 0, and for

each m that appears in Ψ there are at least τ examples. Denote by prop(Γiρ,m, a) the fraction

of examples in Ψ of subjects who, when playing Γiρ and receiving message m, chose road a.

Next, given Ψ we aim to find appropriate αs that minimize the mean square error between

the prediction and the actual distribution of the actions given in the set of examples Ψ. Note

that we propose to learn αs across all the games in Gρ. Formally we search for αs that minimize∑
Γi,m,h

(p(a = h|Γiρ,m)− prop(Γi,m, h))2.
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One may notice that the subjective utility function that we propose does not depend on the

meeting time θ. This is because the meeting time θ is a private value of the driver and therefore

is not specified in the examples in Ψ. However, since we are interested in the expected overall

response per message of the whole population and not in predicting each individual response,

if the distribution of the meeting time is left unchanged, dependence on the meeting time is

embedded in the utility results. (We actually learn pmA directly and therefore do not depend on

θ).

Next, given a specific Γρ, we incorporate the learned function p(a = h|m) as an instantia-

tion of pmA into the calculation of the expected utility of a disclosure rule:

Us[π] =
∑
~v∈V

∑
h∈H

∑
m∈M

∑
ω∈Ω

us(~v, h)pV (~v)pΩ(ω|v)π(m|ω)p(h|m).

Unfortunately, this means that Us[π] has a very non-trivial shape (involving positive and

negative exponential and polynomial expressions of its argument), and even such properties

as convexity were hard to verify analytically. As a result, we chose to use the standard pattern

search algorithm in order to find a reasonable approximation of the optimal disclosure rule with

respect to Us[π].

6.4.5 Non-monetary Utility Estimation for the Sandwich Game with Two-Sided
Uncertainty

Based on the LUQ method for human modeling we assume that the seller decides on the num-

ber of sandwiches to prepare based on the following subjective utility function: α1·min{a, v}+
α2 ·max{(a− v), 0}. That is, the seller tries to maximize the number of sandwiches sold, and

minimize the number of sandwiches thrown away (we anticipate that α2 will be negative). For

similar reasons to those mentioned in Section 6.4.4, the proposed subjective utility function

does not depend on θ. According to LUQ we assume a logit quantal response. Learning the αs

and building an optimal policy is conducted in a method identical to that of the road selection

problem. Each of these proposed agents that rely on the LUQ method (for each of the two

domains) will be called a LUQ Agent (LUQA).

6.5 Experimental Evaluation

Our experiments were aimed at answering three questions:
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1. How well would the game theory-based agent that finds the optimal policy of the infor-

mation disclosure game perform, assuming that people choose the best response accord-

ing to ur (GTBA)?

2. Would LUQA improve the Sender’s results in comparison to GTBA?

3. Do the answers to the above questions depend on the domain and, if so, given a domain,

can we provide a way to predict whether LUQA or GTBA will perform better?

6.5.1 Experimental Design

In both games the subjects were given the description of the game including the Sender’s pref-

erences. Before starting to play, the subjects were required to answer a few questions verifying

that they understood the game. For each subject, the center received a state that was drawn

randomly and sent a message using the disclosure rule described in section 6.2. To support

the subjects’ decision-making process, we presented them with the distribution over the pos-

sible states that was calculated using the Bayesian rule given the message, the prior uniform

distribution and the center’s policy. That is, the subjects were given pMV (m). The subjects then

selected a single action (either a number of sandwiches to prepare or a road). For motivation,

the subjects received bonuses proportionate to the amount they gained in dollars. Comparisons

between different means were performed using t-tests.

We considered two variations for each of the two games (the sandwich game and the road

selection game). The first one was used to answer the first question and to collect data for the

opponent modeling procedure. The second variation was used to answer the second question,

using the collected data of the first variation as the training data set. We now describe the

parameters used for both variations of the sandwich game and the road selection game.

Road Selection Game

In the first game, Γ1, the players had to choose one of three roads: a toll free road, a $4 toll

road or an $8 toll road (i.e. H = {h1, h2, h3}, c(h1) = 0, c(h2) = 4 and c(h3) = 8).

Each road could either have flowing traffic which would result in a 3 minute ride, heavy

traffic which would take 9 minutes of travel time or a traffic jam which would cause the

ride to take 18 minutes. That is, L = {flowing, heavy, jam}, and d(hi, f lowing) = 3,

d(hi, heavy) = 9 and d(hi, jam) = 18, for all hi ∈ H . An example of a state v could
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be 〈heavy, flowing, flowing〉, indicating that there is heavy traffic on the toll free road and

traffic is flowing on the other two toll roads. Arriving on time (or earlier) yields the player a

gain of $23 and he will be penalized $1 for every minute that he is late. Finally, the meet-

ing could take place in either 3, 6, 9, 12 or 15 minutes, i.e., Θ = {3, 6, 9, 12, 15}. Thus

ur(~v, a, θ) = 23 − max{d(a,~v) − w, 0} · 1. The prior probabilities over V and W were

uniform.

The center’s utility was as follows: if the subject took the toll free road, the center received

$0 regardless of the state. If the subject took the $4 toll road, the center received $4 if the traffic

was flowing, $2 if there was heavy traffic and $0 if there was a traffic jam. If the subject took

the $8 toll road, the center received $8 if the traffic was flowing, $2 if there was heavy traffic

and lost $4 if there was a traffic jam.

In the second game, Γ2, the meeting time was changed to take place in 12, 13, 14 and 15

minutes, i.e., Θ = {12, 13, 14, 15}. The center’s utility was also changed: the center received

$1 if the driver chose the most expensive road among those with the least traffic. Otherwise the

center received $0.

Sandwich Game

The conference size (v) had either no participants (a canceled conference), 20 participants (a

small conference), 30 participants (a medium conference), 40 participants (a large conference)

or 50 participants (a huge conference).

The number of sandwiches prepared by the seller (a) was in {0, 20, 30, 40, 50} as well.

Recall that the seller’s utility function is given by ur(v, θ, a) = min{a, v} · c̄− θ(a). We set c̄

(the sandwich retail price) to $1. We used three different private types (θ), which indicate the

cost of preparing each possible number of sandwiches. Table 6.1 shows the different private

types used.

We considered two different utility functions for the organizer in the sandwich game. In the

first game, Γ1
σ, the system wanted the seller to prepare more sandwiches than needed, unless the

conference had 50 attendees. In Γ2
σ the system wanted the seller to prepare less sandwiches than

needed, unless the conference was canceled (0 attendees). The utility function was chosen such

that the utility for the organizer and the seller would be different and not linearly dependent.

The observation table is shown in Table 6.2. As depicted in the table, if the organizer observes

that the conference will be canceled, then in fact it will be. In any other case there is an 85%
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Table 6.1: Seller types

Number of Cost for Cost for Cost for

sandwiches Type 1 Type 2 Type 3

None $0 $0 $0

10 $5 $8 $12

20 $9 $12 $15

30 $14 $16 $18

50 $20 $20 $20

chance that the organizer will observe the correct state. Even if the state observed is incorrect,

the actual state is not too far off, unless the conference is unexpectedly canceled.

6.5.2 Human Subjects

In the experiments, subjects were asked to play either the sandwich game or the multi-attribute

road selection game with two-sided uncertainty. As mentioned above, each of the games had

two different variations which differed in the system utility function. Each subject played only

once. All of our experiments were run using Amazon’s Mechanical Turk service (AMT) [56]1.

A total of 713 subjects from the USA, 56.2% females and 43.8% males, participated in our

study. The subjects’ ages ranged from 18 to 74, with a mean of 34 and a standard deviation of

11.3. The subjects participated in the following experiments:

• 173 subjects participated in Γ1
ρ, which is the first game played in the road selection game,

using GTBA.

• 102 subjects participated in Γ2
ρ, which is the second game played in the road selection

game, using GTBA.

• 119 subjects participated in Γ2
ρ, which is the second game played in the road selection

game, using LUQA.

1For a comparison between AMT and other recruitment methods see [7].
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Table 6.2: Observation table in the sandwich game

Observation Probability of actual conference size

Canceled Small Medium Large Huge

Canceled 1 0 0 0 0

Small 0.08 0.85 0.06 0.01 0

Medium 0.02 0.06 0.85 0.06 0.01

Large 0.01 0.03 0.06 0.85 0.05

Huge 0.06 0 0.03 0.06 0.85

• 100 subjects participated in Γ1
σ, which is the first game played in the sandwich game,

using GTBA.

• 106 subjects participated in Γ2
σ, which is the second game played in the sandwich game,

using GTBA.

• 113 subjects participated in Γ2
σ, which is the second game played in the sandwich game,

using LUQA.

Since the experiment was based on a single multiple-choice question, we were concerned

that subjects might not truly attempt to find a good solution. Recall that we took several mea-

sures to encourage truthful answers in all the experiments described in this thesis (See the

introduction in Chapter 1). In addition to these measures, since this experiment was based on

a single question, we removed 6 answers which were produced in less than 10 seconds as the

response was considered unreasonably fast. However, since the average time needed to solve

our task was 83 seconds, we concluded that the subjects considered our tasks seriously.

6.5.3 Experimental Results

In both the sandwich game and the multi-attribute road selection game with two-sided uncer-

tainty, we first let the subjects play with the GTBA agent. This agent computes the game

theory-based policy of Γ1, to solve the maximization problem presented in section 6.3. Note
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that even though the complexity of solving this problem is high, we were able to find the opti-

mal policy for the multi-attribute selection games in a reasonable amount of time.

Figure 6.1: System utility in road game
Γ1
ρ. The center gained a significantly

higher utility from the actual users than
the utility it would have gained if all of
the users were rational (p < 0.001)

Figure 6.2: User utility in road game Γ1
ρ.

The actual drivers gained a significantly
lower utility, on average, than they would
have gained if they all would have acted
rationally (p < 0.001).

Figure 6.3: System utility in road game
Γ2
ρ. The center performed significantly

better when using LUQA rather than
GTBA (p < 0.05).

Figure 6.4: System utility for LUQA in
road game Γ2

ρ. LUQA performed signif-
icantly better when it received full infor-
mation (p < 0.05).

6.5.4 Results of the Multi-attribute Road Selection Game with Two-sided Un-
certainty

GTBA results

The policy of GTBA using the first settings (Γ1
ρ) included 13 messages, but 5 of them were

generated with a very low probability. Thus, from the 169 subjects who participated in the
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experiment, most of them (166 subjects) received one of 8 messages, and 3 of the subjects each

received a different message.

The center received, on average, 0.230 per driver. This result is significantly (p < 0.001)

higher than the utility that the center would have received if all of the subjects were rational

(i.e., maximizing ur), which, in expectation, was only 0.105 per driver (see Figure 6.1). As

can be seen in Figure 6.2, user performance significantly dropped from that of fully rational.

Another deviation from full rationality was observed by the correlation between the time to the

meeting and the road selection. For a fully rational player, the longer he has until the meeting,

the less likely he is to choose a toll road. However, this negative correlation between the time

to the meeting and the road selection was as low as −0.015, suggesting that subjects almost

ignored the meeting time. These observations lead to the conclusion that in the multi-attribute

road selection game with two-sided uncertainty, humans tend to concentrate on the traffic on

each road and its toll, but ignore the actual monetary value which supports our general opponent

modeling approach for this domain.

LUQ human model

We tested four different methods of modeling human decision-making:

1. Rational, which assumes that humans always choose the road which maximizes their

expected monetary value given in Equation 6.5. This method is the method assumed by

the GTBA agent and does not require any additional parameters.

2. QRE (logit quantal response), which assumes that the probability that humans choose

a road is proportionate to the expected monetary value from that road. This method is

based on Equation 6.7, however, it assumes that the drivers base their utility function on

the monetary value (ur(~v, a, θ) given in Equation 6.5) rather than using the subjective

utility function (ūρ(~v, a)) (as assumed by LUQ). Therefore, this method has a single

parameter: λ.

3. LWU (Linear Weighted-Utility), which assumes that humans always choose the road

which gives them the highest subjective utility (using the subjective utility function

ūρ(~v, a) given in Equation 6.6. This method has 5 parameters.

4. LUQ, which combines both linear weighted-utility function and logit quantal response,

given in Equations 6.6 and 6.7. This method has 5 parameters.
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Table 6.3: Mean square error of modeling human decision-making

Modeling Method Mean Square Error (the lower the better)

Rational 0.89

QRE 0.295

LWU 0.194

LUQ 0.065

Table 6.3 presents the mean square error for all four methods on the data from Γ1
ρ using a

leave-one-out cross validation (in which for each of the messages, when the mean square error

is evaluated on a messages, the parameters are learned using data from all other messages).

Clearly, LUQ’s prediction outperforms all other methods.

Comparing LUQA and GTBA

Using the settings of the second game, Γ2
ρ, we ran two agents, GTBA and LUQA. We used

the results obtained from the 166 subjects that played Γ1
ρ as the training set data Ψ for LUQA.

That is, the αs for ū
Γ2
ρ
r were learned from the subjects playing Γ1

ρ, i.e., G = {Γ1}. LUQA

and GTBA each generated 4 messages for Γ2
ρ. 119 subjects played with LUQA and 102 with

GTBA. LUQA performed significantly better (p < 0.05) than GTBA, gaining an average of

0.431 vs. 0.319 points per driver (see Figure 6.3).

We also checked the actual dollars earned by the subjects. Unfortunately, when playing

with LUQA the average virtual gain per subject was only $19.00, while when playing with

GTBA the average was higher, $21.20. These results differ significantly, hinting that the cen-

ter’s gain was on account of the driver’s monetary utility. This result is compatible with our

previous result in [38], where people tend to perform better when the agent confronting them

assumes that they will act rationally. However, in practice, this issue isn’t of great concern,

since, if the center is interested in the driver receiving a higher utility, it may implicitly add the

driver’s utility to its own utility function and result with a protocol that will be better for both

the center and the driver.
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One-sided uncertainty vs. Two-sided uncertainty

In previous work [40] we tested the performance of LUQA in the road selection problem under

the exact same settings, only with full information for the center. Figure 6.4 shows these results

along with our current results with partial information. As can be seen, when LUQA has full

information, it significantly outperforms LUQA with partial information. This is not surprising,

since additional information allows the Sender to avoid mistakes and encourages the Receiver

to take actions which are more favorable to the Sender.

6.5.5 Sandwich Game Results

Figure 6.5: User utility in sandwich
games. The difference between a fully ra-
tional seller and the actual human sellers
is minor and not statistically significant.

Figure 6.6: System utility in sandwich
game Γ2

σ . The difference between the
organizer utility when using LUQA and
when using GTBA is minor and not sta-
tistically significant.

GTBA results

The monetary result plays an important role in the sandwich game. This is because the game

is played in an environment in which a person’s goal is to make as high a revenue as possible,

which usually results in selling as many sandwiches as possible while minimizing the number

of sandwiches thrown away.

The policy of GTBA in the first settings (Γ1
σ) included 5 messages. The organizer received

on average 0.260 per seller (Figure 6.7). The utility of the organizer was similar to the expected

utility that the organizer would receive if all subjects were rational (i.e., maximizing ur), which,

in expectation, was 0.299 per seller. We suspect that this is due to the important role that the

monetary value played in this game. These results differ from the correspondence results of the
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road selection game and thus we hypothesized that LUQA would not be needed for this game

and that the GTBA agent would do as well as LUQA in this domain.

LUQA and the LUQ human model

The learning phase for LUQA, which was based on the subjects who participated in Γ1
σ, re-

vealed the following parameters in the subjective utility function: α1, which is the amount

gained by each sandwich sold, was 0.087, and α2, which is the amount lost by each sand-

wich thrown away was −0.103. On average (depending on the private type w), if the expected

monetary values are maximized, people should be neutral to missing a sandwich or prepar-

ing one too many sandwiches. However, apparently people were a little risk averse since

| − 0.103| > |0.087|, though the numbers are very close. When testing the MSE of LUQ,

the result was similar to that of QRE (quantal response under expected monetary outcome),

both yielding 0.07. The similar performance for both LUQ and MSE indicates that people

performed nearly rationally, which virtually obviates the usage of LUQ.

Comparing LUQA and GTBA

The comparison was done under the second set of settings (Γ2
σ), and both GTBA and LUQA

used 4 messages. The organizer received on average 0.715 when using GTBA, and 0.728 when

using LUQA (Figure 6.6). Although LUQA did perform slightly better, the results do not

differ significantly. This is not surprising since, as mentioned above, the subjects’ subjective

utility was very close to the expected monetary value and thus the GTBA’s assumptions were

correct. We suggest that the slight improvement shown was due to the logit quantal response

assumption.

6.5.6 Deciding between LUQA and GTBA

As demonstrated in the above two games, there are situations where LUQA outperforms GTBA,

while in other situations they yield similar results. One may recommend to always use LUQA

since it is always as good as GTBA and sometimes even better. However, LUQA requires col-

lecting data to learn the human utility function. Therefore, we recommend to first collect some

data using GTBA and compare the agent’s results and the human behavior to the rational be-

havior. If GTBA’s results are significantly different from the expected results that it would have
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Figure 6.7: System utility in the sandwich game. The difference in the organizer’s utility between
actual users and the utility it would have gained if all of the users were rational is minor and not
statistically significant.

received if people would have followed a rational decision-making process, then it is worth-

while to collect more data and use LUQA. Otherwise, using GTBA seems to be an adequate

heuristic. It is important to note that in the road selection game it was ample to use 10 subjects

in order to obtain a significant difference between GTBA and the expected utility if people

would have followed rational behavior. In the sandwich game, we did not obtain significant

results even with 100 subjects. Consequently collecting 20− 25 data points in order to make a

decision whether to use LUQA or GTBA seems reasonable.

6.6 Conclusions

In this chapter we considered information disclosure games with two-sided uncertainty in

which an agent tries to lead a person to take an action that is beneficial to the agent by pro-

viding him with truthful, but possibly partial, information relevant to the action selection. We

first provided an algorithm to compute the optimal policy for information disclosure games

with two-sided uncertainty, assuming that the human is fully rational. We also provided an

innovative machine learning-based model that effectively predicts people’s behavior in these

games. The model we provided assumes that people use a subjective utility function which

is a linear combination for all given attributes. The model also assumes that while people

use this function as a guideline, they do not always choose the action with the greatest utility

value. Nonetheless, the higher an action’s utility value the more likely they are to choose that

action. We integrated this model into our persuasion model in order to yield an innovative

method of human behavior manipulation. Extensive empirical study in multi-attribute road

112



6.7 Proofs of Theorems Concerning Message Space

selection games with two-sided uncertainty confirms the advantage of the proposed model in

that game. However, in another domain we tested, i.e., the Sandwich game, there is no signif-

icant advantage to the machine learning-based model, and using the game theory-based agent

which assumes that people maximize their expected monetary values is beneficial. We propose

a methodology of how to choose between the two options. We argue that, depending on the

domain, people’s decision-making process may vary and thus where in one domain modeling

humans as rational may be sufficient, in another domain it is too far from their actual behavior

and therefore an agent that assumes perfectly rational behavior may fall far behind.

6.7 Proofs of Theorems Concerning Message Space

6.7.1 Proof of Theorem 1

Proof. Let (π,M) be an optimal solution to the game so that |M | > |Ω| = n. We will first
show that certain transformations of π produce a left stochastic matrix structure (in which the
rows correspond to messages and the columns to observations) with at least one zero row,
i.e. produce disclosure rules that use less messages than the original π. We will then show a
specific transformation of π that, while reducing the number of used messages, preserves the
utility gained. We will thus obtain a new optimal disclosure rule with fewer messages. Since
|M | < ∞, iterative application of the above process would lead to an optimal (π̃, M̃), where
|M̃ | <= n as required.

Notice again that zero rows in π correspond to the messages that were never sent, and we
would be able to reduce the size of M without changing the utility in any way. Assume that
after the elimination of zero rows, we still have a set of messages greater than |Ω| or there never
were any.

Since π is a stochastic matrix, there can be no more than n elements in it equal to 1. If all
are present, the rest of the rows are zero, and we can reduceM to have only n elements without
changing π, thereby obtaining the necessary optimal solution properties. If this does not occur,
i.e. there are less than n elements in π equal to 1, we can proceed with the following reasoning.

Denote πm the m’th row of π. It holds
∑
m∈M

πm = ~1Tn , where ~1n is a column vector in Rn

with all elements equal to 1. Since there are at least n+ 1 rows in π, but only n columns, π has
a non-trivial kernel space of left multiplication vectors. Hence, there is a non-trivial row vector
α = (αm)m∈M so that φ = απ = ~0Tn , and for all m ∈ M |αm| ≤ 1 and for some m1 ∈ M
αm1 = 1. This can be achieved by taking an arbitrary non-trivial kernel row vector and scaling
it appropriately.

113



6. WHICH INFORMATION TO DISCLOSE?

Clearly, πm1(ω) < 1 for all ω ∈ Ω. Otherwise, for some ω̄ ∈ V πm(ω̄) = 0 for all
m 6= m1, and φ(ω̄) = αm1 = 1 6= 0, hence contradicting φ = ~0.

Denote π̃ a matrix with rows defined by π̃m = (1− αm)πm. Notice that all elements of π̃
are non-negative. Furthermore, they are not greater than 1, due to the following:

~1Tn =
∑
m∈M

πm = ~1T|M |π

~0Tn = απ

~1Tn = (~1T|M | − α)π = ~1T|M |π̃

Since all elements of (~1T|M |−α) are non-negative, as are elements of π, the last equation means
that elements of π̃ are bounded by 1, and the sum of rows is ~1Tn .

Hence π̃ is also a valid solution to the game. Furthermore, it uses less messages since
αm1 = 1 and π̃m1 = (1− αm1)πm1 = ~0|M |.

Applying the above reasoning in an iterative fashion, we can reduce the number of non-
zero rows in π̃ to n. Denote M̃ to be the subset of M that corresponds to those rows, which
will be the new set of messages.

We will now show that π̃ has the same utility as π, hence (π̃, M̃) will be an optimal disclo-
sure rule with |M̃ | = n, concluding the proof.

Denote UMs [πm] =
∑
v∈V

∑
a∈A

∑
ω∈Ω

us(v, a)pV (v)pA(a|pmV )pΩ(ω|v)π(m|ω), then Us[π] =∑
m∈M

UMs [πm]. Notice that UMs [γπm] = γUMs [πm], since pmV is insensitive to scaling of πm.

Let us now compute Us[π̃], where π̃ was computed using a vector γα with γ ∈ R.

Us[π̃] =
∑
m∈M

UMs [π̃m]

=
∑
m∈M

UMs [π̃m]

=
∑
m∈M

UMs [(1− γαm)πm]

=
∑
m∈M

(1− γαm)UMs [πm]

= Us[π]− γ
∑
m∈M

αmU
M
s [πm]

= Us[π]− γ ∗ Udiff

If Udiff 6= 0, then for π̃ computed for γ = sign(Udiff ) we find that Us[π̃] 
 Us[π], hence
contradicting the optimality of π. Therefore, Udiff = 0, (setting γ = 1) and Us[π̃] = Us[π],
making (π̃, M̃) an alternative optimal solution with |M̃ | = |Ω|, as required.
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6.7.2 Proof of Theorem 2

Proof. The following proof is stated for a countable infinity of messages. However, since the
space of all possible conditional message probabilities πm is compact, it is easy to recast it for
continuous message indices.

Let (π,M) be an optimal solution to the problem, so that |M | = ∞, and furthermore
for an infinite number of messages πmpV > 0. In other words there is an infinite number of
messages that have a non-zero probability to appear. and w.l.g. assume that all messages are
such. Notice also that w.l.g. we can assume that us(v, a) > 0 for all a ∈ A and v ∈ V .
Denote umins = inf

p(v,a)∈∆(V×A)
E[us(v, a)] > 0, and notice that UMs [πm] ≥ umins for any πm.

Similarly notice that umaxs = sup
p(v,a)∈∆(V×A)

E[us(v, a)] <∞ and that UMs [πm] ≤ umaxs .

Since the sum of all message probabilities is equal to 1, and all utilities are strictly posi-

tive, the sequence of partial sums
t∑
i=0

UMs [πmj ] monotonically increases and is bounded, hence

Us[π] =
∞∑
i=0

UMs [πmi ] < ∞ and is well defined. Furthermore, for any ε > 0 exists T < ∞ so

that
∞∑

i=T+1

UMs [πmi ] ≤ ε. Consider setting ε = umins and set π̃m =

πmi m = mi, i ∈ [0, T ]∑∞
i=T+1 πmi m = m̃

.

It holds that UMs [π̃m̃] ≥ umins ≥
∞∑

i=T+1

UMs [πmi ]. Therefore, Us[π] ≤ Us[π̃], and (π̃, M̃) is a

finite disclosure rule with a utility at least as good as the original solution (π,M). Hence, if
the optimal Us is obtainable, then there is a finite disclosure rule that achieves it.

6.8 List of Notations

notation meaning

a Receiver action.

a∗ Receiver optimal action.

A set of possible actions for Receiver.

c(h) toll cost.

c̄ fixed price for sandwiches.

d time duration of a trip.
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f a function from Ω to A.

F set of functions from Ω to A.

h highway road.

H set of highways.

l road load.

m message.

mi
f message.

M set of messages.

n number of highways (|H|).

pV distribution over the sates of the world.

pΩ distribution over the observations.

pθ distribution on receiver type.

pA Receiver response function.

pmA Receiver response function given message m.

pbV Receiver’s belief over the state of the world.

pmV Receiver’s belief over the state of the world given message m.

us utility for Sender.

Us optimal expected utility for Sender.

ur utility for Receiver.

v state of the world.

~v highway network state (state of the world in the road selection problem).

V set of possible states of the world.

◦ entry-wise product.

∆(·) the space of all distributions over a set.

Γ an information disclosure game.

π Sender disclosure rule.

πΩ Sender effective disclosure rule.

π∗ Sender optimal disclosure rule.

θ Receiver type.
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Θ Receiver set of types.

ω observation on the state of the world.

Ω set of possible observations.

Table 6.4: List of Notations

117



6. WHICH INFORMATION TO DISCLOSE?

118



Chapter 7
Persuasion Method Matters

7.1 Introduction

In this chapter we face a new challenge. While in all previous chapters the main challenge of

the system or automated agent was which information (or advice) to present to the user, in this

chapter we focus on how to present information to the user. While many systems are designed

to encourage users to accept beneficial proposals, complex propositions may often confuse the

user and make the decision non-trivial. It is well known that problem presentation [31, 33, 81]

may have an impact on the human decision-making process. In our work we consider beneficial

proposals that comprise several gains or losses, which are associated with varying probabilities

and must be accepted or rejected together. We will compare two possible presentation methods

(for the possible outcomes and their associated probabilities), a separate presentation and a

combined presentation, for each proposal. Many real life situations resemble our problem.

Our first example is a medical system which assists a doctor in encouraging a patient to take

a certain medication. The medication is associated with one or more benefits, such as curing

the infection or reducing pain, and also with several side effects, such as headaches, nausea, a

rash or an allergic reaction. These outcomes have varied significance; for instance, a headache

might be slightly unpleasant whereas an allergic reaction could be life threatening. Each of

these outcomes is also associated with a certain probability; for example, the probability of

overcoming the infection may be 90% while the side effect of a headache might occur in 20%

of the patients, whereas an allergic reaction might only become evident in 0.5% of the patients.

The expected overall reaction to the medication must be positive (otherwise it is more harmful

than helpful). In order to decide whether to use a medication, all of the potential benefits
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and the risk of side effects must be evaluated together. Combining the various components

is associated with a cost, since it is unclear how to quantify a headache compared to a rash.

Different people may associate different values with each benefit or side effect. Therefore

assigning values to the components using a joined metric would require some effort, such as

questioning many people on their preferences, and thereafter impose a cost.

Another example is an investment adviser who is trying to build an investment portfolio for

one of his customers. Some stocks have a higher risk but also offer an opportunity to receive

greater interest, while on the other hand a bond may have a lower risk however with a lower

interest level. Most people combine different stocks and bonds, which results in a combination

of different levels of risk. The investment adviser’s primary goal is to get the customer to invest

her money. Consequently the adviser would like to show the portfolio to the customer using

the most appealing presentation. Should the investment adviser show the expected probability

and value of revenue (or loss) for each stock, or should he try to combine all stocks in a single

chart which presents the total investment?

Our last example is a travel agent who would like to promote the sales for a specific vacation

package. Every day of a multiple-day vacation has some probability of rain or heat load (the

strength of the rain or heat load may also vary). The travel agent wants to show the customer

the probabilities for rain on each of the planned days. How should the travel agent present

these probabilities (while his goal is to sell the package)? Should he present them for every day

separately, or should he combine them all into one chart?

In order to determine how to present complex proposals, we propose an automated agent

that utilizes behavioral economic theory. A prospect is a lottery (possibly with several out-

comes, where each outcome has its own probability) [82], and a simple prospect is a prospect

with some probability p to gain or lose some amount x and otherwise to gain or lose noth-

ing. The problems we study in this chapter are composed of several simple prospects. These

prospects must either all be accepted or all be rejected (there is no option to accept a partial

set of prospects) and the system gains from accepted proposals. In the medical system we

described earlier, the benefit of cure infection with a probability of 90% (and 10% of not cur-

ing the infection) is an example of a prospect, and similarly so is the side effect of acquiring

a headache with a probability of 20% (and 80% of not resulting in a headache). All of the

prospects must be selected or rejected together since a patient either takes the medication or

does not. The agent we propose must decide whether to present the proposal in a separate

method, as is, or in a combined method, combining all of the simple prospects into a single
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(more complex) prospect. For example, in the medical system the separate method would list

all of the separate prospects. In combined presentation combining the curing prospect with the

headache prospect results with a 72% chance that infection will be cured without the headache

side effect appearing, an 18% chance that the infections will be cured and a headache will ap-

pear, an 8% that the infection will not be cured and no headache will appear and finally a 2%

chance that the infection will not be cured and that a headache will appear. Note that in the

combined method all of the probabilities add up to 100%. We assumed, and show experimen-

tally, that presenting the problem as a set of simple prospects or as a combined prospect is not

necessarily equivalent and can affect people’s choices. Thus the automated agent will deter-

mine when to use a separate presentation and when to use a combined presentation in order to

encourage the users to accept the propositions.

When several prospects are proposed, the issue of bracketing arises. Read et al. [83]

introduced the term “Choice Bracketing” to mean the grouping of choices. It has been shown

that when people face several choices in which each choice has several options, they tend to

treat such choices separately rather than treat them as a single decision. Our agent must take

this into account when considering whether to use a combined or separate presentation for a

problem, since similarly to what has been shown on separate choices, people might also treat

each prospect separately even if the prospects are presented as part of a group.

Behavioral economic theory describes the decision processes that people use when decid-

ing whether to accept a prospect or reject it. The most significant theories in this field are the

Expected Utility Hypothesis [84], the Prospect Theory [82] and the Cumulative Prospect The-

ory [85]. We embed these theories into our agent in order to model the expected human choice

that will be made for a given set of prospects, in order to determine if the separate or combined

presentation should be used.

We introduce the Prospect Presentation Problem, along with its formal description. This

problem requires selecting whether to represent the multiple prospects in a separate presen-

tation or a combined presentation, while maximizing the system’s utility. We use different

decision process models and settings in order to compose an agent that is capable of solving

the Prospect Presentation Problem. We demonstrate the efficiency of the agent, in choosing the

better presentation method, using an extensive experimental evaluation.
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7.2 Human Decision Making Under Uncertainty Hypotheses

7.2.1 Expected Utility Hypothesis

The Expected Utility Hypothesis (EUH) was initiated by Bernoulli in 1738 [84]. Under this

hypothesis, people have a utility function, u, which associates any possible total wealth with

some utility. People use this function when deciding whether to accept or reject a lottery simply

by maximizing their expected utility. For example, a person with a current total wealth of $W

facing a prospect (lottery), P , with a probability of p to win $x and a probability of 1 − p to

lose $y, will compare the expected utility from accepting the offer:

U(P ) = u(W + x) · p+ u(W − y) · (1− p) (7.1)

with the expected utility from rejecting the offer, which is simply u(W ). The person will

accept the lottery if the former is greater and otherwise reject it. A common utility risk averse

function, suggested by Bernoulli, is the log function:

u(X) = log(X) (7.2)

7.2.2 Prospect Theory

The Prospect Theory was presented by Kahneman and Tversky in [82] and later refined to the

Cumulative Prospect Theory (CPT) in [85]. The Prospect Theory is based on three principles.

The first is that people do not take into account their total wealth when accepting or rejecting an

uncertain opportunity (as suggested by the expected utility hypothesis [84]), but rather use their

current wealth as a baseline, and will be happy if they win an amount and become upset if they

lose an amount. The second principle is loss aversion, where people hate losing more than they

like winning. The third principle is that people have a subjective representation of probabilities

and do not interpret probabilities fully rationally, but rather use their own decision weights

when deciding whether to reject or accept a gamble. In his book, Kahneman [86] (p.314) gives

the following examples: The decision weight that corresponds to a 90% chance is 71.2%, while

the decision weight that corresponds to a 10% chance is 18.6%. According to these examples,

people are likely to prefer a guaranteed outcome of $80 than to gamble with a 90% chance of

winning $100, since the latter is only worth $71.2 to them. Tversky and Kahneman elicited

these weights by sequentially asking subjects to choose between a specific lottery and many

different guaranteed outcomes. The equivalent to the given lottery for a certain subject was

122



7.2 Human Decision Making Under Uncertainty Hypotheses

set to the average between the greatest rejected guaranteed outcome and the smallest accepted

guaranteed outcome [85]. However, these decision weights depend on people’s personalities,

their wealth, culture and the scope of the payoff in question. The cumulative prospect theory

determines the value of any prospect based on its possible outcomes and the probability of

each of its outcomes. Given a prospect P which comprises T possible ordered outcomes (as

defined by Tversky and Kahneman), {x1, x2, ..., xT }, and the first t are negative outcomes,

i.e. x1 < x2 < ... < xt < 0 ≤ xt+1 < ... < xT . Each outcome is associated with some

probability p(x). The value of the prospect is given by the following formula:

U(P ) =

t∑
i=1

v(xi) ·

(
w
(
pi +

i−1∑
j=1

p(j)
)
− w

( i−1∑
j=1

p(j)
))

+

T∑
i=t+1

v(xi) ·

(
w
(
pi +

T∑
j=i+1

p(j)
)
− w

( T∑
j=i+1

p(j)
))

(7.3)

where v(x) stands for the value function and w is the weighting function (the decision weight

function described above). Both of these functions must be non-decreasing, and w(0) =

0, w(1) = 1. v is negative for losses and positive for gains, and v(0) = 0. The intuition be-

hind this formula is that every possible value of the output is assumed to have an impact which

is proportionate to the marginal affect that its accumulated probability has on the weighting

function. For example, given a prospect P ′ with three possible outcomes, $2, $3 and $10 (no

negative outcomes) with probabilities of p($2) = 0.1, p($3) = 0.7, p($10) = 0.2, the value of

the prospect is given by:

U(P ′) = v($10) · w(0.2) + v($3) ·
(
w(0.9)− w(0.2)

)
+

v($2) ·
(
w(1)− w(0.9)

)
Note that due to the nature of w and v, the value of P ′ is at least v($2). This corresponds with

the fact that the prospect guarantees a win of at least $2.

Tversky and Kahneman suggested the value function:

v(x) =

{
xα if x ≥ 0

−µ(−x)β if x < 0
(7.4)

where α, β and µ are parameters, and the weighting function is:

w(p) =
pγ(

pγ − (1− p)γ
)1−γ (7.5)
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where γ is a parameter used for positive payoffs and is replaced by a different parameter,

δ, for negative payoffs. Several studies try to estimate parameters for the Prospect Theory

[87, 88, 89], however most studies try to maximize the likelihood of the results obtained by

each subject individually. This approach could not be applied in our work since we built a

model based on a group of users and apply the model to new users (for whom we have little or

no data). Models that are built for each and every user will not allow us to generalize them to

new subjects.

7.2.3 Bracketing

“Choice Bracketing”, termed by Read et al. [83], designates the grouping of individual choices

together into sets. “Broadly Bracketing” indicates that the decision-maker takes all choices into

account when making his decision, while “Narrow Bracketing” indicates that the decision-

maker isolates each choice from all other choices. When humans face a broad spectrum of

topics, where each topic consists of several options, they usually make a decision on each topic

separately. A classic experiment that illustrates narrow bracketing was done by Tversky and

Kahneman [49]. They asked their subjects the following question:

”Imagine that you face the following pair of concurrent decisions. First examine both decisions,

then indicate the options you prefer:

Choice I. Choose between:

A. A guaranteed gain of $240.

B. A 25% chance to gain $1000 and a 75% chance to gain nothing.

Choice II. Choose between:

C. A guaranteed loss of $750.

D. A 75% chance to lose $1000 and a 25% chance to lose nothing.”

Since people tend to be risk averse with a positive payoff and risk seeking with a negative

payoff, a large majority of subjects (73%) chose both A and D. Only 3% of the subjects chose

B and C. Combining A and D yields a 25% chance to gain $240 and a 75% chance to lose

$760. However, combining B and C dominates this with a 25% chance of gaining $250 and

a 75% chance of losing $750. Tversky and Kahneman performed an additional experiment in

which they presented only the following combined choices to the subjects, that is:
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Choose between:

A+C. A guaranteed loss of $510.

A+D. A 25% chance to gain $240 and a 75% chance to lose $760.

B+C. A 25% chance to gain $250 and a 75% chance to lose $750.

B+D. A 6.25% chance to gain $1000, a 56.25% chance to lose $1000 and a 37.5% chance

to gain or lose nothing.”

This time, not a single subject chose the dominated option (A+D). This experiment demon-

strates that people tend to treat each decision on its own and do not combine the choices,

unless they are explicitly combined for them.

7.3 Prospect Presentation Problem

The prospect presentation problem is a decision problem for a system and is defined as follows.

We first define a set of simple prospects s = {P1, P2, ..., Pki}; recall that a simple prospect

P is composed of a probability Pp of gaining or losing a certain amount, Px. In the prospect

presentation problem, a system has a set of n sets of simple prospects, S = {s1, s2, ..., sn}.
Each set s ∈ S must be offered to h human clients. Each of the human clients may either accept

the set of prospects s (and participate in the lotteries associated with the prospects) or reject

it. Each of the sets, s, may be presented to the human clients in two different presentation

modes m(s); the presentation mode may either be separate, which indicates that the set of

prospects are presented separately (as they are), or combined, which indicates that the prospects

are validly combined into a single prospect. The separate presentation mode of s is denoted

ss and the combined presentation mode of s is denoted sc. The probability for any possible

outcome must be identical in both ss and sc. A cost c(m(s)) may be applied to the system

and may depend on the method of presentation. The system gains a utility of 1 − c(m(s))

every time a human client accepts a set of prospects. The human clients are assumed to follow

a stochastic decision policy, in which, given a set of prospects, s, and a presentation mode,

m, p(s,m) determines the probability that the humans will accept the set of prospects. The

prospect presentation problem is intended for the system to determine the presentation mode,

m(s), for each of the sets of prospects, s, in order to maximize:∑
s∈S

p(s,m(s)) · h · (1− c(m(s))) (7.6)
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7.4 An Agent for the Prospect Presentation Problem

In this section we introduce an Agent for the Prospect Presentation Problem (APPP). Section

7.4.1 describes how APPP calculates the combined presentation for a set of prospects and

solves the prospect presentation problem. However, this solution relies on a component that

accurately models human decision policy. We therefore propose several alternatives for APPP’s

composition of the human model in Section 7.4.2.

7.4.1 Solving the Prospect Presentation Problem

The first component of the APPP agent is described in Algorithm 1, which handles the task of

efficiently (linear in output length) calculates a combined presentation for a set of prospects sc.

The algorithm receives a set of simple prospects and outputs a hash map with all of the possible

outcomes (as keys) and probabilities (as values). The algorithm iterates via all prospects. In

every iteration the algorithm takes the previous iteration’s result and doubles it, once assuming

that the current prospect obtained its outcome and once assuming that the current prospect did

not yield its outcome. For example, consider a set of simple prospects in which one prospect

has a 25% chance of winning $37 and another prospect has a 60% chance of losing $10, i.e.

s = {(0.25, $37), (0.60, $− 10)}. In the first iteration, with the prospect of (0.25, $37), there

will be only two possible outcomes, 0 with a probability of 0.75 and $37 with a probability

of 0.25. In the second (and last) iteration, with the prospect of (0.60, $ − 10), the algorithm

will first assume that the (negative) outcome was not obtained (with a probability of 0.40), and

thus there will be two possible outcomes: $37 with a probability of 0.25 · 0.40 = 0.10 and $0

with a probability of 0.75 · 0.40 = 0.30. Then the algorithm will add two additional outcomes,

assuming that the outcome of the second prospect, −$10, was obtained (with a probability of

0.60): $27− $10 = $17 with a probability of 0.25 · 0.60 = 0.15 and $0 +−$10 = −$10 with

a probability of 0.75 · 0.60 = 0.45.

The second component of the APPP agent is described in Algorithm 2. This is the pro-

cedure that solves the prospect presentation problem. The input for Algorithm 2 is a set of

prospect sets, a cost function and a human decision policy. The output is a determination

policy for each set of prospects. The determination policy determines whether to use the sep-

arate or the combined method for each prospect set. This algorithm simply iterates via all

sets of prospects and calculates, for each of the sets, which of the presentation methods is

more profitable for the system, i.e. whether p(s, separate) · (1 − c(separate)) is larger than
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Algorithm 1 Calculation of the combined presentation for a set of prospects.

Input: s - A set of simple prospects s = {P1, P2, ..., Pk}, where Pi = (P pi , P
x
i ).

Output: sc - A hash map holding all possible outcomes as keys and their associated probabil-
ities as values.

1: sc[0]← 1

2: for each prospect P in s do
3: sc′ ← sc

4: clear sc

5: for each outcome in sc′ do
6: sc[outcome]← sc′[outcome] · (1− P p) 1

7: sc[outcome+ P x]← sc′[outcome] · P p

8: return sc

p(s, combined) · (1− c(combined)) or vice versa. If the human decision policy were known,

Algorithm 2 Procedure for solving the prospect presentation problem.

Input: A set composed of prospect sets S, a cost function c(m(s)), and a human decision
policy p(s,m(s)).

Output: A determination policy, m, for each of the prospect sets.
1: for each problem s in S do
2: if p(s, separate) · (1− c(separate)) > p(s, combined) · (1− c(combined)) then
3: set m(s)← separate;
4: else
5: set m(s)← combined;

the algorithm would have fully solved the prospect presentation problem. However, in real life,

a system agent facing the prospect presentation problem is not likely to have access to the hu-

man decision policy, p(s,m(s)). Therefore, the major concern for an agent facing the prospect

presentation problem is to accurately model the human decision policy.

7.4.2 Decision Policy Modeling in APPP

An agent facing the prospect presentation problem does not have specific information about

the human user, and therefore must use a general model for modeling human decision policy.

1In 6 and 7, if sc[outcome] or sc[outcome+P x] already have a value, increment that value by sc′[outcome] ·
(1− P p) or sc′[outcome] · P p, respectively.
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While several theories may be considered for building this model, the Expected Utility Hypoth-

esis and Cumulative Prospect Theory definitely stand out as being significant in their field. We

therefore decided to embed each of these theories in APPP’s decision policy model. Neverthe-

less, it is possible to embed other theories into the agent. However, in both the expected utility

hypothesis and the cumulative prospect theory, a human’s response does not depend on the form

of the presentation of the problem. This implies that both presentation methods (combined and

separated) would yield the same probability that the user will accept a given lottery regardless

of the lottery, i.e. for any s, p(s, combined) = p(s, separate). This assumption is clearly inap-

propriate for our work (and is shown to be false in the results section). Consequently, each of

the theories requires slight modification when considering the separate representation method,

by taking the bracketing effect (see section 7.2.3) into account.

In the following subsections we describe in detail how each of the theories can be embed-

ded into APPP. All of the methods we tested needed to set some parameters, therefore APPP

required training data. The data set, ψ, was composed of a set of tuples < s,m(s), d >, in

which s is a set of simple prospects presented to a human user, m(s) determines whether the

set of prospects were presented in the combined method or in the separated method, and d

is a Boolean, indicating whether or not the user decided to participate in the lottery. In or-

der to accurately model human decision-making, it is essential to assume stochastic decision-

making, since the agent is required to evaluate the probability that a user will accept a lottery.

Not assuming stochastic decision-making would mean that a lottery (possibly depending on

its presentation method) would either be accepted by everyone or rejected by everyone, i.e.

p(s,m(s)) ∈ {0, 1}. (It is not necessary to assume that every individual actually uses stochas-

tic decision-making, but that the population as a whole can be modeled as using stochastic

decision-making.)

APPP assumes a logit quantal response and thus relies on Equation 7.7. Recall that in the

prospect presentation problem, the user needs to choose between participating in a prospect

(or a set of simple prospects in the separate presentation method) or not. Thus, the user must

actually choose between the lottery and the value of not participating in it, denoted U(null).

In EUH, U(null) = u($W ), where W is the person’s initial wealth, and in CPT, U(null) =

v(0) = 0. Therefore, given a lottery L, according to Equation 7.7, the probability that a user

will accept the lottery is:

p(L) =
1

1 + eλ
(
U(null)−U(L)

) (7.7)
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Modeling using the Prospect Theory with Learned Parameters

The first model we consider for APPP’s decision policy is the cumulative prospect theory. We

used the cumulative prospect theory, CPT, (see section 7.2.2) in order to evaluate U(L) for

a user facing the combined method (a single prospect). However, as mentioned above, when

considering the separated method (a set of simple prospects), APPP deviates from CPT. For

the instances in the data set using the combined method of presentation, in which the user is

only presented with a single prospect (sc), APPP calculates U(sc) according to Equation 7.3

(and Equations 7.4 and 7.5 for the value and weighting functions, respectively). APPP assumes

that people who face the separated method evaluate each prospect separately and then combine

all values together to receive the total value of the lottery1. This assumption is based on the

bracketing effect (see section 7.2.3), which suggests that people treat each problem separately,

and thus we assume that they will evaluate each prospect separately. Formally, given a set of

prospects, s, presented in the separated method, the value of the set of prospects is given by:

U(ss) =
∑
P∈s

U(P ) (7.8)

APPP searches for parameters α, β, µ, γ, δ and λ that minimize the mean squared error (MSE)

between p(s,m(s)) and the actual fraction of users in (ψ) who accepted lottery s (d = true)

from all of those who were shown the lottery using m(s) as the presentation method. Once

APPP has set the parameters to use for the decision policy, it can be used to determine how to

present a new set of prospects. Given a set of prospects, s, and a presentation mode,m(s); if the

presentation mode is combined, APPP uses Equations 7.7 and 7.3 and parameters α, β, µ, γ, δ

and λ. If the presentation mode is separated, APPP uses Equations 7.7, 7.8 and 7.3 and the pa-

rameters (α, β, µ, γ, δ and λ) to evaluate the probability that the user will accept the associated

lottery.

Modeling using the Prospect Theory with Original Parameters

We also investigated another possible model; it is the same model described in 7.4.2, but rather

than learning the parameters α, β, µ, γ and δ, APPP uses the parameters proposed by Kahne-

man and Tversky. That is, α = 0.88, β = 0.88, µ = 2.25, γ = 0.61 and δ = 0.69. APPP only

uses the data to evaluate λ.
1This approach in an environment of only simple prospects is actually similar to the assumptions made by the

prospect theory rather than CPT.
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Modeling using Expected Utility Hypothesis

As the Expected Utility Hypothesis is very well known, we also show how to embed it into

APPP. APPP, based on EUH, uses Equations 7.1 and 7.21. As in the model assuming CPT,

we must determine how to account for sets of prospects presented in the separated method.

However, when using EUH, APPP may not simply use the exact same approach as when using

CPT, since in EUH, U(P ) includes the initial wealth. Therefore, if we were simply to add

up the utilities from all of the prospects (using Equation 7.8), eventually we would be adding

the initial wealth several times. Thus we propose a simple modification, using the following

equation:

U(ss) = u(W ) +
∑
P∈s

(
U(P )− u(W )

)
(7.9)

APPP based on EUH, searches for parameters W and λ that minimize the mean squared er-

ror (MSE) between p(s,m(s)) and the actual fraction of users in (ψ) who accepted lottery s

(d = true) from all those who were shown the lottery using m(s) as the presentation method.

Given a set of prospects, s, and a presentation mode, m(s); if the presentation mode is com-

bined, APPP uses Equations 7.7 and 7.1 and parameters W and λ. If the presentation mode is

separated, APPP uses Equations 7.7, 7.9 and 7.1 and the parameters (W and λ) to evaluate the

probability that the user will accept the associated lottery.

7.5 Evaluation

7.5.1 Experimental Setup

We ran our experiments using Amazon’s Mechanical Turk (AMT) [56]. We constructed a

total of 120 sets of simple prospects, with k (the number of simple prospects in a set) varying

between 3 and 5. The upper boundary of 5 was chosen since the number of possible outcomes

is exponential in the number of k (25 = 32) and we didn’t want to present too many possible

outcomes to the subjects. Each simple prospect (P ) had a random probability (Pp) between

1% and 100% (only whole probabilities) and a random expected outcome (Pp · Px) between

−$15.00 and +$15.00. For the human decision not to be trivial, every set of prospects had

at least one prospect with a negative outcome and one with a positive outcome. For ethical

1In practice we also tried two different power functions, but they yielded the exact same results as the log
function (presented in Section 7.5.2).
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Figure 7.1: A subject facing a set of prospects presented separately.

reasons, since we did not want to encourage traditional gambling, we ensured that all gambles

had a positive expected utility. Therefore, a player who was trying to maximize her expected

outcome should have accepted all gambles. Thus, the subjects were not urged into a gamble

which was not good for them. We recruited a total of 612 participants. 58.1% of the subjects

were males and 41.9% were females. Subjects’ ages ranged from 18 to 73, with a mean of 31.6,

a median of 29 and a standard deviation of 11.0. All subjects were residents of the USA. The

subjects were paid 30 cents to participate in the experiment. Each subject was presented with

20 sets of prospects, half in their original form and half as combined prospects. This resulted

in an average of approximately 50 instances for each of the 120 sets of prospects for each

of the two different presentation modes. The subjects were given the following instructions:

”Suppose you are facing the following lottery / set of lotteries, you may either participate in it

/ in all lotteries or reject it / them all”. (The exact text depended on the mode of presentation of

the current set of prospects.) To enhance comprehension, we also provided the subjects with

pie-charts presenting the prospects (as in [90]). The following explanation was provided: ”The

following pie chart(s) which present(s) the lottery / lotteries may assist you in making your

decision.” Figure 7.1 presents an example of a screen-shot of a subject facing a set of prospects

presented separately, and Figure 7.2 presents an example of a screen-shot of a subject facing
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Figure 7.2: A subject facing a set of prospects presented in the combined mode.

the same set of prospects presented in the combined mode. Note that there are 3 prospects

in the separate mode, and thus 23 = 8 in the combined mode. We set the cost function at

0 for the separated method and at 0.15 for the combined method. This setting was chosen

since we assume that the problem is provided as separate prospects, and therefore some cost is

associated with presenting a combined prospect to the user. A cost of 0.15 for the combined

mode, equalizes the performance of the combined mode to the separate mode.

7.5.2 Results

We ran APPP using 10-fold cross-validation on the data. In every fold APPP was trained on

108 sets of prospects, and tested on the remaining 12 sets of prospects. For each of these

sets, APPP had to decide whether to present the prospects separately or combined. Figure 7.3
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presents the performance of APPP in three modes. The APPP refers to the agent using the

learned parameters as described in Section 7.4.2, APPP-KT refers to the agent that uses the

parameters described by Kahneman and Tversky as explained in Section 7.4.2 and APPP-EUH

is the agent described in 7.4.2. These versions of the agent are compared to an agent that

always presents the combined mode and an agent that always presents the separated mode.

The black bars represent the 95% confidence interval using a paired t-test. APPP significantly

(t(119) = 2.3645, p < 0.01 using a paired t-test on the score obtained from every set of

prospects) outperformed all other methods, and yielded an increase of 6% in the average score

over the two baselines. Recall that APPP may only control the method of presentation to the

users (and not the actual lotteries), therefore this achievement is very impressive. Table 7.1

provides additional details regarding the acceptance rate of APPP and the baseline agents. As

can be observed by the table, the combined mode enjoyed a much greater acceptance rate than

the separate mode. This clearly demonstrates that the presentation mode has an impact on the

human acceptance rate, justifying our initial assumptions. However, recall that presenting the

combined method requires some additional effort and is therefore assumed to be associated

with some cost. If this cost is reduced, the combined mode becomes much more appealing,

and vice versa, as the cost increases, the separated mode becomes more appealing. It is not

surprising that APPP yields a slightly lower acceptance rate than the combined agent, since,

as mentioned, many more subjects accept the combined mode than the separated mode, and

APPP chose to present the combined mode only in 37.5% of the sets. APPP-EUH did not

present the combined mode in any of the sets. This was not because it assumed that using the

separate mode is more appealing to the user, but because it was not willing to pay the cost

associated with presenting the combined mode (if the cost was totally removed, APPP-EUH

would present the combine mode in 94% of the sets). Recall that the expected outcome on all

lotteries was always positive, yet on average people still accepted less than 50% of the lotteries.

Regarding the pie-charts, 79.1% of the subjects said that the pie-charts helped them and

only 19.6% said that they did not help them. Only 6 subjects (less than %1) said that they

did not understand the pie-charts. While the total average of participation in the lotteries was

41.5%, females participated on average in only 37.9%, which is significantly lower (p < 0.01

using ANOVA test) than males who participated on average in 44.1% of the lotteries. This

indicates that females are more risk averse than males (this finding was also present in many

studies such as [91]). We also found that young people, up to age 29 (which was our median),
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Figure 7.3: Average score obtained with each of the methods.

Agent Acceptance Combined Average Score Number of

rate presentation cost parameters

APPP 42.8% 37.5% 0.0266 0.401 6

APPP-KT 39.6% 16.7% 0.009 0.387 1

Combined 44.4% 100% 0.066 0.378 0

Separate/APPP-EUH 37.8% 0% 0 0.378 0− 2

Table 7.1: Average performance of APPP compared to the other agents
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are significantly (p < 0.01) more likely to participate in the lottery than people aged 30 and

above (44.0% vs. 37.7%). Risk aversion also seems to increase with education, as subjects with

only a high school education (49.6%) participated in 43.3% of the lotteries, while subjects

with a bachelor’s or a master’s degree or a PhD participated in only 39.7% of the lotteries

(these results differ statistically with p < 0.05, however, these results may be explained by

the fact that the younger subjects tend to have lower education). Interestingly, while the gap

between the males and females participating in the lotteries was smaller when the prospects

were combined (6.93% vs. 5.62%), the gap between the young subjects and the older ones

almost doubled in size when the presentation mode was combined (4.29% vs. 8.31%). This

finding may encourage future work on a personalized agent based on demographic data alone.

7.5.3 Discussion

In this study we used k <= 5 (the number of simple prospects in a set). What affect an in-

crease in the number of prospect selection problems will have remains indeterminate. In such

a case, the pie chart may become very complex as the number of outcome options increases

exponentially. One option is to group together similar outcomes, but still it is unclear how

this should be done. Another interesting question is what will happen with lower values of k.

Lower values of k should enable a better evaluation of the problem and a better comprehension

of the agent’s advice; it remains to be seen how this will affect the users’ interaction with the

agent. We chose the pie charts (combined and separate) in order to enhance comprehension

of the proposed prospects. The users provided positive feedback to the charts. It would be

interesting to study how much of a role they played in the user acceptance rates. Enhancing

APPP to include more presentation modes or other visual enhancements would be an interest-

ing extension of this study. Using CPT with learned parameters was shown to outperform other

methods we tested. In the future we would like to consider modifying the functions suggested

by Tversky and Kahneman to see if it is possible to further improve APPP’s performance. An-

other possible extension would be to study how to apply alternative modeling theories such as

the priority heuristic [92].

7.6 Conclusion

In this chapter we introduced the prospect presentation problem, in which users are presented

with sets of prospects that must be accepted or rejected as a group (such as an investment

135



7. PERSUASION METHOD MATTERS

portfolio). We refer to a system that gains a positive utility when clients accept the prospects

(decide to invest). We defined the prospect presentation problem as determining, for each set

of prospects, which presentation mode to use in order to maximize the system’s utility. We

presented the APPP agent that solves the prospect presentation problem and chooses between

representations of complex beneficial proposals. APPP uses the Cumulative Prospect Theory

(CPT) in order to model human decision-making and uses this model to select the better repre-

sentation method for a set of prospects. We demonstrated that fixing the presentation method

to always present the prospects separately, or always present them combined, results in a lower

score than using APPP to select the presentation mode based on the human model and a given

set of prospects. We investigated several variations on decision process models and found that

using CPT results in the most successful agent for selecting the presentation mode. Further-

more, learning the parameters for CPT from sets of prospects presented in the two presentation

modes resulted in a better agent than simply using the parameters elicited by Kahneman and

Tversky in their original study. We show that the combined method yields much higher accep-

tance rates, and thus, if the cost associated with presenting the combined method is very low,

it may be more beneficial for the system to always use the combined mode. If the cost is not

negligible, we suggest that APPP be used to determine which sets to present separately and

which to present combined.

7.7 List of Notations

notation meaning

c(m(s)) cost applied to a presentation mode.

h number of hu-
man clients.

m(s) presentation mode of a simple prospect.

n number of simple prospects.

p probability.

P prospect (lottery).

s simple prospect.

S set of simple prospects.

sc combined presentation mode of s.
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ss separate presentation mode of s.

T set of possible outcomes of a prospect.

u(X) utility of amount of money.

U(P ) utility of prospect.

v value function.

W wealth.

x a possible monetary outcome.

α cumulative prospect theory parameter for positive payoffs.

β cumulative prospect theory parameter for negative payoffs.

γ cumulative prospect theory parameter for positive payoffs.

δ cumulative prospect theory parameter for negative payoffs.

λ logit quantal response parameter.

µ cumulative prospect theory parameter for negative payoffs.

Table 7.2: List of Notations
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Chapter 8
Final Remarks

In this thesis we study the possibility of deploying automated agents for human persuasion.

In our settings, the automated agents and the humans have different goals. Nonetheless we

assume that the automated agents do not compete with the humans either.

We presented a methodology for the automated agent. This methodology relies heavily on

building a human model. The human model relies on running machine learning techniques on

collected data. It also benefits from social science insights, such as hyperbolic discounting,

logit quantal response and risk aversion. Using the human model the automated agent searches

for an optimal action for the system to perform.

We considered three different types of persuasion methods: advice provision, information

disclosure and presentation methods. We used our methodology for all of these presentation

methods. We also showed the success of this methodology in several different settings, in-

cluding one in which the system presented advice on several different parameters, another in

which the system presented a set of actions to the user, a setting in which the system presented

long-lasting advice and a setting in which the system presented advice repeatedly to the user.

We also tested this methodology in several different domains, such as navigation systems, cli-

mate control systems and movie recommender systems. We conclude that to build an effective

method for human persuasion one must build a human model, which is best achieved when

using machine learning on given data and relying on principles known from social science.

Most of the work presented in this thesis was conducted using Amazon’s Mechanical Turk

platform, which is a crowd sourcing web service that coordinates the supply and demand of

tasks that require human intelligence to complete. Amazon’s Mechanical Turk has become an
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important tool for running experiments with human subjects and was established as a viable

method for data collection [7]. We took several actions to encourage subjects to truly attempt

to answer seriously: we only selected workers with a good reputation; a set of questions,

designed to verify comprehension of the task, was presented to the subjects prior to executing

the task; and as a stimulus, all subjects were guaranteed a monetary bonus proportionate to

their performance. Amazon Mechanical Turk enabled us to recruit hundreds of people for

every domain we considered. It allowed us to build more accurate human models and evaluate

the methodology by means of an extensive study. Our experience in running experiments on

Mechanical Turk demonstrated that almost all subjects considered our tasks seriously.

However for one of the experiments presented in this thesis we did not rely on Amazon’s

mechanical Turk but rather on real drivers, as explained in chapter 2. The drivers were provided

advice from an agent regarding the settings of a climate control system in a real car.

Throughout this thesis, we used a general human model which, in most cases, did not take

into account the differences among humans. Even in those cases in which we did consider

different types of humans, there was no intent to model a specific person as the system keeps

interacting with him. However, it is well known that people are different from each other and

therefore personalization of the human model, and thus the way the system interacts with the

human, is an important topic for future work. Another topic for future work are scenarios in

which the user has other agents providing advice or information to them with different cost

functions. In such cases, our agent may need to compete with other systems or agents. Fur-

thermore future work may allow users to receive partial information from other sources and the

ability to turn on or off advice or information received from our agent.
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[92] E. BRANDSTÄTTER, G. GIGERENZER, AND R. HERTWIG. The priority heuristic:

making choices without trade-offs. Psychological review, 113(2):409, 2006.

148

http://dx.doi.org/10.1007/BF00122574
http://dx.doi.org/10.1007/BF00122574
http://edoc.mpg.de/394861
http://www.nber.org/papers/w14713
http://www.nber.org/papers/w14713

	Automated Human Persuasion
	Introduction
	Related Work
	Publications

	I Persuasion by Advice Provision
	Multi-dimensional. Influential Advice
	Introduction
	The Volt Climate Control System
	CARE
	CARE Training Data
	Energy Consumption Model
	Human Comfort Level Model
	CARE Method for Advice Provision

	Training Data Collection Methods
	Data Collection for Modeling Energy Consumption
	Data Collection for Modeling Human Users

	Graphical User Interface
	Experimental Evaluation
	Results
	Discussion
	Conclusions
	List of Notations

	Recommending a set of actions.
	Introduction
	PUMA
	Algorithm for the Hidden Agenda Setting
	Algorithm for Revenue Maximizing

	Experiments
	Hidden Agenda Setting
	Revenue Maximizing Settings

	Discussion
	List of Notations

	Long-Term Influential Advice.
	Introduction
	The Model
	The UMPA Approach
	Modeling Diversity in People's Reactions
	Predicting Advice Deviations
	Estimating the Cost of an Advised Path
	Searching for Good Advice

	Experimental Evaluation
	Methodology
	Basic Results
	UMPA Advice Algorithm Performance

	Conclusions
	List of Notations

	Providing Advice in Repeated Interactions
	Introduction
	Choice Selection Processes
	Route Selection Domain
	Human Receivers as Multi-Armed Bandits
	Agent Design for Senders
	Empirical Methodology
	Discussion

	Climate Control Domain
	Setting Description
	Modeling Human Receivers
	Agent Design for Sender
	Experimental Settings
	Experiments
	Results
	Discussion: Partially Informed and Ordered Actions Domains

	Conclusions
	List of Notations


	II Persuasion by Information Disclosure and Presentation
	Which Information to Disclose?
	Introduction
	The Information Disclosure Game with Two-Sided Uncertainty
	Solving Information Disclosure Games with Two-Sided Uncertainty
	Mathematical Program
	Finding an Optimal Policy

	People Modeling for Disclosure Games in Multi-attribute Selection Problems
	Multi-attribute Road Selection Problem with Two Sided Uncertainty
	The Sandwich Game
	Hypothesis
	Non-monetary Utility Estimation for the Road Selection Problem with Two-Sided Uncertainty
	Non-monetary Utility Estimation for the Sandwich Game with Two-Sided Uncertainty

	Experimental Evaluation
	Experimental Design
	Human Subjects
	Experimental Results
	Results of the Multi-attribute Road Selection Game with Two-sided Uncertainty 
	Sandwich Game Results
	Deciding between LUQA and GTBA

	Conclusions
	Proofs of Theorems Concerning Message Space
	Proof of Theorem 1
	Proof of Theorem 2

	List of Notations

	Persuasion Method Matters
	Introduction
	Human Decision Making Under Uncertainty Hypotheses
	Expected Utility Hypothesis
	Prospect Theory
	Bracketing

	Prospect Presentation Problem
	An Agent for the Prospect Presentation Problem
	Solving the Prospect Presentation Problem
	Decision Policy Modeling in APPP

	Evaluation
	Experimental Setup 
	Results
	Discussion

	Conclusion
	List of Notations

	Final Remarks
	Bibliography


